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Exercice 1 (* a **)

1
e La fonction f; est définie et C*° sur R*. De plus, lim z+— = 400, donc lim f;(z) = +o00. De
z—07F x z—0t

1
méme, lim x+— = —oodonc lim fi(z) = 0. On peut prolonger la fonction f; seulement par
z—0~ T z—0~

1
continuité a gauche en 0, en posant f1(0) = 0. Dérivons désormais : fi(z) = <1 — —) ert

22
z—1)(z+1 . )
%eﬁi. Commengons par constater que 1;1%1_ f1(z) = 0 (par croissance comparée,
1 N 1
. €z . . T — .
lim — = 0, et il ne reste ensuite qu'un facteur 169C qui tend vers 1), donc d’apreés
z—0- T

le théoréme du prolongement de la dérivée, f; est dérivable a gauche en 0 et sa courbe
représentative y admet une tangente horizontale. Pour les plus courageux, on peut calculer
" 2 1 1\? 1 142z — 222 + 24 1
(x) = s+ (11— =) &Te = vt

1 = —e€ : 1 =, mais ¢a ne sert pas a grand
x x x

chose puisqu’on n’arrivera pas & déterminer les racines du numérateur pour en déduire la

convexité. Les variations sont par contre faciles & étudier, on peut calculer les valeurs des

1
extrema locaux : fi(—1) =e 171 = —, et fi(l) = 2. On peut dresser le tableau de variations
e

suivant (les limites aux infinis ne posent aucun probléme) :

xr |—o00 -1 0 1 +o00

+oo +00
\62 /

h =

TN




e La fonction fo est définie et C*° sur R* (ce qui est dans le In étant toujours strictement
positif). Elle est de plus manifestement paire et accessoirement & valeurs positives. En posant

X = ot qui a pour limite 0 quand x se rapproche des infinis, et en utilisant la limite
In(14+ X
classique lim (74_) = 1, on obtient que lim f(z) = 1. En 0, écrivons plutdt que
X—0 X r—+oo
2?2 +1

fo(x) = 2%1n " ) = 22In(2? + 1) — 22 In(2?) (expression qui est définie sur R* comme

f(x)). Le premier terme a pour limite 0, le deuxiéme aussi (par croissance comparée), donc

on peut prolonger fo par continuité en 0 en posant f2(0) = 0. Passons a la dérivée : fi(z) =

2z In <1 + %) + 2% x _—32 X % = 2z <ln <1 + %) — %) Pas de probléme pour
T T 1+ =2 T v +1

la limite en 0, la méme technique que tout a I’heure (pour le produit de 2z par le In, Pautre

morceau tendant facilement vers 0) permet de prouver que il_)r% f4(z) = 0, donc par théoréme

du prolongement de la dérivée (je me dispenserai de le citer pour les fonctions suivantes), la

fonction fo est dérivable en 0, et f5(0) = 0. Pour les variations, ce n’est pas si simple, sur

1 1
RT, la dérivée est du signe de g(z) = In (1 + —2> — ——— La dérivée de cette fonction g
x x4+ 1

2 2x 272 — 2(1 + 2?) -2
o B B :
vaut ¢'(z) = _x(1+x2)+(1—|—:c2)2 R ) R gy oL La fonction g est donc
décroissante sur R**, de limite nulle en 400, donc elle est positive sur ]0; +oo[. La fonction
f2 est donc croissante sur [0,+o00], et par parité, décroissante sur | — oo, 0]. Résumons nos

différents calculs dans un tableau de variations :

T |—o00 0 400
1 1

N




e La fonction f3 est définie sur [—1,1] (puisqu’il faut avoir —1 < 22 < 1 pour que l'arccos
soit défini), mais a priori C*> seulement sur | — 1,1[. La fonction est de plus paire. Pas de
prolongement par continuité a étudier (ni de limites pour f3, contentons-nous de signaler
que f3(—1) = f3(1) = 0). Passons donc tout de suite au calcul de la dérivée : fi(z) =

—2x V1—a?
V1—zt 1+ 22
positive sur [0, 1], et la fonction est dérivable en 1, avec f5(1) = 2(arccos(1) + +/0) = 0. La

fonction admet par ailleurs un minimum en 0, de valeur f3(0) = — arccos(0) = —g. Une

2z arccos(z?)+ (22 —1) x =2z <arccos(m2) + ) . Cette dérivée est facilement

allure de la courbe :

1__

-2 L

e La fonction f4 est définie et continue sur R, de classe C* sur |0; +o0] (& cause de la racine car-
1 1-2zx
rée). Calculons la dérivée : fi(z) = [ —= — Vx| e * =
) A = (5om - va)er =52
limite infinie, la fonction f4 n’est donc pas dérivable, mais la courbe admet en 0 une tangente

e~ ". En 0, cette dérivée a une

1
verticale. La fonction est par ailleurs croissante sur [0, 3 et décroissante ensuite, avec pour

. ; (1) \/T B 1
maximum — = —€ e
2 2 V2e

la dérivée seconde pour étudier la convexité : fi(z) = (

NI

Si on est courageux, on peut enchainer sur le calcul de

1 1 1
— — _ —-T _
dx/x  2\/x  24/x + ﬁ) c
e~®. Cette dérivée seconde est du signe de 4x? — 4z — 1, dont le discriminant
4+V32 142
8 2 7

402 — 4 — 1
dx\/x

vaut A = 16 + 16 = 32, et qui admet donc deux racines x7 =

t



To =

12 1++2
2

5 < 0. La courbe changera donc de concavité au point d’abscisse (et d’or-

donnée /x1e~ "1, que I'on ne cherchera pas a expliciter, je ne parle méme pas de la tangente
dont la pente sera horrible). Ce point n’est pas indiqué sur la courbe qui suit (par souci de
lisibilité) :

1+
0 I I ' .
0 1 2 3 4
La fonction f5 est définie et continue sur [—1,1], mais a priori C* seulement sur | — 1,1].
—2x —(1-2?)—z(l—2)

Pour changer, dérivons : fi(z) = —vV1—22+ (1 —12) X =
: fo@) S = i

222 —x—1  (z—-1)(2z+1) -2z
= = —(2z 4+ 1)4/——. En —1, cette expression a une limite
V1 — 22 V1— 22 1+

infinie, il y aura une tangente verticale ; par contre en 1, la limite est nulle, la fonction est donc

1
dérivable en 1 et fL(z) = 0. Par ailleurs, la fonction est croissante sur ]0, 5], et décroissante

1 3 /3 3v3
ensuite. Elle admet pour maximum f5 <_§> = S5 = \4/_ om peut enchatner st Ia
91— 22 4 Cz+DVide | (2z+l)Vi-z
dérivée seconde : f!(z) = 21v—i1_*r 2v/1+z
T

—4(1 — 22 2 1)(1 2 1)(1 — 202 4+ 22 — 1
_ A0 -+ 2o+ DA+ o)+ 22+ DA —x) | 227+ 22 =, qui est du signe de
X

2(1 + 2)V1 — 22 (I1+2)v1-—
—24+ /12
222 + 22 —1, dont le discriminant vaut A = 448 = 12, et s’annule donc en z; = % =

V3 -1 -1-+3

, et xg = —s qui n’appartient pas a l'intervalle [—1,1]. Il y donc un seul point

de changement de concavité pour la courbe :



1
e La fonction fg est définie et C*° sur ]0, 1[U]1, +oo[. Comme lin})em = 1, on peut prolonger
Tr—r

f6 par continuité en 0 en posant f5(0) = 0. En 1, on calcule sans difficulté lim fg(z) =0 et
z—1—
lim+ fe(x) = 4+00. On peut donc prolonger par continuité a gauche en 1 en posant fg(1) =0,
z—1
2
+> elnzx) — ln(gjgeln%x) . En
xIn*(x) In“(x)

. Comme lim X = —o0,
ln(ac z—1—

on en déduit par croissance comparée que lim fi(z) = 0. La fonction admet donc en 1 une
z—1—

mais pas & droite. Passons a la dérivée : fi(z) = <1 -

1, cette dérivée a la méme limite que —X2eX, ot on a posé X =

demi-tangente horizontale. En 0, la dérivée a pour limite évidente 1 (on factorise le quotient

par In?(x) si on y tient vraiment), donc fg est aussi dérivable en 0, et 16(0) = 1. Le signe de

la dérivée est par ailleurs celui de In?(z) — 1 = (In(x) 4 1)(In(z) — 1), qui s’annule en e et en
1

1 1
~—. On calcule fgle) =exel =e?, et f(~-) =-xe !l = —- On peut résumer toutes ces
e e e e

informations dans le tableau de variations suivant :

z |0 % 1 e +00

+o0 +oo
0/ e \*0

\62 /

|~

fe

)




e La fonction f7 est définie et continue sur | — oo, —1] U [0, +oo[ mais C* seulement sur | —

142
00, —1[U]0, +-00[ a priori. On peut ici calculer directement f7(z) = Vo + 22 + (1 +22) =

, , ) 2V + a2
2r +22° +x + 2z 3z + 4o (3 +4z)\/x _
= = si x > 0. Sur lautre intervalle, fl(z) =
2V + x? 2V + 22 PAVE S i)
3+ 4x)/—x
21—z

une limite nulle en 0, ot la fonction est donc dérivable avec une tangente horizontale. La
dérivée est par ailleurs positive sur chacun des deux intervalles ou f7 est définie. Une allure

de courbe :

En tout cas, on a une limite infinie, donc une tangente verticale, en —1, et

_5 4
e’ —1

x
(limite classique), on obtient lin% fs(x) = 0, et on peut prolonger fg par continuité en 0 en
Tr—r

e La fonction fg est définie et C*° sur R™. De plus, en utilisant le fait que lin% =1
T



posant fg(0) = 0. Passons au calcul de la dérivée, pour laquelle on posera au numérateur

3 x 3z
sva(e® —1) —z2e e’ — 3 — 2we”
oz = 2t pour se simplifier la vie : f{(z) = 2Vl ) _ Ve e )

(ez —1)2 B 2(er —1)2
Le calcul de la limite de la dérivée en 0 n’est vraiment pas naturel avec les moyens dont
x
nous disposons actuellement, mais on peut quand méme s’en sortir : f§(z) = —=— X

2/a(e” — 1)

x 3(e” —1) . o L .
X — 2e” | (vérifiez, je n’ai rien ajouté!), le dernier morceau dans la pa-

e* —1 x
renthése tend vers 1 en utilisant la limite classique déja exploitée plus haut, le deuxiéme
quotient juste devant aussi, et le premier, & cause du y/z au dénominateur, a une limite infi-
nie en 0. La fonction n’est donc pas dérivable en 0, sa courbe y admet une tangente verticale.
Le signe de 3e* — 3 — 2ze” n’a par ailleurs hélas rien d’évident, si on dérive on trouve du

1
3e® —2e” —2xe” = e*(1 —2x). Notre expression est donc croissante sur [O, 5} et décroissante
ensuite, vaut 0 en 0 et a pour limite —oo en +oo. Elle s’annule donc une fois, pour une valeur
de x supérieure a 3 et légérement inférieure & 1 puisque 3¢ —3 —2e = e —3 < 0. On ne

cherchera pas & en savoir plus, ni & calculer la dérivée seconde de fs. Notons simplement
que la croissance comparée permet d’affirmer que hrf fs(x) = 0, et tragons une allure de
T—r+00

courbe :

e Pour continuer en beauté, plein de fonctions d’un coup. Il était sous-entendu dans I’énoncé que
n désignait un entier naturel, les fonctions sont donc toutes définies et C*° sur R*. Si n = 0,
la fonction n’a pas de limite en 0, on peut trouver facilement deux suites de réels tendant vers

1
0 mais dont la limite des images par f; est différente. Par exemple fy <2—> =sin(2n7) =0
nm

1

mais fo| — ) = sin (2n7r—|— z) = 1. D’aprés la caractérisation séquentielle de la
(2nm + 3 2

limite, la fonction fy n’a pas de limite en 0. Toutes les autres fonctions sont par contre

prolongeables par continuité en posant f,,(0) = 0, car on peut écrire 'encadrement —z" <

1
" sin <—> < 2", qui suffit & assurer que lim f,(z) = 0.
T z—0

T

1 -1 1 1
Passons & la dérivée (sin # 0) : f/(x) = na" !sin <—> +2" X —5 cos <—> = na" !sin <—> -
x T x

2" 2cos [ — |. A partir de n = 3, pas de probléme, tout cela va gentiment tendre vers 0 en
T

faisant un petit encadrement, donc les fonctions f, sont alors dérivables (avec une tangente
horizontale) en 0. Pour n = 2, le premier terme tend vers 0 mais le deuxiéme n’a pas de limite



(méme raison que ci-dessus), la fonction n’est pas dérivable. Enfin, si n = 1, la dérivée vaut

sin(X) — X cos(X), ot on a posé X = —. La encore, il n’est pas difficile de construire des

x
suites donnant des limites différentes pour cette expression en 0, donc la fonction n’est pas
dérivable non plus. Ici, chercher & calculer la dérivée seconde ou méme & étudier les variations

N . IR . . . . (1
n’a & peu prés aucun intérét. Pour information, voici une allure de la courbe de z sin <—> aux

T

alentours de 0 (avec en pointillés les deux bissectrices entre lesquelles se trouve la courbe) :

. 057 »

0.4 1

I —04 T “~

. -0.5+ -

e Essayons d’organiser un peu notre étude :

domaine de définition : on doit déja avoir x € [—1,1] pour que 1 — 2 soit positif et
donc que la racine carrée intérieure existe. Ensuite, il faut en plus que 1 — 2zv/1 — x2 soit
positif, donc que 2211 — 22 < 1. Cette condition est évidemment vérifiée lorsque = < 0,
reste & gérer le cas des valeurs de x entre 0 et 1. Dans ce cas, on peut élever au carré :
22v1 — 22 < 1si 42%(1 — 22) < 1, donc 4a* — 422 +1 > 0. Or, 4z* — 42 + 1 = (222 — 1)2
est toujours positif, ce qui prouve qu’en fait Dy = [—1,1].

domaine de dérivabilité : f;o ne sera pas dérivable aux points qui annulent I'une des
racines carrées qui la composent. Ainsi, f45 ne sera pas dérivable en 1 ni en —1 & cause de
la présence du terme 1 — in De plus, la racine carrée globale s’annule lorsque x > 0 et

222 — 1 =0, donc pour & = —.
p /2
étude des variations : posons g(z) = 1 — 2zv/1 — 22, la fonction racine carrée étant

strictement croissante sur son domaine de définition, fj5 aura les mémes variations que

-2
g. La fonction g est dérivable sur | — 1,1[, et ¢'(z) = —2v1 — a2 — 22 X =

, ) , 2v/1 — 22
2¢° — 2(1 — 2(2z* — 1
* ( ) = (2 ) Notre dérivée est donc du signe de 222 — 1, c’est-a-dire
V1— a2 V1 — a2
1 1
u’elle est négative sur |——, —
! ° [ V2 V2

minimum de f42 en — vaut 0 (et que fyo ne sera pas dérivable a cet endroit), le maximum

V2

} et positive le reste du temps. On sait déja que le



N

1 /
de lautre cété vaut fio <_ﬁ> = 1—|—\/§\/1—%:\/1—|—1: )

— calcul de valeurs supplémentaires : on peut ajouter f4o(0) = 1, et bien sir fio(—1) =
fa2(1) = 1.
g'(z)

— tangentes en 1 et en —1 : comme on a fj,(x) = 2]07(), on constate facilement
a2(T

que liri1 fio(x) = 400, ce qui prouve que la courbe représentative de fio admettra des
z—

1
tangentes verticales en 1 et en —1. Pour la valeur ﬁ ou f4o n’est pas non plus dérivable a

priori, calculer la limite de f}, est beaucoup plus compliqué car a la fois fy2 et ¢’ s’annulent,
et on a aucun moyen simple de déterminer la limite du quotient, on admettra donc que la
courbe aura une forme « en pointe » a cet endroit-la.

— étude de la convexité : hum, non, en fait, ¢a va étre vraiment trop affreux, on ne peut

pas se contenter de calculer g” et méme ce calcul-1a serait assez désagréable. On constatera
1

V2

sur la courbe ci-dessous que la fonction est en fait concave sur [—1, ], puis convexe

sur |—,1].
V2
— courbe : finalement, seules les variations étaient vraiment a étudier en détail avant de
tracer la courbe :

e (C’est le genre de fonction qu’on ne cherchera pas & étudier ailleurs qu’en 0. La fonction fyg est
toutefois C*° sur R* par théorémes généraux. En 0, il suffit d’écrire que —2? < f(z) < 22 pour
constater que le théoréme des gendarmes assure la continuité de la fonction. Mais en fait, elle y

h
est méme dérivable en utlisant quasiment le méme argument : 7 r(h) = flOT() = hsin (—),
x

donc on a l'encadrement —h < 79 ¢(h) < h qui suffit & assurer la dérivabilité de fi9 en 0,
avec f1,(0) = 0. Une allure de courbe tracée bien entendu par ordinateur (comme toutes les
précédentes), et sur laquelle on ne voit d’ailleurs pas grand chose malgré le zoom qui a été
effectué sur la zone qui nous intéresse (valeurs de = comprises entre —0.4 et 0.4, de y comprises
entre —0.2 et 0.2, théoriquement on a bien str une infinité de micro-sinusoides d’amplitude
de plus en plus faible au voisinage de 0) :



Exercice 2 (*)

La fonction f est définie et de classe C* sur |0, +o0o[, de dérivée donnée par
) = Tz In(1 + b;ﬂ) - H% In(1 + ax) _ a(l+bx)In(1 4 bx) — b(1 ;— ax)In(1l + am)_ Cotte déri.
In*(1 4 bx) (1 + az)(1 + bx)In*(1 + bx)
vée est du signe de son numérateur, qu'on va noter g(z). La fonction g est elle-méme dérivable sur
10, +00], de dérivée ¢'(z) = abln(1 + bx) + ab — baln(1 + az) — ba = ab(In(1 + bx) — In(1 + ax)) > 0
puisqu’on a supposé a < b. La fonction g est donc strictement croissante sur ]0,4o00[. De plus,
ii_)r% g(z) = 0 (les In ont tous les deux une limite nulle), ce qui prouve que la fonction g est stricte-

ment positive sur |0, +oo[ et donc que f est strictement croissante.

Exercice 3 (*)

La fonction f est bien sir de classe C* sur |0, 1[. Comme lim ——

= —00, pas de prolongement
z—1-1n(x)

par continuité envisageable de ce coté. Par contre, on a lim
a—0+In(x)

en une fonction continue sur [0,1] en posant f(0) = 0 (on continuera de noter abusivement f le

= 0, donc on peut prolonger f

rolongement). On aura alors h) = —————. Or, lim hln(h) = 0~ (croissance comparée), ce qui
p g ) TO,f( ) hln(h) B0 ( ) ( P ) q
prouve que lim+7'07 f(h) = —o0 et que f n’est donc pas dérivable en 0. Sa courbe représentative y
h—0
dmettra toutefois une tangente verticale.
1
Il est temps d’étudier les variations de f : Vx €]0,1], f'(z) = ) < 0, donc f est beé-
zIn“(z

tement décroissante sur tout Uintervalle. Passons donc a 1’étude de convexité : Vo €]0,1[, f”(z) =
In?(x) 4 21n(x) _ In(z) +2
22 In’(x) C22In’(x)

1
10, 1[, et le numérateur s’annule lorsque In(z) = —2, donc en 2 Plus précisément, f sera convexe

. Le dénominateur de cette dérivée seconde est toujours négatif sur

1
sur l'intervalle }O, — [, puis concave sur 1 [ On aura donc un seul point d’inflexion. Calcu-
e

e2

1 1 1 2
lons f (;) = —5 et f’ <e_2> = —ez, I’équation de la tangente au point d’inflexion est donc

10



e? 1 1 e? 1
y=-g\*~=|-5=-"7*"71 Ci-dessous une allure de la courbe (la tangente au point
e

d’inflexion en pointillés rouges) :

N |
~ ()
~

-

R N i

Exercice 4 (**)

Par un calcul direct, on trouve f'(z) = 2nz?*~!, puis f”(z) = 2n(2n—1)22"2, jusqu’a f™(z) =
2n)!
2n(2n — 1)...(n + 1)2" = Qw" (si on tient vraiment a faire une récurrence pour étre ultra
n

rigoureux, on peut). Autre méthode, on écrit f(z) = g(z) x g(x), ou g(z) = z". Par la formule

de Leibniz, f(™(z) = Z <n> g®) (2)g™=*) (). Or, par un calcul extrémement similaire a celui des

k
k=0 |
dérivées successives de f, g®)(z) = n(n —1)...(n —k 4+ 1)z F = ﬁx"*k. On peut donc en
n—k)!
o () " /n n! et 1 op " /n n!? n 'nn2n
dedu1re que f (iE) = E (kj) mﬂ? X EIE = E (kj) mfﬂ =n. E <k> z". En
k=0 k=0 k=0
. . . ) n(mn 2n)! .
comparant avec la premiére expression obtenue, on peut identifier : n! g k=0 v = ot soit
n!

" /)2 (2n)! 2n . . , ) o

g 3 =~ - 1= (et pour vous entrainer, a la maison, vous redémontrerez cette égalité
n! x n! n

k=0

par récurrence, ce qui est loin d’étre trivial).

Exercice 5 (*)

h) —
Cherchons donc si le taux d’accroissement de g en a admet une limite : gla+h) —g(a) =

h
_ 2 _ 2
[flat ) = |f(a)] = [fla+h)] f(@)] . En écrivant les carrés des modules sous la forme du pro-
h h(lf(a)| +1f(a+ R)[)

11



duit par le conjugué, |f(a+h)|*—|f(a)* = f(a+h)f(a+ h)— f(a)f(a) = (f(a+h)—f(a)) fla+ h)+

f(a)(f(a+h) = f(a)). En utilisant le fait que hi% flat h})b fla) _ f'(a) (et similairement avec
o L glat+h)—gla) _ [(a)f(a) + [(a)f'(a) _ 2Re (f(a)f'(a)) |
le conjugué), on trouve donc }JL% . = Ok = Ok . L

2R !
fonction g est donc dérivable si f'(a) # 0, et on peut alors dire que ¢'(a) = ¢ ’(f( )] (a)).

f@)?

Exercice 6 (**)

1. Lafonction g : x — est dérivable sur ]0, a]. Par ailleurs, puisque lim
T

f(z)
x 0 x z—0 x—0
f'(0) = 0, on peut prolonger g par continuité en une fonction continue sur [0,a| en posant
a
g(0) = 0. Comme g(a) = @)
a
Rolle, et sa dérivée ¢’ s’annule donc (au moins) une fois sur ]0, af.

zf'(x) — f(x)
2

la question précédente en un certain réel ¢ # 0, qui vérifie donc cf’(c) — f(c) = 0, soit
cf'(¢) = f(c). La tangente a la courbe représentative de f au point d’abscisse ¢ a donc
pour équation y = f'(¢)(x —¢) + f(c) = f'(¢)x — c¢f'(c) + f(c) = f'(c)z. Cette droite passe
effectivement par l'origine.

= 0, la fonction g vérifie toutes les hypothéses du théoréme de

2. La dérivée de la fonction g se calcule aisément : ¢'(z) = . Elle s’annule d’apres

Exercice 7 (***)

1. En calculant les premiéres dérivées (on peut avantageusement commencer l'exercice par la
deuxiéme question ici), on devine que P sera un polynéme de degré n. Prouvons donc direc-
P ()

(1 + 22)nt1’

en posant brillamment Py = 1, qui est bien de degré 0. Supposons la propriété vraie au rang

7zamsfm1@::< Pa(2) >’:f%wxr+#w“—wn+nx2ﬂ%WX1+ﬁw

(1 + 22)nt1 (1 + 22)2n+2
(14 22)P(z) — 2(n + 1)aPy,(x)
(1 + 22)n+2

X?2)P! —2(n +1)XP,. Reste a déterminer le degré de ce P, 1, qui est bien un polynéme. Si

on nota a, X" le coefficient dominant de P,, alors celui de (1 + X?)P/, sera X2 x na, X" ! =

na, X" et celui de 2(n 4+ 1)X P, sera 2(n + 1)a, X"+, ce qui donne pour P,;; un terme

dominant égal & —(n + 2)a, X" *!, ce qui prouve que P, 1 est de degré n + 1 (puisque n + 2

ne peut pas s’annuler).

tement par récurrence que f™(z) = ou d°(P,) = n. Cest vrai au rang n = 0

, qui est bien de la forme demandée en posant P, = (1 +

2. Soit en utilisant les relations obtenues & la question précédentes, soit par un calcul direct,

-2
on trouve f'(z) = ﬁ, soit P, = —2X, qui a bien sfir pour unique racine 0, puis
z
—2(1 4+ 2%)? + 82%(1 + 2?) 622 — 2 ,
(x) = L = = donc P, = 2(3X2% — 1), qui admet deux

1 1 12z(1 + )3 — 62(62% — 2)(1 + 2?)?
racines réelles égales & ——— et —, et enfin [/ (z) = z(1+27) z( ;6 )1 +27) =
V3 V3 (1+22)
12z + 122° — 362° + 122 24z(1 — 2?)
(1+22)t (e
trois fois, en 0, 1 et —1.

, donc P3 = 24X (1 — X?), qui s’annule exactement

3. En effet, si f(z) =

, alors (224 1) f(z) = 1. On peut certainement appliquer la formule

12
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k
k=0

n =1, (fg)"(z) = 0 puisque fg estla fonction constante égale a 1. Par ailleurs, les dérivées
successives de la fonction g se calculent trés facilement : ¢'(z) = 2z, ¢”(x) = 2, et ensuite

plus rien. La formule de Leibniz se résume donc a <g>g(x)f(”) (x) + <§L> g (@) fD(z) +

de Leibniz : en ponsant g(z) = 22 + 1, alors (fg)"™(z) = Z <n>g(k)(m)f("_k)(x). Or, si

<Z> g"(x)f™2)(z) = 0, soit en reprenant les notations de la premiére question (1 + 22) x

P, (x) ona P,_1(x) P, _s(x) '
(1 _|_x2)n+1 (1 _|_x2)n (1 _|_x2)n71
faire disparaitre les dénominateurs, on obtient P, (x)+2nzP,_1(x)+n(n—1)(1+2%)P,_2(z) =
0. C’est exactement 1'égalité demandée a un décalage prés (on remplace tous les n par des
n+1).

4. On compare la formule qu'on vient d’obtenir : P,i1(z) + 2(n + 1)zP,(z) + n(n + 1)(1 +
22)P,_1(z) = 0, avec celle obtenue dans la premiére question : P, 1(z) = (1 + 22)P!(z) —
2(n+1)xP,(z). On peut remplacer le P, ;1(x) de la premiére équation par I’expression donnée
par la deuxiéme, les termes en 2(n 4 1)z P, (z) s’annulent et il ne reste que (1 + 22)P/(z) +
n(n+1)(1 +2?)P,_1(z) = 0, soit P, (x) = —n(n+1)P,_1(x).

5. On s’en doute, la réponse est non. Supposons donc que P, admette une racine (au moins)
double z, alors d’aprés la caractérisation des racines doubles, P/ (x) = 0. La relation de la
question précédente implique alors P, (z) = 0. Mais alors, comme P, (z) = (1+22)P!_,(z)—
2nxP,—1(x) (c’est la relation de la premiére question, simplement décalée), on aura certaine-
ment (1+22)P!_,(x) =0, puis P._,(x), et x sera donc racine double de P,,_1. Bon, mais en
suivant le méme raisonnement, = sera encore racine double de P,_o, etc. Allez, faisons un rai-
sonnement rigoureux : notons ng le plus petit entier naturel pour lequel P, admet une racine
double. Cet entier n’est stirement pas égal a 0, puisque le polynéme Py n’a pas de racine (ni
1, 2 ou 3 d’ailleurs d’apreés les calculs de la deuxiéme question). Mais alors, si ng > 1, d’aprés
le raisonnement précédent, P,,_1 admet aussi une racine double (la méme que P,,), ce qui
contredit complétement la minimalité de 'entier ng. Cet entier ne peut donc pas exister, et
aucun des polyndémes P, n’admet de racine double.

+n(n—1) Quitte & tout multiplier par (1422)" pour

Exercice 8 (***)

Comme le signale I’énoncé de l'exercice, on va faire, non pas une récurrence sur I’entier n, mais
fixer ce n une bonne fois pour pour toutes et montrer par récurrence sur k que, Vk < n, la fonction
f®)(x) s’annule (au moins) k fois entre —1 et 1 (et méme dans | — 1,1[ pour étre précis). Cest
évidemment vrai au rang 0 : la fonction f s’annule au moins 0 fois sur | — 1,1[ (en 'occurence,
elle ne s’annule effectivement pas puisque f s’annule uniquement en 1 et en —1, sauf pour n = 0).
Supposons que notre dérivée k-éme s’annule bien k fois, en des valeurs que 'on va noter x1, xs, ...,
xp vérifiant —1 < 21 < 13 < --- < zp < 1. On sait par ailleurs que, comme f(z) = (1 — z%),
f(z) = —2nz(1 —22)" L puis f’(x) = —2n(1 —22)" 1 +2n(n - 1)2?(1 —2%)" 2 = (-2n(1 — 2?) +
2n(n — 1)z?)(1 — 22)"~2 etc. On prouve par une récurrence facile que f*)(z) = Py (x)(1 — 2?)»*
pour tout entier k < n (au-dela, ¢a ne marche plus!), ot Py est un polynéme que l'on ne cherchera
absolument pas & expliciter (si vous y tenez, pour I'hérédité, on calcule (Py(x)(1 — z2)"=F)
(Pl (z)(1—2?) —2x(n—k)Py(z))(1 —22)""*~1). Ce qui est important pour nous, c’est ce (1 —z2)"~
en facteur qui assure que, si k < n — 1, f) (z) s’annule en 1 et en —1 en plus des racines déja
obtenues grace a 'hypothése de récurrence. On peut alors appliquer le théoréme de Rolle sur chacun
des intervalles [—1,z1], [x1,22], ..., [Zr_1,2%], [z, 1]. Puisque f*) s’annule aux deux bornes de
chacun de ces intervalles, sa dérivée f**1) g’annule a l'intérieur de chaque intervalle, ce qui prouve
lexistence de z1 €] — 1, 21[, 22 €]x1, 22, .. .2k+1 €]xk, 1[ annulant f*+1) On a en particulier prouvé
que £+ gannule (au moins) en k + 1 réels distincts de intervalle | — 1, 1[, ce qui prouve hérédité
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de notre récurrence. Puisque cette hérédité fonctionne jusqu’a k = n—1, la derniére propriété obtenue
grace & cette récurrence stipule que f () admet n racines distinctes dans ] = 1,1[. Or, en tant que
dérivée n-eme d’un polynome de degré 2n, la fonction f(™) est certainement un polynome de degré n,
et ne peut donc admettre plus de n racines, ni de racine double si elle admet déja n racines distinctes.
Autrement dit, on est certain que les n racines trouvées sont les seules racines de f(™ et qu’elles sont
simples. Accessoirement, elles sont toutes dans 'intervalle | — 1, 1].

Exercice 9 (**)

Puisque la racine carrée ne s’annule qu’en z = 1, la fonction f est bien de classe C* sur [0, 1[. On

—2x x
peut commencer par calculer f/'(z) = — = 7, et surtout constater que f(x) =

21 —22)2  (1—22)3
ﬁf(x), ou encore que (1 —x2)f'(x) = zf(x). On applique a cette égalité la formule de Leibniz.
-
Pour le membre de droite, les dérivées de la fonction identité s’annulent & partir de la dérivée seconde,

on n’a donc que deux termes dans la somme : en notant g(z) = zf(x), ¢"(z) = (8) xf™(z) +
<T> x 1x f=(z) = 2f™) (z)+nf"Y(z). Posons maintenant h(z) = (1—2z2)f'(x) et appliquons
a nouveau la formule de Leibniz, sachant que cette fois c’est a partir de la dérivée troisiéme que le
facteur polynomial va s’annuler : h(™ (z) = (1 — 22) f+)(2) — 2nzf) (x) — n(n — 1)~V (z) = 0.
En réorganisant les termes de I'égalité, on a donc (1 —x2)f D (z) = 2n+1D)zf™ (z)+n?f=D(z).
Démontrons alors la propriété souhaitée par récurrence double sur n. Les fonction f et f’ (calculée
plus haut) sont positives sur [0, 1], ce qui prouve la double initialisation de la récurrence. Supposons
maintenant que f*~1 et f() sont positives sur [0,1] (décaler 'hypothése de récurrence est plus
pratique ici au vu des calculs effectués), alors (2n 4 1)z f™ (z) + n2 =D () est aussi positif sur
[0,1], donc (1 — 22) f*+D(z) > 0 et fFFD(z) > 0, ce qui prouve I'hérédité de notre récurrence.

Exercice 10 (**)

1. Supposons donc que les points A et B aient pour coordonnées (V1 — k2, k) et (—v1 — k2 k)
(pour que les points soient sur le cercle trigonométrique, ils doivent satisfaire a I’équation
22+ y? = 1), et notons (x,%) les coordonnées du point C. En prenant comme base du triangle
le coté [AB] qui a donc pour longueur 24/1 — k2, I'aire du triangle est égale a /1 — k2 x |y — k|
(la hauteur du triangle correspond simplement & la distance entre les ordonnées des points
C' et A puisque la base est par hypothése « horizontale »). Or, y varie entre —1 et 1, donc
|y — k| est maximale quand y = 1 (si k£ < 0) ou quand y = —1 (si k > 0), et 'aire maximale

recherchée est donnée par f(k) = 1 — k2(1 + |k]|).

2. La fonction f est paire, contentons-nous de chercher son maximum sur [0,1], ou f(k) =
V1 —k?(1 + k). On calcule (f n’est dérivable que sur |0,1[ a priori, mais c’est bien suffi-

—2k 1—k*—k—k?
sant pour étudier les variations) f/(k) = —————(1 + k) + V1 — k2 = =
po R N A Ny
1—-k—2k

. Cette dérivée est du signe de son numérateur, qui a pour racine évidente k = —1,
V1-—k?

1
et pour deuxiéme racine k = 3 Elle est positive entre ses racines, ce qui prouve que f admet

1 1 3v3
un maximum en 3 de valeur f <§> = T\/_ Cela correspond au cas d’un triangle équilatéral.
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Exercice 11 (**)

1. Posons donc h : x — f(z)(g(b) — g(a)) — g(z)(f(b) — f(a)). La fonction h est évidemment
continue sur [a,b] et dérivable sur ]a,b[. De plus, h(a) = ]5( a)g(b) — f(a)g(a) — g(a)f(b) +

g(a)f(a) = f(a)g(b)—g(a) f(b), et h(b) = f(b)g(b) - f(b)g(a) —g(b)f(b) +g(b) f(a) = h(a). La
fonction h vérifie les hypothéses du théoréme de Rolle, sa dérivée s’annule sur |a, b[. Comme
cette dérivée vaut h'(z) = f'(2)(g(d) — g(a)) — ¢'(x)(f(b) — f(a)), le point d’annulation de la
dérivée vérifie exactement 1’équation de I’énoncé.

2. Plagons-nous sur un voisinage de a ou toutes les hypothéses sont vérifiées, si on note b un
point d’un tel voisinage, il existe d’aprés la question précédente un = entre a et b tel que

f(x)g(d) = ¢'(x)f(b) (par hypothese, f(a) = g(a) = 0), ou encore fla) _ J0) Si on

g — g(b)’
fait tendre b vers a, puisque x est compris entre a et b, z tend également vers a, donc
im?®) i £
b—a g(b) 250 9 (@)

3. On vérifie aisément que les hypothéses de la question précédente sont présentes : en posant
f(x) = 1—cos(z) et g(z) = 22, f(0) = g(0) = 0, les deux fonctions sont continues et dérivables
, .
7[. Enfin fz) _ sin(z)

partout, et les deux fonctions ne s’annulent pas sur | — , = ——= a bien une
g (x) 2z
o . , 1 s o . . sin(z)
limite finie en 0, en 'occurence 5 en utilisant la limite classique hn%] = 1. On conclut
xr—r X
1-— 1
de 'application de la régle de 'Hdépital que hmcic;s(x) = —.
z—0 T 2
Le deuxiéme cas est trés similaire : on pose f(z) =In(l +z) — =z et g(z) = 22, les deux
/ 1 1 _
fonctions s’annulent en 0, sont évidemment dérivables et f(z) = 1+x 3: =
g (x) 2x (1 + x)2x
1 1 In(l14+2x)—=x
—m a pour limite —5 en 0. On conclut comme précédemment que ili% % =
1

1

—, ou encore que In(1+z) = x— ~2%+2%(x), avec lime(x) = 0. C’est le développement
z—0 2 z—0

limité a 'ordre 2 de la fonction x +— In(1+z) en 0, développement limité dont on peut obtenir

la suite par la méme méthode. Si on pose désormais f(z) = In(1+ ) — z + 122 et g(z) = 2?,

les fonctions vérifient les hypothéses de la régle de I'Hopital, et '(z) = Lt =

g (x) 3
1+2%-1 1 1
T = , qui a pour limite — quand x tend vers 0. Autrement dit, In(14+x) =
322(14+x) 3(1+x) 3 =0
2 3
r— — + % + 23¢5(x). Vous pouvez deviner la suite, on le démontrera dans un prochain
chapitre.

Exercice 12 (**)

1. Il n’y a absolument rien & prouver, c’est la définition de la limite (on peut toujours choisir un
A strictement positif quitte a le prendre volontaire « trop grand ») !

2. On pose g(z) = f(x) — Lz, fonction certainement dérivable sur [A, +oo[, et qui vérifie d’aprés
la question précédente |¢'(z)| < € sur cet intervalle. On peut donc en déduire (inégalité des
accroissements finis) que, si x > A, |g(z) — g(A)| < |z — A|, puis par inégalité triangulaire

[f(x) = lz] = [g(2)] < lg(x) — g(A)| + |g(A )|<6I$—A|+|f( )—All

Al
3. On divise l'inégalité précédente par |l|z : '— -1 W ’f( ’;’ ’ Le premier
x
terme du membre de droite est inférieur & m, et le deuxiéme tend vers 0, donc sera inférieur a
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quitte a se placer sur un intervalle [A’, +00[ un peu plus restreint. Autrement dit, Ve > 0,

£
y

T 2¢e 2
JA” > 0, Vo > A, # - ‘ < m Comme m est une constante, on a une propriété
x
T
équivalente a la définition de la limite, ce qui prouve que lim & =1
z—4oo [z

Exercice 13 (**%*)

1. Si f'(a) =0 ou f’(b) =0, on n’a plus rien a chercher, supposons donc que les deux inégalités
sont strictes. La fonction f étant continue sur le segment [a, b] puisque dérivable, elle y admet
d’apres le théoréme du maximum un maximum atteint en un certain point c¢. Or, comme on a
supposé f’(a) > 0, le taux d’accroissement 7, ¢ prend nécessairement des valeurs strictement
positives sur un voisinage a droite de 0 (on écrit par exemple la définition de la limite avec

f'(a)
.2 . : :
droite de a. En particulier, on ne peut pas avoir ¢ = a. Le méme raisonnement prouve que,
comme f'(b) < 0, la fonction f prend des valeurs strictement supérieures a f(b) & gauche de

b, ce qui prouve qu’on ne peut pas avoir non plus ¢ = b. On en déduit que ¢ €]a, b, et un
théoréme du cours nous assure alors que f’(c¢) = 0.

€= pour obtenir un tel voisinage), ce qui implique que f(z) > f(a) sur un voisinage a

2. On suppose de méme f'(a) < 0 et f/(b) > 0. Cette fois-ci ¢’est le minimum de la fonction qui
ne peut pas étre atteint en a (on a des valeurs de f strictement inférieures a f(a) a droite de
a) ni en b, ce qui prouve a nouveau 'existence d’un point d’annulation de f’ sur [a, b].

3. Supposons donc f dérivable sur le segment [a,b] et ¢ € [f(a), f(b)] (intervalle dans un sens
ou dans l'autre, peu importe, on suppose par souci de simplicité que f’(a) < f'(b)). On pose
alors g(x) = f(z) — cx, la fonction g est tout aussi dérivable sur [a,b] et ¢'(a) = f'(a) —c < 0,
g (b) = f'(b) — ¢ = 0. Les questions précédentes prouvent alors que ¢’ s’annule sur l'intervalle
[a,b]. Comme ¢'(x) = f'(x) — ¢, cela prouve qu’il existe un point pour lequel f'(z) = ¢, ce qui
est exactement I’énoncé du théoréme de Darboux.

4. 11 suffit de trouver une fonction dérivable dont la dérivée n’est pas continue sur un segment.

I existe plein d’exemples classiques, mais rien de trés trés simple. Par exemple, f(z) =
1

x?sin  — |, prolongée par continuité en 0 en posant f (0) = 0 est une fonction qui convient :
x

2

on sait que —2? < f(z) < 22 si v # 0, ce qui suffit & prouver que lin%f(x) = 0 et valide donc
T

1 1
le prolongement par continuité. De plus, f/(x) = 2z sin <—> — cos <—> (toujours si z # 0,
T T

bien entendu). Cette fonction n’a pas de limite en 0 (le morceau de gauche tend vers 0 par
encadrement, mais il est facile de créer des suites pour lesquelles celui de droite tend vers 0

ou vers 1 par exemple). Pourtant, 7o ¢(h) = xsin —) a bien une limite nulle en 0 (toujours
x

le méme encadrement, ici par —|z| et par |z|), ce qui prouve que f est dérivable en 0 et que

10 =o.

Exercice 14 (**%*)

1. En posant z = y = 0, on trouve f(0)(1— £(0)%) = 2£(0), donc soit £(0) = 0, soit 1— f(0)? = 2,
ce qui est impossible car cela impliquerait f(0)?> = —1. On peut donc conclure directement
que f(0) =0.

2. On fixe dans égalité précédente la valeur de y et on dérive pour obtenir f/'(z + y)(1 —

f@)f(y) — f'(x)f(y)f(x +y) = f'(x). Posons alors x = 0 et n’oublions pas que f(0) =0
pour trouver f'(y) — f'(0)f(y)? = f(0), soit f'(0)(1 + f(y)?) = f'(y), ou encore (on peut
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/()
1+ f(y)?
les y par des x pour trouver la formule de I’énoncé.
=)

L+ f(z)?
d’intégrer cette équation pour trouver arctan(f(z)) = ax + b, ot a et b sont effectivement

deux constantes réelles.

diviser, ¢a ne s’annule jamais) = f/(0). La variable importe peu, on peut remplacer

3. Notons a = f/(0), on vient de prouver que = a, soit (arctan(f(z)))’ = a. 1l suffit

4. Le probléme de 'égalité précédente, c’est qu’on sait bien que la fonction arctan ne prend ses
valeurs qu’entre —1 et 1. En particulier, arctan(f(x)) €] — 1,1] quelle que soit la fonction
f. On devrait donc avoir, Vo € R, ax + b €] — 1,1[. Ce n’est possible que si a = 0, donc
si la fonction f est constante égale a b. Comme on sait que f(0) = 0, la constante b est
nécessairement nulle, et la fonction f est donc nulle. Réciproquement, la fonction nulle est
bien solution du probléme posé.

Exercice 15 (** § **%¥)

1. Posons donc f(z) = /22 + (z — 1)24+/22 + (z + 1)2 et essayons d’étudier les variations de la
fonction f. Elle est définie et dérivable sur R (ce qui est sous chaque racine carrée est toujours

positif comme somme de deux carrés et méme strictement positif car les deux carrés ne peuvent

20 — 1 2 1
pas s’annuler simultanément) et Vo € R, f'(z) = ° + vt . Cette

22+ (x —1)? 22+ (z+1)2

1
dérivée est trivialement positive sur l'intervalle [5, 400 [ ou chacun des deux numérateurs est

positif. Si x < 1, on aura f'(z) > 0 si 2+l < 1 -2 , donc en élevant
2 2?2+ (x+1)2 2?4 (x —1)2

tout au carré (par hypothése sur U'intervalle de travail, tout est positif) et en faisant le produit
en croix, si (2r+1)2(22+(z—1)?) > (1-22)% (22 + (z+1)?), soit (42 +4x+1)(222 —22+1) —
(42% — 42 +1)(22%+2x+1) > 0, ou encore en développant tout sans méme essayer de faire des
choses subtiles (on peut gagner un peu de temps) si 8zt —2x2 422 4+1— (824 —2x2—22+1) > 0.
Tout se simplifie ou presque, il ne reste que la condition trés simple 4x > 0. La fonction f est
donc en fait décroissante sur | — 0o, 0] et croissante sur [0, 4o00[, avec un minimum de valeur
f(0) = v/14+/1 = 2, ce qui prouve l'inégalité demandée. Existe-t-il une méthode pour obtenir
ce résultat sans bourriner salement les calculs 7 Pas & ma connaissance...

1
2. Quitte & tout passer dans un joli In, I'inégalité demandée est équivalente & — In(ajas ... ay) <
n
aj+---+ . . . 1
In <¥> , ou encore avec les propriétés bien connues de la fonction In : — g In(a;) <
n n-
n <— E ai> . Ce qui ressemble énormément a une inégalité de Jensen appliquée avec les co-

efficients t; = — (dont la somme est bien égale a 1). Elle est « dans le mauvais sens » et sera

S

donc vérifiée si la fonction In est concave, ou si on préfére la remettre dans le bon sens si — In

1
est convexe, ce qui est bien sir le cas (par exemple car, en posant f(z) = —In(z), f'(z) = ——

1
puis f"(z) = — qui est positif sur ]0, +ocf).
x

3. Pour simplifier les calculs, on va réécrire I'inégalité légérement différemment : tout étant

o " . sin®(x) 3
positif, on peut changer de c6té out ce qu’on veut pour se ramener & montrer que @)
cos(x
.} : 2
1 _ 3
Posons donc f(z) = sin’(z) —x3 = sin(e)(1 — cos™(z)) — 23 = tan(z) —sin(x) cos(z) — 3. La

cos(z) cos(z)

7T
fonction f est certainement de classe C*° sur {0, 5 {, ce qui tombe plutoét bien puisqu’on va
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la dériver quelques fois, jusqu’a obtenir une expression dont le signe n’est pas trop pénible a
obtenir : f/(z) = 1+ tan?(z) — cos?(x) + sin?(z) — 322, trop compliqué, f”(z) = 2tan(z)(1 +
tan?(x)) + 4 cos(z)sin(x) — 6x = 2tan(z) + 2tan(x) + 4cos(x)sin(z) — 6z, encore trop
compliqué, f”(z) = 2+2tan?(z)+6tan?(z)+6 tan* ()44 cos?(z) —4sin?(z) —6 = 8tan?(x)+
6tan*(x) — 8sin?(z) en appliquant la formule cos?(z) = 1 — sin?(z) pour faire disparaitre
toutes les constantes. Or, sur notre intervalle d’étude, sin(z) < z < tan(x) (concavité du
sinus et convexité de la tangente, qui ont une tangente commune d’équation y = x en 0),
donc 8tan?(x) — 8sin?(z) > 0, ce qui implique facilement f"”(x) > 0. La dérivée seconde f”
est donc croissante sur O,g , et comme f”(0) = 0 (tous les termes sont nuls), f” est donc

elle-méme positive. On continue a remonter : f est croissante et f'(0) = 0 (les seuls termes
non nuls sont le 1 et le —cos?(0) égal & —1), donc f est positive et f croissante. Il ne reste
plus qu’a vérifier que f(0) = 0 pour en déduire la positivité de la fonction f et 'inégalité
souhaitée.

1\? 1
4. Posons donc f(z) = (:U + —> =22 +2+ —. La fonction f est définie et de classe C*°
x x
sur ]0, +o00[, et f'(z) = 22 — —, puis f’(z) =2+ —; > 0, donc la fonction f est convexe.
x x
1
Appliquons 'inégalité de Jensen aux réels a; avec des coefficients tous égaux & — (pour avoir
n

1 n 1 n n
une somme égale a 1) : f (— E ai> < - g f(a;). Comme on a de plus supposé g a; =1,
n n
=1 =1 i=1

n 2 2 2 2
1 1 1 1
cela revient a dire que g <ai + —> >nf <—> =n <n + —> = (n;)’ soit l’inégalité
P i n n n
souhaitée.

Exercice 16 (**)

1. La fonction f est définie et de classe C*° sur R puisque 14+¢e® > 1. On calcule donc simplement

e’ 1 e’
"(x) = =1———, puis f’(z) = —————, qui est manifestement toujours positive.
f(z) T+ o 5o P f(z) ite) ¢ jours p
La fonction f est donc convexe sur R.

2. Ecrivons I'inégalité de Jensen pour la fonction f, avec des coefficients égaux (et donc tous
1 n 1 « ,
égaux & — pour avoir une somme égale & 1) : In <1 —i—e%Zizlyi) < — E In(1 + e¥). Les
n n
i=1

propriétés de la fonction In et de la fonction exponentielle permettent de réécrire ceci sous la
1 1

n n n n

formeln [ 1+ (H eyi> <lIn <H(1 + eyi)> . On peut évidemment supprimer les In
i=1 i=1

dans les deux membres de I'inégalité, et il ne reste plus qu’a poser x; = €% (ou autrement dit

y; = In(x;), ce qu'on peut faire puisque les nombres sont supposés strictement positifs) pour

reconnaitre I'inégalité demandée.

x
3. Une astuce débile : on applique l'inégalité précédente aux réels strictement positifs L

Yk
1+ n H “k <7 H 1+ —k, puis on multiplie les deux membres de I'inégalité par » H Yk
k=1 Ik k=1 Yk k=1

(qui est évidemment positif), ce qui donne exactement la nouvelle inégalité souhaitée.
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Exercice 17 (**%*)

x cos(x) — sin(x)

1. Commengons par calculer f'(z) = , puis dérivons une deuxiéme fois : f”(z) =

22
—x3sin(z) — 2z(z cos(z) —sin(z))  2sin(z) — 2z cos(z) — 2% sin(x)
A - 3 :
2. Rappelons déja que sin® (z) = sin(z), sin’(z) = cos(z), sin”(z) = —sin(z) et sin”(z) =

—cos(z). On en déduit que Py =1, Qo =0, puis P, = X et Q1 = 1, et enfin P, = X? — 2 et
Q2 = 2X (en faisant attention aux signes). Il semblerait bien qu’on ait Q,, = P,.
3. La récurrence a déja été triplement initialement lors de la question précédente. Supposons
P, (z) sin™ (z) + Qn(z) sin™+) ()
anrl

donc que, pour un certain entier n, f(")(x) = , alors en

dérivant ce quotient, f"+1)(z)
B 2" (P! (z) sin(™) () + Pp(x) sin(”“)(x) + Q. (x) sin(”“(x) + Qn(x) sin("+2) (x))
- 2

—(n+ 1)z" (P, () sin(™ () + Qn(x) sin(”“)(x))

. En simplifiant tout par z' et en utilisant le

fait que sin*?) (z) = —sin(™(z), on peut obtenir la forme f+1(z)
_ (2Qu(x) = xPy(2) + (n + 1) Po (@) sin™+? (2) + (¢ P(x) +2Qp () — (n+ 1)Qu(x)) sin™ V()
- 2 )

ce qui est de la forme souhaitée en posant P11 = XP, + XQ), — (n + 1)Qp et Qpni1 =
XQn — XP, + (n+1)P,. Ce calcul prouve I'hérédité et achéve donc notre récurrence.

4. On prouve par une récurrence immédiate (et simultanée) que P, et @, sont & coefficients
entiers : c’est le cas de Py et @y, et en supposant que P, et ), sont & coefficients entiers,
alors @Q'n et P! le sont également donc P, 11 et Qn4+1 aussi vu les formules obtenues a la
question précédente.

Il semblerait au vu des premiéres valeurs calculées que P, soit de degré n et @, de degré
n—1 (pour n > 1), et que P, ait pour coefficient dominant 1 et @,, pour coefficiant dominant
n. Prouvons-le & nouveau par récurrence. L’initialisation a déja été faite, supposons donc les
relations vérifiées au rang n. Les polynomes X P,, XQ! et (n + 1)Q,, sont alors de degrés
respectifs n + 1, n — 1 et n — 1, ce qui prouve que P, est nécessairement de degré n + 1.
De plus, son coefficient dominant est celui de X P,,, donc le méme que celui de P, qui a été
supposé égal & 1. Concernant @J,,4-1, on a un tout petit peu plus de travail : X@,, a pour terme
dominant nX™, X P’ a pour terme dominant X x (nX"~!) = nX™ qui va donc s’annuler avec
le précédent quand on va faire la différence des deux polynomes; et (n + 1)P, a pour terme
dominant (n + 1)X™. Finalement, @), +; aura donc un terme dominant égal a (n 4+ 1)X™, ce
qui prouve bien I’hérédité de notre récurrence.

Enfin, une derniére récurrence permet de prouver que P, a la méme parité que n et @, la
parité opposée. C’est vrai pour les premiers polynomes calculés, et en le supposant vrai au
rang n, alors X P,, Q, et X@Q!, ont tous les trois une parité opposée a celle de P, (le produit
par X change la parité, la dérivation également, et (), est par hypothése de récurrence de
parité opposée & P,), donc P,.1 est de parité opposée a P,. De méme, Q,, est de parité
opposée & (.

5. On calcule donc P3 = XPy + XQ) —3Q2 = X3 —2X +2X —6X = X3 —6X et Q3 =
XQy— XPj+3P,=2X?-2X?+3X?—-6=3X%—6.

6. Supposons la relation U(z)sin(z) + V(z) cos(z) vérifiée pour tout réel, alors en particulier
U(nm) cos(nm) 4V (nm)sin(nm) = 0, ce qui implique que, pour tout entier naturel n, U(nw) =
0. Le polynome U admet donc une grosse infinité de racines, il est nécessairement nul. On a
alors V(z)sin(x) = 0, ce qui implique également que V' s’annule énormément (pour tous les
réels pour lesquels sin(z) # 0), et donc que V = 0.

19



7. Toutes les fonction impliquées sont de classe C*°, on peut donc appliquer la formule de Leibniz
(au rang n + 1 pour avoir plus rapidement les relations souhaitées) pour obtenir sin(™*+b (z) =

n+1
(id x f)" D (z) = <”Z 1) id® (2) fOH=R) (1) = 2D (2) + (n+1) £ (). Autrement
k=0

dit, en multipliant tout par 2!, 2"+ sin ) (z) = (P, 11(z) + (n 4 1)Qn(z)) sin ™V () +
(n+1)P,(x) — Qui1(z)) sin™ (). La question précédente montre qu’on peut alors affirmer
que les coefficients devant sin™ et sin™*tY) sont nuls (au signe prés, 'un des deux est égal a
sin et l'autre a cos). On en déduit que Ppi1 + (n 4+ 1)Qp = X" et (n+ 1)P, — Qpy1 = 0.

8. En identifiant ces formules avec celles déja obtenues pour P, 11 et 41, on obtient d’une part
a laide de la deuxiéme équation (n+1)P, — XQ, + XP, — (n+1)P,, = 0 donc Q,, = P}, et
d’autre part & I'aide de la premiére formule X P, + XQ'! — (n +1)Qn + (n + 1)Q,, = X"+,
donc XP, + XP! = X"l et P, + P’ = X"

9. La forme générale demandée découle immédiatement de la parité du polynéme P, donnée
plus haut dans lexercice (un terme sur deux s’annule a partir de X™). De plus, si P, =

P P
ZakX"_%, alors P = Zak(n — 2k)(n — 2k — 1) X" 2*72 et la relation P, + P/ = X"

k=0 k=0
implique les égalités suivantes par identification des coefficients : ag = 1, puis a1 +n(n—1)ag =

0, donc ay = —n(n — 1), puis az + (n — 2)(n — 3)a; =0, donc ay =n(n —1)(n —2)(n — 3) =

! |
o 714)!, On démontre alors facilement (par récurrence) que ap = (—1)kﬁ? donc
P !
n!
P = —1)* xn—2k
" kzo( ) (n — 2k)!

10. On a vu plus haut que le polynéme P, était une solution particuliére de cette équation
linéaire du second ordre & coefficients constants. Or, les solutions de I’équation homogéne
associée sont les fonctions de la forme x ~ Acos(x) + Bsin(z), avec (4, B) € R? (c’est
du cours!), donc les solutions de I’équation compléte sont toutes les fonctions de la forme
y: x> Acos(z) + Bsin(z) + P,(z), avec (A, B) € R

Exercice 18 (**)

1
1. La fonction f est C*° sur R, de dérivée f/(z) =1 — 3% Elle admet donc un maximum en

1 3
x = 2, de valeur f(2) =1+ 1(2—4) =3
sur [2,4+oo[. Les points fixes sont déterminés en résolvant I'équation f(x) = z, c’est-a-dire

1
1(2 —22) =0, d’ol deux points fixes pour z = /2 et z = —+/2.

, et est croissante sur | — 0o, 2] et décroissante

2. Eneffet,sil <z <2 -1< —%x < —% et 0 < f/(z) < %, done |f'(z)] < % Quant a I'image
de [1,2] par f, comme la fonction est croissante sur cette intervalle, elle vaut [f(1), f(2)] =
F §] C [1,2].

4’2 ’

3. C’est une récurrence toute simple : ug = 1 € [1,2], et si u,, € [1,2], on a d’aprés la question

précédente f(uy,) € [1,2], soit u, 11 € [1,2]. Comme u, € [1,2] et v/2 € [1,2], et que | f'(z)| <

1
5 sur cet intervalle, on peut appliquer I'TAF entre u, et v/2 et obtenir |f(u,) — f(v/2)| <
1
§|un —/2|. Comme f(v/2) = v/2 (c’est un point fixe de f) et f(u,) = uy11 (par définition),

1
on a bien |uny1 — V2| < §\un —2|.

1
4. Prouvons par récurrence P, : |u, — v2| < o0 Pour n = 0, la propriété P, stipule que
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1 — \/5\ < 1, ce qui est vrai. Supposons désormais P, vraie, on a alors d’aprés la question

1
précédente |, 41 — V2| < 3 |y, — /2|, et par ailleurs, par hypothése de récurrence |u,, —v/2| <
1 1

on = il Cela

1 1
on On peut combiner les deux inégalités pour obtenir |u,41 — V2| < 3 X
prouve P, .1 et achéve la récurrence.

1 1
Comme lim — =0, et 0 < |u, — V2| < =, le théoréme des gendarmes permet d’affirmer
n—-+oo0 21 2n

que lim |u, — V2| =0, soit lim u, = V2.
n—+oo n—+oo

1
5. On sait que 'inégalité sera vérifiée dés que o < 1077, soit en passant au logarithme —n1n2 <
9In 10

—91n 10, ou encore n > ~ 30. Il faut donc calculer le trentiéme terme de la suite pour

n
étre certain d’avoir une valeur approchée de v/2 a 1079 prés. En pratique, on constate en fait

que le terme u1g est déja une valeur approchée a 10~ prés.

Exercice 19 (**)

1. En effet, on a lim+ f(x) =0 (pas de forme indéterminée). De plus, f est dérivable et C! sur
z—0

1 1 1-1 |
]0; - [, de dérivée f'(x) = ZZ;—+ e = i xn_f Ock qui a également pour limite 0 en 0 (en
factorisant par exemple par In(x) en haut et en bas). D’aprés le théoréme de prolongement

de la dérivée, la fonction f est donc dérivable en 0, et f/(0) = 0.

1
2. On a déja calculé f’, il est donc facile de constater que f est décroissante sur [0; - [ et sur
e

1
] —; 1} , et croissante sur [1;4+00[. On peut ainsi tracer la courbe suivante :
e

4+

I, S

3. Résolvons f(x) = x. Si on élimine la valeur 0 (qui est effectivement un point fixe de f), on

peut simplifier par x et obtenir =1,s0it Inz+1=1,donc x = 1. Il y a donc deux

Inzx+1
points fixes : 0 et 1.
1)2 -2 1 1—
4. (a) La fonction g est C*° sur Ry, de dérivée ¢'(z) = (z+ zx n f;gx +1) = o 1m)3. Elle

admet donc un maximum en 1, de valeur g(1) = T Comme ¢(0) =0 et 11141_1 g(x) =0,
T—1+00
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1
on en déduit que Vo > 0, 0 < g(x) < 7 Or,ona f'(x) =g(lnz). Siz >1,Inx > 0, et on

1 1
peut lui appliquer l'inégalité précédente : 0 < g(Inx) < T c’est-a~dire 0 < f/(z) < T

(b) Pour appliquer I'TAF, il faut d’abord vérifier que ¥n € N, z,, € [1,+0o0[. En constatant
que l'intervalle [1,+o0o[ est stable par f, on peut le prouver par une simple récurrence :
xg =2 > 1, et en supposant x,, > 1, on obtient, en utilisant la croissance de f sur [1, +o0],
f(zy) = f(1) =1, donc z,41 = 1, ce qui achéve la récurrence.

1
Onadonc1 € [1,+o0[ et z,, € [1,+00[. De plus, |f/(z)| < 75w [1; +o0o[. En appliquant

1
I'TAF, on obtient donc |f(z,) — f(1)| < |z, — 1], soit |x,41 — 1] < Z\xn —1J.

Prouvons ensuite par récurrence la propriété P, : |z, — 1] < 4% Pour n = 0, Py
stipule que |2 — 1] < 1, ce qui est vrai. Supposons ensuite P, vraie, on obtient alors
|zpnt1 — 1] < =|z, — 1] (cf plus haut) < i X 4% (hypothése de récurrence), ce qui prouve
P11 et achéve la récurrence.

1 1
(c) Comme lim — =0, et 0 < |z, — 1] < —, le théoréme des gendarmes permet d’affirmer
n—+o0 4" 4n

que lim |z, —1] =0, soit lim z, =1.
n—+o0o n—+oo

Exercice 20 (**%*)

1. La fonction f est définie et de classe C*° sur R* comme quotient de fonctions usuelles. Par
ailleurs, en tant que quotient de fonctions impaires, la fonction f est paire.

sh(x)

2. On sait que lim =1 (et si on ne le sait pas, on le retrouve par exemple en constatant

z—0 X
sh(x)

que est le taux d’accroissement de sh en 0, et a donc pour limite ch(0) = 1 en 0),

x
donc lim —— = 1, et on peut prolonger la fonction f en posant f(0) = 1. La dérivée de f
x—)OSh(CC)
h(z) — zch
st ) = @)= h(e)
sh*(x)
en 0 de cette dérivée, il faut soit utiliser des développements limités (c’est alors trés simple)
soit au moins avoir recours a la régle de 'Hépital de 'exercice 11. On peut alors écrire, sous

réserve d’existence de toutes ces limites, lim sh(m)—Q—xch(x) = lim ch(z) — ch(z) — zsh(z) =
z—0 sh?(z) 20 2ch(z)sh(x)
—z sh(x)

lim ——————

#5302 ch(z) sh(z)

rivable en 0, et f/(0) = 0. Ce n’est pas une surprise dans la mesure ou la fonction est
—zsh®(z) — 2ch(z) sh(z)(sh(z) — x ch(x))

paire. Passons a la dérivée seconde : f"(z) = 1 =
sh*(z)

. Pas de méthode simple malheureusement pour calculer la limite

. Ce quotient a manifestement pour limite 0 en 0. La fonction f est dé-

2z ch?(z) — 2ch(z)sh(x) — zsh?(z)
sh3(x)

. Tentons une fois de plus le recours a la régle de I’'Hopital,

2ch?(x) + 42 ch(z) sh(z) — 2ch?(x) — 2sh?(z) — sh?(x) — 2z ch(z) sh(x)

le quotient des dérivées vaut 5
3ch(x)sh?(x)

 2zch(z)sh(z) —3sh®(z)  2zch(z) —3sh(z) 2 = 1
B 3ch(x)sh?(z) " 3ch(z)sh(z) 2-03sh(z) ch(z)
en 0, donc par applciation du théoréme de prolongement de la dérivée (a la dérivée de f), la

fonction f est deux fois dérivable en 0 et f”(0) = —-.

3

Pour les curieux, avec les développements limités, on aurait simplement pu écrire ceci :

1
, qui a pour limite -3
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T T 1 x?
flx) = = = =1—"—+0(z?) et en déduire immédia-
(@) sh(z) 20 2+ 2 4 o(23) 1+ 2 + o(2?) 3 (")

tement les valeurs demandées.

3. 11 s’agit de résoudre I'équation e® — e™® = 2, soit €?* — 2e* — 1 = 0 quitte a multiplier par

e®. En posant X = e, on se raméne & I'équation du second degré X? —2X — 1 = 0, qui

2—+v/8
a pour discriminant A = 4 + 4 = 8, et admet deux solutions X; = 2\/— =1-—+72 et

X5 = 1+ /2. Puisque X; < 0, on peut éliminer cette solution, et garder comme unique
solution de 1’équation initiale o = In(X3) = In(1 + /2). Comme 1 4 v/2 < e (on a environ
2,42 a gauche, et 2,72 a droite), o €]0, 1[. Comme on sait que ch?(a) — sh?(a) = 1, on peut
dire que ch?(a) = 2, donc ch(a) = v/2 (cette fonction ne prenant que des valeurs positives).

4. La fonction g : t — ch(t) — ¢t a pour dérivée sh(t) — 1, dont on vient de voir qu’elle s’annule
uniquement en «. La fonction g est donc décroissante sur | — oo, a] et croissante sur [a, +oo].
Elle admet pour minimum g(a) = ch(a) —a = v/2 — a > 0 puisque a €0, 1[. La fonction
g est donc strictement positive sur R. Pour démontrer les inégalités suivantes, commengons
par poser h(t) = tch(t) — sh(t), alors h'(t) = ch(t) + tsh(t) — ch(t) = ¢sh(t) > 0. La fonction
h est donc croissante sur R, comme h(0) = 0, la fonction h est positive. Posons désormais
i(t) = %ShQ(t) — tch(t) + sh(t), on calcule ¢/ (t) = sh(t) ch(t) — ¢sh(t) = sh(t)(ch(t) —¢) > 0
d’apres le début de la question. La fonction ¢ est donc croissante, et s’annule elle aussi en 0,
elle est positive, ce qui prouve la deuxiéme inégalité.

5. La fonction f étant décroissante sur RT, vérifiant f(0) =1 et wll)gr_loo f(z) =0 (par croissance
comparée), elle admet nécessairement un point fixe sur [0, +oo[. Vous n’étes pas convaincus ?
Posez g(x) = f(x) — x, alors g est elle aussi décroissante sur RT (méme si c’est ici inutile
de s’en rendre compte), vérifie g(0) = 1, et g(1) = f(1) — 1 < 0, puisque f(1) < f(0) =1,
donc en appliquant le théoréme des valeurs intermédiaires & la fonction g, celle-ci s’annule
entre 0 et 1, ce qui correspond & un point fixe de f. En fait, on connait trés bien ce point

fixe : c’est a puisque f(«) = « (par définition, sh(a) = 1). La fonction f’ étant

- sh(a)

majorée en valeur absolue par 3 d’aprés la question précédente, on peut écrire que, Vn € N,
1 1
|f(un) — fla)] < §|un — a, soit |up+1 — al < §|un — «. Par une récurrence facile (et trés

. 1 .
classique), on prouve alors que Vn € N, |u, —a| < o c’est vrai au rang 0 car |ug—a| = a < 1,
1 < 1
2 on S oAl
application du théoréme des gendarmes permet alors d’affirmer que liril |up, —a] =0, donc
n—-+0oo

1 .
et en le supposant au rang n, alors |u,4+1 — al < §|un —a| < Une simple

lim u, = a.
n—-+o00

Probléme 1 (**%*)

1. (a) C’est une équation du second degré, qu’on sait trés bien résoudre : A = 144 = 5,

-1 5 —-1—-+5
+\/_ et Ty = T\/_ La deuxiéme solution est manifestement négative,

quant & la premiére, on peut l'encadrer en partant de 4 < 5 < 9 = 2 < /5 < 3, donc

xr1 =

3 < z1 < 1. Il y a donc bien une solution unique & 1’équation sur U'intervalle |0, 1.

1 3 1 2 2

iz<z<l,ona-<z+1< onc = < f(z) < 5. Comme = < 1, on en déduit que
(b)S'2< <1, 2< 1<2,d 2<f()<3C 3 1, déduit g

1

3 <flr) <L

1
(c) La fonction f est bien str dérivable sur son ensemble de définition, et f’(z) = EFSIEL
x
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, donc en élevant

N
\.r—‘
Q
=]
o
I
N

1
En reprenant la question précédente, si 3 <z <

1

1
au carré (tout est positif), 1 < CEE
x

4 .
< 9’ soit
Commengons par prouver par récurrence que Vn € N, u, € > 1} : ugp = 1 appartient

1
bien & l'intervalle [5, 1] . Supposons désormais que 3 < up < 1, alors d’aprés les questions

précédentes 3 < f(uy) < 1, soit 3 < Upy1 < 1, ce qui achéve la récurrence.

Constatons par ailleurs que ro est un point fixe de la fonction f : on sait que ro vérifie

r% + 79 —1=0,soit ro(ro + 1) = 1, donc o = — ou encore f(ry) = ra.
2

On peut désormais appliquer 'TAF & u,, et 9, qui appartiennent tous deux a l'intervalle
1 4
[5, 1} (cf questions précédentes), sur lequel on a vu que |f'(z)] < g On en déduit que

. 4
|f(up) —re| < §|un — 19|, soit |up41 — ra| < §|un —7r9l.

n
Montrons enfin par récurrence la propriété P, : |u, — 2| < <§> . Pour n =0, |ug—re| =

|[1—7ro| < 1 carrg €]0;1], ce qui prouve Py. Si on suppose P, vérifiée, on peut faire le calcul

suivant en utilisant successivement le résultat précédent et ’hypothése de récurrence :
4 4 [a\" /4"

[upt1 — 12| < §]un — 19| < 9 X <§> < <§> . Cette derniére inégalité prouve P, 1

et achéve donc la récurrence.
n

4 . P
Comme 9 < 1, la suite 9 converge vers 0, et le théoréme des gendarmes nous permet

d’affirmer que lim |u, — ro| = 0, c’est-a-dire que lim w, = rs.
n—-+0oo —+00

n
Cette fois-ci, on ne sait pas résoudre I’équation, il faut donc étudier un peu le polynéme
2%+ 22+ x — 1. Sa dérivée, 322 4 2z + 1, a un discriminant négatif, elle est donc toujours
positive. La fonction z — 2% 4+ 22 + z — 1 est donc strictement croissante et bijective sur
R. Comme elle prend la valeur —1 pour z = 0 et la valeur 2 pour = 1, on en déduit
qu’elle s’annule entre 0 et 1. L’équation proposée a donc une unique solution (& cause de
la bijectivité) qui appartient a l'intervalle |0, 1].

1

Le trinome z? + x 4 1 étant strictement croissant sur R*, on aura, si = <z < 1, f (1) <
1 1 1 1 1
flx) < f <§> Comme f(1) = 3 et f <§> = W < 1, on aura bien 3 < fx) <1,

donc l'intervalle est stable.

La fonction g est C*° sur R (son dénominateur ayant un discriminant négatif, il ne s’annule

2 1
jamais), et ¢'(z) = —m , et en dérivant ¢’ comme un produit,
2 —202z+1) 22z+1)?-2z*+z+1)
g"(w):—ﬁ—(%v—i—l)x 2 3 2 3
(@2 +x+1) (x24+2+1) (2 4+2x+1)
8z + 8z +2 — 222 — 2z — 2 6 1
_Srer v * = zle+1) . Cette dérivée seconde étant toujours po-
(242 +1)3 (22 4+ 2+ 1)2
. 1 . . . 1 2+1
sitive sur | =, 1|, la dérivée ¢’ y est strictement croissante. Comme ¢’ [ = | = T T, =
3 (5+3+1)2
5
3 135 3 1 1 135
15%19 = 169 et ¢(1) = g =gz on peut en déduire que Vz € [5,1], ld'(z)] < 169"

On aimerait appliquer I'TAF & r3 et a v, en utilisant la majoration de |f/(x)| obtenue a la
question précédente. Il faut pour cela vérifier que v,, est toujours dans cet intervalle, ce qui
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se fait en utilisant la stabilité de I'intervalle par une récurrence identique a celle du début

: 1 _ 1 1
la question 1.d, et que r3 € g,l et est un point fixe de g. Comme3—3—|—?—|—§—1:
LIS flectivement 75 > + (cf étude de la question a). D
—F+-—+-—-1=—-—= on a effectivement r3 > - (cf étude de la question a). De
27 7973 97 = v 323 d

plus, 75 +r2 + 73— 1=0=7r3(r3 + 73+ 1) =1 = r3 = f(r3), donc 73 est un point fixe

de f. On peut donc bien appliquer I'TAF pour obtenir |f(v,) — f(rs)| <
15
169

@h)n — 13|, soit

[Up+1 — 73] < |vp, — 13

169
<r3< 1, etle

135"
On fait ensuite notre petite récurrence classique pour prouver que |u, — r3| < < >

Wl

(comme dans la question 1.d, on majore |vg — r3| par 1 en utilisant que

. . : 4 135
reste de la récurrence est identique en remplacant les 9 par des @)

35
La conclusion est également la méme : 169 < 1 donc le membre de droite de notre inégalité

tend vers 0, et en appliquant le théoréme des gendarmes, hr—Ikl |vn, — 73| = 0, c’est-a-dire
n—-+00

que lim v, =r;3.
n—400

La fonction h,, est O sur Rt de dérivée h/)(z) = nz" '+ (n—1)z" 2+ - +2r+1. La

fonction h,, étant stricement croissante sur RT, elle y est bijective. Comme h,,(0) = —a < 0

et lig[_l hn(z) = +00, on en déduit que I’équation hy,(z) = 0 a bien une solution (unique
T—1+00

par bijectivité) sur [0,+oo[. De plus, on a h,(1) = n — a, donc h,(1) > 0sin > a. En
appliquant le théoréme des valeurs intermédiaires, h,, s’annule alors sur I'intervalle ]0, 1]
et t,, €]0,1].

C’est un simple caleul : (z —1)h,(z) = (x—1)(z" +2" +- 422 +z—a) = 2"+ 2" +
ot —azr—2" -z - —x?—zta=2"M—az—z+a=2""' - (a+1)z+a.
Notons que h,y1(x) = 2" + h,(z). Comme h,(t,) = 0 (par définition), on a donc
Bosi(tn) = 21 > 0, donc hyq1(tn) > hn(t,). Comme par ailleurs on a aussi, toujours
par définition, hy41(tn+1) = 0, on en déduit que hy41(tn) > hpt1(tn41). La fonction hy,qq
étant strictement croissante sur RT, cela implique ¢, > t,41, et la suite (¢,) est donc
strictement décroissante. Etant minorée par 0, elle est donc convergente.

On vient de voir que la suite (¢,) était décroissante, donc VA > n, 0 < t, < ta, et comme
ty et ta sont tous deux strictement inférieurs a 1, 0 < ¢ < t%. Fixons donc A > a (de
fagon a ce que t4 soit une constante). Comme t4 < 1 dans ce cas, ngrfwtﬁ = 0. En

appliquant le théoréme des gendarmes, on en déduit que lirj{l th=0.
n—-+0oo

En reprenant la relation obtenue & la question b et en I'appliquant pour x = t,,, on obtient

0 =t"*t! — (a+1)t,+a, soit (a+1)t, —a = t, x t7. Le membre de droite convergeant vers
a

a+1
Tout comme pour la fonction h,,, i, est dérivable de dérivée strictement positive sur RT,

donc y est strictement croissante et bijective. Comme i, (0) = —a < 0, et hrf in(z) =
T—r+00

0 d’aprés la question précédente, on a donc lim (a+ 1)t, —a =0, soit lim ¢, =
n—-+4o0o n——+00

+00, la fonction s’annule nécessairement une unique fois sur R™. De plus, i, (1) = n+n —

1
1+...+2+1_azm

in s’annulera alors sur |0, 1[.

—a. Sin(n+1) > 2a, on aura donc i,(1) > 0, et la fonction

k=n k=n
Encore du calcul : (z — 1)%i,(2) = (22 — 22 + 1) Z kat — a(z — 1) = Zkzazk+2 -
k=1 k=1

k=n+2 k=n+1 k=n

k=n k=n
Z 2k3$k+1+z kat —a(z—1)2 = (k—2)a* — Z (2k—2)xk+z kat —a(z—1)2 =
k=1 k=1 k=3 k=2 =1
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(n—1)z" M 4na" 2 —22% —2na" 24222 —a(z—1)? = nz" P — (n+ D)2 4z —a(z—1)2

(c) Méme chose qu’a la question 3.c en constatant que ip,1(2) = in(z) + (n + 1)2" L donc
int1(Yn) > in(yn). On en déduit que i,41(yn) > 0, soit ip41(Yn) > int1(Ynt1) puis, par
croissance de la fonction 4,41, ¥ > Yn+1. La suite (y,) est donc décroissante et minorée
par 0, elle converge.

(d) Encore une fois, la décroissance de la suite donne immédiatement 'inégalité, et en fixant
A a une valeur convenable, on sait que y4 < 1, donc nli)rfoonyz = 0 (un petit coup de
croissance comparée ici) et, par théoréme des gendarmes, ngrfwnyﬁ = 0.

Reprenons alors la relation de la question b, appliquée a x = y,,, pour en déduire en passant
a la limite que hIJIrl Yn+a(y,—1)? =0, soit f—a(B—1)? = 0, soit af%—(1+2a)B+a = 0,
n——+0oo

équation du second degré dont le discriminant vaut A = (1 + 2a)? — 4a®> = 1 + 4a,
1+2a++v1+4a
2 , et 52 =
a

qui est toujours positif, et admet donc deux racines §; =

1+ 2a—+1+4a

a
0 < B <1 Or, 1 >1 (son numérateur est plus grand que son dénominateur). On a donc

18_1—|—2a—\/1+4a

2a

. Reste a savoir laquelle des deux valeurs est la bonne. On sait que

Probléme 2 (**%*)

1. Mon tout béte programme maison (j’ai rajouté un troisiéme parameétre n correspondant au
nombre de termes calculés) :

import matplotlib.pyplot as plt
def logistique(x,k,n) :
abscisses=[i/1000.0 for i in range(1001)]
def f(a) :
return k*a*(1-a)
ordonnees=|[f(i) for i in abscisses|
plt.plot(abscisses,abscisses)

plt.plot(abscisses,ordonnees)

11=[x]

12=0]

for i in range(n) :
y=f(x)
11.append(x)
12.append(y)
11.append(y)
12.append(y)
X=y

plt.plot(11,12)

return 11

2. (a) On a donc pour l'instant f(z) = x(1 —z) = x — 2%. La fonction est dérivable sur [0, 1], de
dérivée f'(z) =1 — 2z, et on peut donc dresser le tableau de variations suivant :

26



x 0 1 1
f'(x) + -
f / \
0
f@)—x 0 + +

Le signe de f(z) — x est ici évident, le seul point fixe est z = 0.

L’intervalle [0,1] étant stable par f (d’aprés le tableau de variations précédent, on a
£([0,1]) = [0,4] c [0,1]), on aura toujours 0 < u, < 1 (récurrence évidente), et donc
toujours uny1 — up = f(un) — up < 0. La suite est donc décroissante et minorée par 0,

elle converge donc. Comme 0 est le seul point fixe de f, on a nécessairement lirf U, = 0.
n——+0oo

3
Une illustration (issue de mon programme Python) lorsque ug = 1

10

0.8 [

0.6
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0.0 i i i i
0.0 0z o4 0.6 0.8 10

Cette fois-ci, f(x) = 2z — 222, et f'(x) = 2 — 4. En fait, on peut d’ores et déja constater
que le signe de f/(x) ne dépend absolument pas de la valeur de k, seul le maximum de la
fonction changera, ainsi que le signe de f(x) — 2. Ici, f(z) — x =  — 222 s’annule quand

x =0et quand x = 5 @vec un signe positif entre ces deux racines, d’ou le tableau suivant :

x 0 1 1
f'(z) + -

N
f@)-=z[0 + 0 -

Si ug = 0, la suite sera constante égale a 0 puisqu’il s’agit d’un poin fixe. Si ug = 1, on
aura u; = f(1) = 0, et la suite va donc stationner a 0 a partir du rang 1.

La stabilité de 'intervalle est évidente vues les variations de f : la fonction est croissante et

1 1 1
0et 3 sont deux points fixes, donc f < [0, 5} ) = [0, 5] . Siug se trouve dans cet intervalle,

ce sera donc aussi le cas de tous les autres termes de la suite (récurrence triviale), et on

aura Up41 — Up = f(un) — uy = 0, donc la suite est croissante. Etant majorée par 27 elle

(on ne peut pas converger vers 0 en partant de

DN | —

converge donc, et sa limite est égale a

up > 0 pour une suite croissante).
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(d)

4. (a)

1
Dans ce cas, u; € [0, 5] , et la suite devient donc croissante & partir du rang 1, et conver-

gera de méme vers 3 Une illustration, cette fois en partant de ug = 0 :

10
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Les variations n’ont toujours pas changé, le maximum de f valant maintenant 1. Les points

fixes sont désormais obtenues en résolvant 1’équation 3z —4x? = 0, donc on a comme points
3

fixesx=0et x = 1 De plus, f/(0) = 4 (cette valeur ne sera pas vraiment utilisée par la

suite, mais le fait qu’elle soit (largement) plus grande que 1 explique que 0 est un point
fixe répulsif, donc que la suite (u,) ne va pas pouvoir tendre vers 0, sauf dans le cas d'une
suite stationnaire.

En effet, le signe de f(z) — z est, comme précédemment, positif entre les deux points
fixes, donc sur tout l'intervalle |0, 1l L’énoncé était imprécis, si on veut une inégalité

stricte f(x) > x, il faut bien str prendre un intervalle ouvert du coté de 0. Par I’absurde,
supposons donc que la suite (u,) tende vers 0 en ne prenant jamais la valeur 0. Alors,

en appliquant la définition de la limite avec € = 3’ il existe un entier ng a partir duquel

on aura toujours 0 < u, < % Mais dans ce cas, Vn = ng, Upt1 — Un = f(un) — uy > 0,
donc la suite est strictement croissante & partir du rang ng. On a donc nécessairement
Up > Up, > 0, ce qui est contradictoire avec une limite nulle (si (u,) converge, sa limite
sera supérieure ou égale & uy,, ). Notre hypothése est donc impossible : si (u,) tend vers 0,
c’est qu’on aura nécessairement u,, = 0 pour un certain entier ng.

C’est déja le cas si ug = 0 (suite constante) ou ug = 1 (suite stationnaire a 0 a partir du

1
rang 1). Mais cela se produira aussi si ug = 3 puisque dans ce cas u; = f 5)= 1, puis la

suite devient stationnaire a 0 & partir du rang 2. Ce sera aussi le cas si ug est un antécédent

1
de 57 ouun antécédent de cet antécédent etc. Or, tout nombre compris entre 0 (exclus) et

1 admet un antécédent par f qui est strictement positif et strictement plus petit que lui, ce
qui permet de construire de proche en proche une infinité de valeurs de 1y pour lesquelles
la suite va finir par prendre la valeur 1, puis stationner a 0. Concrétement, en notant g

1
la réciproque de la fonction f restreinte a l'intervalle [0, 5} g effectue une bijection de

1
10,1] vers }0, 5] . La suite (v,,) définie par vo = 1 et la relation de récurrence v, 1 = g(vy)

prendra des valeurs toutes distinctes et qui correspondent toutes & des valeurs de ug pour
lesquelles la suite stationne a 0.

2 2
Dans ce cas, u; = 4sin? <E) <1 — sin? (E)) = (QSin (E> cos (E>> = sin? ] en
5 5 5 5 5

exploitant la formule de duplication bien connue sin(2a) = 2sin(a) cos(a). Le méme calcul
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.o (4T . . . . [ 4r . s
montre que ugy = sin |, mais en fait ug = ug puisque sin & ) =sin (71 — g) =
sin (g) La suite sera donc périodique de période 2.

(e) Non, stirement pas, puisque l'intervalle [0, 1] reste stable par f, donc tous les termes de la
suite vont rester dans 'intervalle [0,1] (toujours la méme récurrence triviale). Une suite
bornée ne peut pas avoir une limite infinie.

Quelques exemples supplémentaires avec des valeurs de k& non entiéres, en pratique le
comportement de la suite devient de plus imprévisible quand k varie dans l'intervalle [3, 4]
(pour k < 3, la suite va toujours converger vers un de ses points fixes, puis on voit apparaitre
progressivement des « cycles » de période 2, puis de période 4 puis des choses de plus en plus
étranges quand on est en gros dans l'intervalle [3.75,4] pour le paramétre k). Par exemple,

pour ug = 1 et k = 3.2, on a un cas typique de « rapprochement d’une suite périodique de
période 2 » :

10
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Avec ug = 0.6 et k = 3.5, on se rapproche trés vite d’un cycle de période 4 (sur ce
graphique et les deux qui ’entourent, on a représenté les 100 premiers termes de la suite et
pas seulement les 30 premiers) :
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1
Enfin, un cas typique de « chaos total » quand ug = 1 et k=3.9:
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5. (a)

10

0.8 [

06 -

04|

02

/
/
00

0.0 0.2 o4 0.6 0.8 10

Les variations de f sont toujours les mémes, mais le maximum est désormais de valeur

1 3
f <§> =5 Il faut donc résoudre I’équation f(z) = 1 pour déterminer 'intervalle sur

lequel on va « déborder ». L’équation 622 —6x+1 = 0 a pour discriminant A = 36—24 = 12

6-v12 1 1 C6+VI2 11

t admet d i = T 2 et 44— C
et admet donc pour racines x; 1 2" 35 et xa 1 RV es
deux valeurs sont bien comprises entre 0 et 1, et f(z) > 1 si z €]z, z3].

Si ug appartient a cet intervalle, on aura u; > 1 et donc ug < 0. Or, lintervalle | — 0o, 0]

est stable par f, et sur cet intervalle on a toujours f(z) < z. La suite va donc étre a
valeurs négatives a partir du range 2 (récurrence triviale), et strictement décroissante a
partir de us. Comme il n’existe pas de point fixe strictement négatif, la suite ne peut pas
étre minorée (sinon elle convergerait), donc elle tend nécessairement vers —oo.
Montrer que, pour toutes ces valeurs initiales, la suite (u,) diverge vers —oo.

C’est le méme principe que plus haut : si ug = x1 ou ug = w9, la suite va stationner a 0 &
partir du rang 2. Mais si ug est un antécédent de x1, ou un antécédent de cet antécédent
etc, ce sera pareil (on stationnera seulement un peu plus tard). Or, comme précédemment,
tout nombre a compris entre 0 et 1 amdet toujours un antécédent dans l'intervalle ]0, a/,
on conclut exactement de la méme facon.

)
Le point fixe en question vaut —, mais comme Python arrondit la valeur, il finit par

s’éloigner de la suite constante qu’on devrait théoriquement avoir, et méme au point de
finir par se retrouver en-dessous de 0, et donc de donner des valeurs divergeant vers +oo.
Le méme phénomeéne se produit si on prend par exemple ug = x7.
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