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Exercice 1 (* à **)

• La fonction f1 est définie et C∞ sur R∗. De plus, lim
x→0+

x+
1

x
= +∞, donc lim

x→0+
f1(x) = +∞. De

même, lim
x→0−

x+
1

x
= −∞ donc lim

x→0−
f1(x) = 0. On peut prolonger la fonction f1 seulement par

continuité à gauche en 0, en posant f1(0) = 0. Dérivons désormais : f ′
1(x) =

(

1− 1

x2

)

ex+
1
x =

(x− 1)(x+ 1)

x2
ex+

1
x . Commençons par constater que lim

x→0−
f ′
1(x) = 0 (par croissance comparée,

lim
x→0−

e
1
x

x2
= 0, et il ne reste ensuite qu’un facteur

x− 1

x+ 1
ex qui tend vers 1), donc d’après

le théorème du prolongement de la dérivée, f1 est dérivable à gauche en 0 et sa courbe
représentative y admet une tangente horizontale. Pour les plus courageux, on peut calculer

f ′′
1 (x) =

2

x3
ex+

1
x +

(

1− 1

x2

)2

ex+
1
x =

1 + 2x− 2x2 + x4

x4
ex+

1
x , mais ça ne sert pas à grand

chose puisqu’on n’arrivera pas à déterminer les racines du numérateur pour en déduire la
convexité. Les variations sont par contre faciles à étudier, on peut calculer les valeurs des

extrema locaux : f1(−1) = e−1−1 =
1

e2
, et f1(1) = e2. On peut dresser le tableau de variations

suivant (les limites aux infinis ne posent aucun problème) :

x −∞ −1 0 1 +∞

f1

0

✟✯✟✟

1
e2 ❍❍❍❥0

+∞❍❍❍❥
e2

✟✯✟✟

+∞
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• La fonction f2 est définie et C∞ sur R
∗ (ce qui est dans le ln étant toujours strictement

positif). Elle est de plus manifestement paire et accessoirement à valeurs positives. En posant

X =
1

x2
, qui a pour limite 0 quand x se rapproche des infinis, et en utilisant la limite

classique lim
X→0

ln(1 +X)

x
= 1, on obtient que lim

x→±∞
f(x) = 1. En 0, écrivons plutôt que

f2(x) = x2 ln

(

x2 + 1

x2

)

= x2 ln(x2 + 1)− x2 ln(x2) (expression qui est définie sur R
∗ comme

f(x)). Le premier terme a pour limite 0, le deuxième aussi (par croissance comparée), donc
on peut prolonger f2 par continuité en 0 en posant f2(0) = 0. Passons à la dérivée : f ′

2(x) =

2x ln

(

1 +
1

x2

)

+ x2 × −2

x3
× 1

1 + 1
x2

= 2x

(

ln

(

1 +
1

x2

)

− 1

x2 + 1

)

. Pas de problème pour

la limite en 0, la même technique que tout à l’heure (pour le produit de 2x par le ln, l’autre
morceau tendant facilement vers 0) permet de prouver que lim

x→0
f ′
2(x) = 0, donc par théorème

du prolongement de la dérivée (je me dispenserai de le citer pour les fonctions suivantes), la
fonction f2 est dérivable en 0, et f ′

2(0) = 0. Pour les variations, ce n’est pas si simple, sur

R
+, la dérivée est du signe de g(x) = ln

(

1 +
1

x2

)

− 1

x2 + 1
. La dérivée de cette fonction g

vaut g′(x) = − 2

x(1 + x2)
+

2x

(1 + x2)2
=

2x2 − 2(1 + x2)

x(1 + x2)2
=

−2

x(1 + x2)2
. La fonction g est donc

décroissante sur R
+∗, de limite nulle en +∞, donc elle est positive sur ]0;+∞[. La fonction

f2 est donc croissante sur [0,+∞[, et par parité, décroissante sur ] − ∞, 0]. Résumons nos
différents calculs dans un tableau de variations :

x −∞ 0 +∞

f2

1

❅
❅
❅❘
0

�✒
�

�

1

2
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• La fonction f3 est définie sur [−1, 1] (puisqu’il faut avoir −1 6 x2 6 1 pour que l’arccos
soit défini), mais a priori C∞ seulement sur ] − 1, 1[. La fonction est de plus paire. Pas de
prolongement par continuité à étudier (ni de limites pour f3, contentons-nous de signaler
que f3(−1) = f3(1) = 0). Passons donc tout de suite au calcul de la dérivée : f ′

3(x) =

2x arccos(x2)+(x2−1)× −2x√
1− x4

= 2x

(

arccos(x2) +

√
1− x2√
1 + x2

)

. Cette dérivée est facilement

positive sur [0, 1], et la fonction est dérivable en 1, avec f ′
3(1) = 2(arccos(1) +

√
0) = 0. La

fonction admet par ailleurs un minimum en 0, de valeur f3(0) = − arccos(0) = −π

2
. Une

allure de la courbe :

0 1−1

0

1

−1

−2

• La fonction f4 est définie et continue sur R+, de classe C∞ sur ]0;+∞[ (à cause de la racine car-

rée). Calculons la dérivée : f ′
4(x) =

(

1

2
√
x
−√

x

)

e−x =
1− 2x

2
√
x

e−x. En 0, cette dérivée a une

limite infinie, la fonction f4 n’est donc pas dérivable, mais la courbe admet en 0 une tangente

verticale. La fonction est par ailleurs croissante sur

[

0,
1

2

]

et décroissante ensuite, avec pour

maximum f4

(

1

2

)

=

√

1

2
e−

1
2 =

1√
2e

. Si on est courageux, on peut enchaîner sur le calcul de

la dérivée seconde pour étudier la convexité : f ′′
4 (x) =

(

− 1

4x
√
x
− 1

2
√
x
− 1

2
√
x
+

√
x

)

e−x =

4x2 − 4x− 1

4x
√
x

e−x. Cette dérivée seconde est du signe de 4x2 − 4x − 1, dont le discriminant

vaut ∆ = 16 + 16 = 32, et qui admet donc deux racines x1 =
4 +

√
32

8
=

1 +
√
2

2
, et
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x2 =
1−

√
2

2
< 0. La courbe changera donc de concavité au point d’abscisse

1 +
√
2

2
(et d’or-

donnée
√
x1e

−x1 , que l’on ne cherchera pas à expliciter, je ne parle même pas de la tangente
dont la pente sera horrible). Ce point n’est pas indiqué sur la courbe qui suit (par souci de
lisibilité) :

0 1 2 3 4

0

1

• La fonction f5 est définie et continue sur [−1, 1], mais a priori C∞ seulement sur ] − 1, 1[.

Pour changer, dérivons : f ′
5(x) = −

√
1− x2 + (1− x)× −2x

2
√
1− x2

=
−(1− x2)− x(1− x)√

1− x2
=

2x2 − x− 1√
1− x2

=
(x− 1)(2x + 1)√

1− x2
= −(2x + 1)

√

1− x

1 + x
. En −1, cette expression a une limite

infinie, il y aura une tangente verticale ; par contre en 1, la limite est nulle, la fonction est donc

dérivable en 1 et f ′
5(x) = 0. Par ailleurs, la fonction est croissante sur

]

0,
1

2

]

, et décroissante

ensuite. Elle admet pour maximum f5

(

−1

2

)

=
3

2

√

3

4
=

3
√
3

4
. On peut enchaîner sur la

dérivée seconde : f ′′
5 (x) =

−2
√
1− x2 + (2x+1)

√
1+x

2
√
1−x

+ (2x+1)
√
1−x

2
√
1+x

1 + x

=
−4(1− x2) + (2x+ 1)(1 + x) + (2x+ 1)(1 − x)

2(1 + x)
√
1− x2

=
2x2 + 2x− 1

(1 + x)
√
1− x2

, qui est du signe de

2x2+2x−1, dont le discriminant vaut ∆ = 4+8 = 12, et s’annule donc en x1 =
−2 +

√
12

4
=

√
3− 1

2
, et x2 =

−1−
√
3

2
, qui n’appartient pas à l’intervalle [−1, 1]. Il y donc un seul point

de changement de concavité pour la courbe :
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0 1−1

0

1

• La fonction f6 est définie et C∞ sur ]0, 1[∪]1,+∞[. Comme lim
x→0

e
1

ln(x) = 1, on peut prolonger

f6 par continuité en 0 en posant f6(0) = 0. En 1, on calcule sans difficulté lim
x→1−

f6(x) = 0 et

lim
x→1+

f6(x) = +∞. On peut donc prolonger par continuité à gauche en 1 en posant f6(1) = 0,

mais pas à droite. Passons à la dérivée : f ′
6(x) =

(

1− x

x ln2(x)

)

e
1

ln(x) =
ln2(x)− 1

ln2(x)
e

1
ln(x) . En

1, cette dérivée a la même limite que −X2eX , où on a posé X =
1

ln(x)
. Comme lim

x→1−
X = −∞,

on en déduit par croissance comparée que lim
x→1−

f ′
6(x) = 0. La fonction admet donc en 1 une

demi-tangente horizontale. En 0, la dérivée a pour limite évidente 1 (on factorise le quotient
par ln2(x) si on y tient vraiment), donc f6 est aussi dérivable en 0, et f ′

6(0) = 1. Le signe de
la dérivée est par ailleurs celui de ln2(x)− 1 = (ln(x) + 1)(ln(x)− 1), qui s’annule en e et en
1

e
. On calcule f6(e) = e × e1 = e2, et f

(

1

e

)

=
1

e
× e−1 =

1

e2
. On peut résumer toutes ces

informations dans le tableau de variations suivant :

x 0 1
e

1 e +∞

f6

0

✟✯✟✟

1
e2❍❍❍❥

0

+∞❍❍❍❥
e2

✟✯✟✟

+∞

5



0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

9

10

11

12

• La fonction f7 est définie et continue sur ] − ∞,−1] ∪ [0,+∞[ mais C∞ seulement sur ] −
∞,−1[∪]0,+∞[ a priori. On peut ici calculer directement f ′

7(x) =
√
x+ x2 +

x(1 + 2x)

2
√
x+ x2

=

2x+ 2x2 + x+ 2x2

2
√
x+ x2

=
3x+ 4x2

2
√
x+ x2

=
(3 + 4x)

√
x

2
√
1 + x

si x > 0. Sur l’autre intervalle, f ′
7(x) =

(3 + 4x)
√
−x

−2
√
−1− x

. En tout cas, on a une limite infinie, donc une tangente verticale, en −1, et

une limite nulle en 0, où la fonction est donc dérivable avec une tangente horizontale. La
dérivée est par ailleurs positive sur chacun des deux intervalles où f7 est définie. Une allure
de courbe :

0 1 2 3 4 5−1−2−3−4−5

0

1

2

3

4

5

−1

−2

−3

−4

−5

• La fonction f8 est définie et C∞ sur R
+∗. De plus, en utilisant le fait que lim

x→0

ex − 1

x
= 1

(limite classique), on obtient lim
x→0

f8(x) = 0, et on peut prolonger f8 par continuité en 0 en
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posant f8(0) = 0. Passons au calcul de la dérivée, pour laquelle on posera au numérateur

x
√
x = x

3
2 pour se simplifier la vie : f ′

8(x) =
3
2

√
x(ex − 1)− x

3
2 ex

(ex − 1)2
=

√
x(3ex − 3− 2xex)

2(ex − 1)2
.

Le calcul de la limite de la dérivée en 0 n’est vraiment pas naturel avec les moyens dont

nous disposons actuellement, mais on peut quand même s’en sortir : f ′
8(x) =

x

2
√
x(ex − 1)

×
x

ex − 1
×
(

3(ex − 1)

x
− 2ex

)

(vérifiez, je n’ai rien ajouté !), le dernier morceau dans la pa-

renthèse tend vers 1 en utilisant la limite classique déjà exploitée plus haut, le deuxième
quotient juste devant aussi, et le premier, à cause du

√
x au dénominateur, a une limite infi-

nie en 0. La fonction n’est donc pas dérivable en 0, sa courbe y admet une tangente verticale.
Le signe de 3ex − 3 − 2xex n’a par ailleurs hélas rien d’évident, si on dérive on trouve du

3ex−2ex−2xex = ex(1−2x). Notre expression est donc croissante sur

[

0,
1

2

]

et décroissante

ensuite, vaut 0 en 0 et a pour limite −∞ en +∞. Elle s’annule donc une fois, pour une valeur

de x supérieure à
1

2
et légèrement inférieure à 1 puisque 3e − 3 − 2e = e − 3 < 0. On ne

cherchera pas à en savoir plus, ni à calculer la dérivée seconde de f8. Notons simplement
que la croissance comparée permet d’affirmer que lim

x→+∞
f8(x) = 0, et traçons une allure de

courbe :

0 1 2 3 4 5

0

1

• Pour continuer en beauté, plein de fonctions d’un coup. Il était sous-entendu dans l’énoncé que
n désignait un entier naturel, les fonctions sont donc toutes définies et C∞ sur R

∗. Si n = 0,
la fonction n’a pas de limite en 0, on peut trouver facilement deux suites de réels tendant vers

0 mais dont la limite des images par f0 est différente. Par exemple f0

(

1

2nπ

)

= sin(2nπ) = 0

mais f0

(

1

(2nπ + π
2

)

= sin
(

2nπ +
π

2

)

= 1. D’après la caractérisation séquentielle de la

limite, la fonction f0 n’a pas de limite en 0. Toutes les autres fonctions sont par contre
prolongeables par continuité en posant fn(0) = 0, car on peut écrire l’encadrement −xn 6

xn sin

(

1

x

)

6 xn, qui suffit à assurer que lim
x→0

fn(x) = 0.

Passons à la dérivée (si n 6= 0) : f ′
n(x) = nxn−1 sin

(

1

x

)

+xn×−1

x2
cos

(

1

x

)

= nxn−1 sin

(

1

x

)

−

xn−2 cos

(

1

x

)

. À partir de n = 3, pas de problème, tout cela va gentiment tendre vers 0 en

faisant un petit encadrement, donc les fonctions fn sont alors dérivables (avec une tangente
horizontale) en 0. Pour n = 2, le premier terme tend vers 0 mais le deuxième n’a pas de limite
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(même raison que ci-dessus), la fonction n’est pas dérivable. Enfin, si n = 1, la dérivée vaut

sin(X) − X cos(X), où on a posé X =
1

x
. Là encore, il n’est pas difficile de construire des

suites donnant des limites différentes pour cette expression en 0, donc la fonction n’est pas
dérivable non plus. Ici, chercher à calculer la dérivée seconde ou même à étudier les variations

n’a à peu près aucun intérêt. Pour information, voici une allure de la courbe de x sin

(

1

x

)

aux

alentours de 0 (avec en pointillés les deux bissectrices entre lesquelles se trouve la courbe) :

0 0.1 0.2 0.3 0.4 0.5−0.1−0.2−0.3−0.4−0.5

0

0.1

0.2

0.3

0.4

0.5

−0.1

−0.2

−0.3

−0.4

−0.5

• Essayons d’organiser un peu notre étude :

— domaine de définition : on doit déjà avoir x ∈ [−1, 1] pour que 1 − x2 soit positif et
donc que la racine carrée intérieure existe. Ensuite, il faut en plus que 1− 2x

√
1− x2 soit

positif, donc que 2x
√
1− x2 6 1. Cette condition est évidemment vérifiée lorsque x < 0,

reste à gérer le cas des valeurs de x entre 0 et 1. Dans ce cas, on peut élever au carré :
2x

√
1− x2 6 1 si 4x2(1− x2) 6 1, donc 4x4 − 4x2 +1 > 0. Or, 4x4 − 4x2 +1 = (2x2 − 1)2

est toujours positif, ce qui prouve qu’en fait Df = [−1, 1].
— domaine de dérivabilité : f42 ne sera pas dérivable aux points qui annulent l’une des

racines carrées qui la composent. Ainsi, f42 ne sera pas dérivable en 1 ni en −1 à cause de
la présence du terme

√
1− x2. De plus, la racine carrée globale s’annule lorsque x > 0 et

2x2 − 1 = 0, donc pour x =
1√
2
.

— étude des variations : posons g(x) = 1 − 2x
√
1− x2, la fonction racine carrée étant

strictement croissante sur son domaine de définition, f42 aura les mêmes variations que

g. La fonction g est dérivable sur ] − 1, 1[, et g′(x) = −2
√
1− x2 − 2x × −2x

2
√
1− x2

=

2x2 − 2(1 − x2)√
1− x2

=
2(2x2 − 1)√

1− x2
. Notre dérivée est donc du signe de 2x2 − 1, c’est-à-dire

qu’elle est négative sur

[

− 1√
2
,
1√
2

]

et positive le reste du temps. On sait déjà que le

minimum de f42 en
1√
2

vaut 0 (et que f42 ne sera pas dérivable à cet endroit), le maximum

8



de l’autre côté vaut f42

(

− 1√
2

)

=

√

1 +
√
2
√

1− 1
2 =

√
1 + 1 =

√
2.

— calcul de valeurs supplémentaires : on peut ajouter f42(0) = 1, et bien sûr f42(−1) =
f42(1) = 1.

— tangentes en 1 et en −1 : comme on a f ′
42(x) =

g′(x)

2f42(x)
, on constate facilement

que lim
x→±1

f ′
42(x) = +∞, ce qui prouve que la courbe représentative de f42 admettra des

tangentes verticales en 1 et en −1. Pour la valeur
1√
2

où f42 n’est pas non plus dérivable a

priori, calculer la limite de f ′
42 est beaucoup plus compliqué car à la fois f42 et g′ s’annulent,

et on a aucun moyen simple de déterminer la limite du quotient, on admettra donc que la
courbe aura une forme « en pointe » à cet endroit-là.

— étude de la convexité : hum, non, en fait, ça va être vraiment trop affreux, on ne peut
pas se contenter de calculer g′′ et même ce calcul-là serait assez désagréable. On constatera

sur la courbe ci-dessous que la fonction est en fait concave sur

[

−1,
1√
2

]

, puis convexe

sur

[

1√
2
, 1

]

.

— courbe : finalement, seules les variations étaient vraiment à étudier en détail avant de
tracer la courbe :

0 1−1

0

1

• C’est le genre de fonction qu’on ne cherchera pas à étudier ailleurs qu’en 0. La fonction f10 est
toutefois C∞ sur R∗ par théorèmes généraux. En 0, il suffit d’écrire que −x2 6 f(x) 6 x2 pour
constater que le théorème des gendarmes assure la continuité de la fonction. Mais en fait, elle y

est même dérivable en utlisant quasiment le même argument : τ0,f (h) =
f10(h)

h
= h sin

(

1

x

)

,

donc on a l’encadrement −h 6 τ0,f (h) 6 h qui suffit à assurer la dérivabilité de f10 en 0,
avec f ′

10(0) = 0. Une allure de courbe tracée bien entendu par ordinateur (comme toutes les
précédentes), et sur laquelle on ne voit d’ailleurs pas grand chose malgré le zoom qui a été
effectué sur la zone qui nous intéresse (valeurs de x comprises entre −0.4 et 0.4, de y comprises
entre −0.2 et 0.2, théoriquement on a bien sûr une infinité de micro-sinusoïdes d’amplitude
de plus en plus faible au voisinage de 0) :
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0

Exercice 2 (*)

La fonction f est définie et de classe C∞ sur ]0,+∞[, de dérivée donnée par

f ′(x) =
a

1+ax
ln(1 + bx)− b

1+bx
ln(1 + ax)

ln2(1 + bx)
=

a(1 + bx) ln(1 + bx)− b(1 + ax) ln(1 + ax)

(1 + ax)(1 + bx) ln2(1 + bx)
. Cette déri-

vée est du signe de son numérateur, qu’on va noter g(x). La fonction g est elle-même dérivable sur
]0,+∞[, de dérivée g′(x) = ab ln(1 + bx) + ab− ba ln(1 + ax)− ba = ab(ln(1 + bx)− ln(1 + ax)) > 0
puisqu’on a supposé a < b. La fonction g est donc strictement croissante sur ]0,+∞[. De plus,
lim
x→0

g(x) = 0 (les ln ont tous les deux une limite nulle), ce qui prouve que la fonction g est stricte-

ment positive sur ]0,+∞[ et donc que f est strictement croissante.

Exercice 3 (*)

La fonction f est bien sûr de classe C∞ sur ]0, 1[. Comme lim
x→1−

1

ln(x)
= −∞, pas de prolongement

par continuité envisageable de ce côté. Par contre, on a lim
x→0+

1

ln(x)
= 0, donc on peut prolonger f

en une fonction continue sur [0, 1[ en posant f(0) = 0 (on continuera de noter abusivement f le

prolongement). On aura alors τ0,f (h) =
1

h ln(h)
. Or, lim

h→0+
h ln(h) = 0− (croissance comparée), ce qui

prouve que lim
h→0+

τ0,f (h) = −∞ et que f n’est donc pas dérivable en 0. Sa courbe représentative y

dmettra toutefois une tangente verticale.

Il est temps d’étudier les variations de f : ∀x ∈]0, 1[, f ′(x) = − 1

x ln2(x)
< 0, donc f est bê-

tement décroissante sur tout l’intervalle. Passons donc à l’étude de convexité : ∀x ∈]0, 1[, f ′′(x) =
ln2(x) + 2 ln(x)

x2 ln4(x)
=

ln(x) + 2

x2 ln3(x)
. Le dénominateur de cette dérivée seconde est toujours négatif sur

]0, 1[, et le numérateur s’annule lorsque ln(x) = −2, donc en
1

e2
. Plus précisément, f sera convexe

sur l’intervalle

]

0,
1

e2

[

, puis concave sur

]

1

e2
, 1

[

. On aura donc un seul point d’inflexion. Calcu-

lons f

(

1

e2

)

= −1

2
, et f ′

(

1

e2

)

= −e2

4
, l’équation de la tangente au point d’inflexion est donc
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y = −e2

4

(

x− 1

e2

)

− 1

2
= −e2

4
x − 1

4
. Ci-dessous une allure de la courbe (la tangente au point

d’inflexion en pointillés rouges) :

0 1

0

−1

−2

−3

Exercice 4 (**)

Par un calcul direct, on trouve f ′(x) = 2nx2n−1, puis f ′′(x) = 2n(2n−1)x2n−2, jusqu’à f (n)(x) =

2n(2n − 1) . . . (n + 1)xn =
(2n)!

n!
xn (si on tient vraiment à faire une récurrence pour être ultra

rigoureux, on peut). Autre méthode, on écrit f(x) = g(x) × g(x), où g(x) = xn. Par la formule

de Leibniz, f (n)(x) =

n
∑

k=0

(

n

k

)

g(k)(x)g(n−k)(x). Or, par un calcul extrêmement similaire à celui des

dérivées successives de f , g(k)(x) = n(n − 1) . . . (n − k + 1)xn−k =
n!

(n− k)!
xn−k. On peut donc en

déduire que f (n)(x) =

n
∑

k=0

(

n

k

)

n!

(n− k)!
xn−k × n!

k!
xk =

n
∑

k=0

(

n

k

)

n!2

k!(n − k)!
xn = n!

n
∑

k=0

(

n

k

)2

xn. En

comparant avec la première expression obtenue, on peut identifier : n!
∑

k = 0n
(

n

k

)2

=
(2n)!

n!
, soit

n
∑

k=0

(

n

k

)2

=
(2n)!

n!× n!
=

(

2n

n

)

(et pour vous entrainer, à la maison, vous redémontrerez cette égalité

par récurrence, ce qui est loin d’être trivial).

Exercice 5 (*)

Cherchons donc si le taux d’accroissement de g en a admet une limite :
g(a + h)− g(a)

h
=

|f(a+ h)| − |f(a)|
h

=
|f(a+ h)|2 − |f(a)|2
h(|f(a)| + |f(a+ h)|) . En écrivant les carrés des modules sous la forme du pro-
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duit par le conjugué, |f(a+h)|2−|f(a)|2 = f(a+h)f(a+ h)−f(a)f(a) = (f(a+h)−f(a))f(a + h)+

f(a)(f(a+ h)− f(a)). En utilisant le fait que lim
h→0

f(a+ h)− f(a)

h
= f ′(a) (et similairement avec

le conjugué), on trouve donc lim
h→0

g(a+ h)− g(a)

h
=

f ′(a)f(a) + f(a)f ′(a)

|f(a)|2 =
2Re (f(a)f ′(a))

|f(a)|2 . La

fonction g est donc dérivable si f ′(a) 6= 0, et on peut alors dire que g′(a) =
2Re (f(a)f ′(a))

|f(a)|2 .

Exercice 6 (**)

1. La fonction g : x 7→ f(x)

x
est dérivable sur ]0, a]. Par ailleurs, puisque lim

x→0

f(x)

x
= lim

x→0

f(x)− f(0)

x− 0
=

f ′(0) = 0, on peut prolonger g par continuité en une fonction continue sur [0, a] en posant

g(0) = 0. Comme g(a) =
f(a)

a
= 0, la fonction g vérifie toutes les hypothèses du théorème de

Rolle, et sa dérivée g′ s’annule donc (au moins) une fois sur ]0, a[.

2. La dérivée de la fonction g se calcule aisément : g′(x) =
xf ′(x)− f(x)

x2
. Elle s’annule d’après

la question précédente en un certain réel c 6= 0, qui vérifie donc cf ′(c) − f(c) = 0, soit
cf ′(c) = f(c). La tangente à la courbe représentative de f au point d’abscisse c a donc
pour équation y = f ′(c)(x − c) + f(c) = f ′(c)x − cf ′(c) + f(c) = f ′(c)x. Cette droite passe
effectivement par l’origine.

Exercice 7 (***)

1. En calculant les premières dérivées (on peut avantageusement commencer l’exercice par la
deuxième question ici), on devine que P sera un polynôme de degré n. Prouvons donc direc-

tement par récurrence que f (n)(x) =
Pn(x)

(1 + x2)n+1
, où d°(Pn) = n. C’est vrai au rang n = 0

en posant brillamment P0 = 1, qui est bien de degré 0. Supposons la propriété vraie au rang

n, alors f (n+1)(x) =

(

Pn(x)

(1 + x2)n+1

)′
=

P ′
n(x)(1 + x2)n+1 − (n+ 1)× 2xPn(x)(1 + x2)n

(1 + x2)2n+2
=

(1 + x2)P ′
n(x)− 2(n + 1)xPn(x)

(1 + x2)n+2
, qui est bien de la forme demandée en posant Pn+1 = (1 +

X2)P ′
n − 2(n+ 1)XPn. Reste à déterminer le degré de ce Pn+1, qui est bien un polynôme. Si

on nota anX
n le coefficient dominant de Pn, alors celui de (1+X2)P ′

n sera X2 ×nanX
n−1 =

nanX
n+1, et celui de 2(n + 1)XPn sera 2(n + 1)anX

n+1, ce qui donne pour Pn+1 un terme
dominant égal à −(n+ 2)anX

n+1, ce qui prouve que Pn+1 est de degré n+ 1 (puisque n+ 2
ne peut pas s’annuler).

2. Soit en utilisant les relations obtenues à la question précédentes, soit par un calcul direct,

on trouve f ′(x) =
−2x

(1 + x2)2
, soit P1 = −2X, qui a bien sûr pour unique racine 0, puis

f ′′(x) =
−2(1 + x2)2 + 8x2(1 + x2)

(1 + x2)4
=

6x2 − 2

(1 + x2)3
, donc P2 = 2(3X2 − 1), qui admet deux

racines réelles égales à − 1√
3

et
1√
3
, et enfin f ′′′(x) =

12x(1 + x2)3 − 6x(6x2 − 2)(1 + x2)2

(1 + x2)6
=

12x+ 12x3 − 36x3 + 12x

(1 + x2)4
=

24x(1 − x2)

(1 + x2)4
, donc P3 = 24X(1 −X2), qui s’annule exactement

trois fois, en 0, 1 et −1.

3. En effet, si f(x) =
1

x2 + 1
, alors (x2+1)f(x) = 1. On peut certainement appliquer la formule
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de Leibniz : en ponsant g(x) = x2 + 1, alors (fg)(n)(x) =

n
∑

k=0

(

n

k

)

g(k)(x)f (n−k)(x). Or, si

n > 1, (fg)n(x) = 0 puisque fg estla fonction constante égale à 1. Par ailleurs, les dérivées
successives de la fonction g se calculent très facilement : g′(x) = 2x, g′′(x) = 2, et ensuite

plus rien. La formule de Leibniz se résume donc à

(

n

0

)

g(x)f (n)(x) +

(

n

1

)

g′(x)f (n−1)(x) +
(

n

2

)

g′′(x)f (n−2)(x) = 0, soit en reprenant les notations de la première question (1 + x2) ×
Pn(x)

(1 + x2)n+1
+2nx

Pn−1(x)

(1 + x2)n
+n(n−1)

Pn−2(x)

(1 + x2)n−1
. Quitte à tout multiplier par (1+x2)n pour

faire disparaitre les dénominateurs, on obtient Pn(x)+2nxPn−1(x)+n(n−1)(1+x2)Pn−2(x) =
0. C’est exactement l’égalité demandée à un décalage près (on remplace tous les n par des
n+ 1).

4. On compare la formule qu’on vient d’obtenir : Pn+1(x) + 2(n + 1)xPn(x) + n(n + 1)(1 +
x2)Pn−1(x) = 0, avec celle obtenue dans la première question : Pn+1(x) = (1 + x2)P ′

n(x) −
2(n+1)xPn(x). On peut remplacer le Pn+1(x) de la première équation par l’expression donnée
par la deuxième, les termes en 2(n + 1)xPn(x) s’annulent et il ne reste que (1 + x2)P ′

n(x) +
n(n+ 1)(1 + x2)Pn−1(x) = 0, soit P ′

n(x) = −n(n+ 1)Pn−1(x).

5. On s’en doute, la réponse est non. Supposons donc que Pn admette une racine (au moins)
double x, alors d’après la caractérisation des racines doubles, P ′

n(x) = 0. La relation de la
question précédente implique alors Pn−1(x) = 0. Mais alors, comme Pn(x) = (1+x2)P ′

n−1(x)−
2nxPn−1(x) (c’est la relation de la première question, simplement décalée), on aura certaine-
ment (1 + x2)P ′

n−1(x) = 0, puis P ′
n−1(x), et x sera donc racine double de Pn−1. Bon, mais en

suivant le même raisonnement, x sera encore racine double de Pn−2, etc. Allez, faisons un rai-
sonnement rigoureux : notons n0 le plus petit entier naturel pour lequel Pn admet une racine
double. Cet entier n’est sûrement pas égal à 0, puisque le polynôme P0 n’a pas de racine (ni
1, 2 ou 3 d’ailleurs d’après les calculs de la deuxième question). Mais alors, si n0 > 1, d’après
le raisonnement précédent, Pn0−1 admet aussi une racine double (la même que Pn0), ce qui
contredit complètement la minimalité de l’entier n0. Cet entier ne peut donc pas exister, et
aucun des polynômes Pn n’admet de racine double.

Exercice 8 (***)

Comme le signale l’énoncé de l’exercice, on va faire, non pas une récurrence sur l’entier n, mais
fixer ce n une bonne fois pour pour toutes et montrer par récurrence sur k que, ∀k 6 n, la fonction
f (k)(x) s’annule (au moins) k fois entre −1 et 1 (et même dans ] − 1, 1[ pour être précis). C’est
évidemment vrai au rang 0 : la fonction f s’annule au moins 0 fois sur ] − 1, 1[ (en l’occurence,
elle ne s’annule effectivement pas puisque f s’annule uniquement en 1 et en −1, sauf pour n = 0).
Supposons que notre dérivée k-ème s’annule bien k fois, en des valeurs que l’on va noter x1, x2, . . .,
xk vérifiant −1 < x1 < x2 < · · · < xk < 1. On sait par ailleurs que, comme f(x) = (1 − x2)n,
f ′(x) = −2nx(1−x2)n−1, puis f ′′(x) = −2n(1− x2)n−1 +2n(n− 1)x2(1− x2)n−2 = (−2n(1− x2)+
2n(n − 1)x2)(1 − x2)n−2 etc. On prouve par une récurrence facile que f (k)(x) = Pk(x)(1 − x2)n−k

pour tout entier k 6 n (au-delà, ça ne marche plus !), où Pk est un polynôme que l’on ne cherchera
absolument pas à expliciter (si vous y tenez, pour l’hérédité, on calcule (Pk(x)(1 − x2)n−k)′ =
(P ′

k(x)(1−x2)−2x(n−k)Pk(x))(1−x2)n−k−1). Ce qui est important pour nous, c’est ce (1−x2)n−k

en facteur qui assure que, si k 6 n − 1, f (k)(x) s’annule en 1 et en −1 en plus des racines déjà
obtenues grâce à l’hypothèse de récurrence. On peut alors appliquer le théorème de Rolle sur chacun
des intervalles [−1, x1], [x1, x2], . . ., [xk−1, xk], [xk, 1]. Puisque f (k) s’annule aux deux bornes de
chacun de ces intervalles, sa dérivée f (k+1) s’annule à l’intérieur de chaque intervalle, ce qui prouve
l’existence de z1 ∈]− 1, x1[, z2 ∈]x1, x2[, . . .zk+1 ∈]xk, 1[ annulant f (k+1). On a en particulier prouvé
que f (k+1) s’annule (au moins) en k+1 réels distincts de l’intervalle ]−1, 1[, ce qui prouve l’hérédité
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de notre récurrence. Puisque cette hérédité fonctionne jusqu’à k = n−1, la dernière propriété obtenue
grâce à cette récurrence stipule que f (n) admet n racines distinctes dans ] − 1, 1[. Or, en tant que
dérivée n-ème d’un polynôme de degré 2n, la fonction f (n) est certainement un polynôme de degré n,
et ne peut donc admettre plus de n racines, ni de racine double si elle admet déjà n racines distinctes.
Autrement dit, on est certain que les n racines trouvées sont les seules racines de f (n) et qu’elles sont
simples. Accessoirement, elles sont toutes dans l’intervalle ]− 1, 1[.

Exercice 9 (**)

Puisque la racine carrée ne s’annule qu’en x = 1, la fonction f est bien de classe C∞ sur [0, 1[. On

peut commencer par calculer f ′(x) = − −2x

2(1− x2)
3
2

=
x

(1− x2)
3
2

, et surtout constater que f ′(x) =

x

(1− x2)
f(x), ou encore que (1−x2)f ′(x) = xf(x). On applique à cette égalité la formule de Leibniz.

Pour le membre de droite, les dérivées de la fonction identité s’annulent à partir de la dérivée seconde,

on n’a donc que deux termes dans la somme : en notant g(x) = xf(x), g(n)(x) =

(

n

0

)

xf (n)(x) +
(

n

1

)

×1×f (n−1)(x) = xf (n)(x)+nf (n−1)(x). Posons maintenant h(x) = (1−x2)f ′(x) et appliquons

à nouveau la formule de Leibniz, sachant que cette fois c’est à partir de la dérivée troisième que le
facteur polynômial va s’annuler : h(n)(x) = (1− x2)f (n+1)(x)− 2nxf (n)(x)− n(n− 1)f (n−1)(x) = 0.
En réorganisant les termes de l’égalité, on a donc (1−x2)f (n+1)(x) = (2n+1)xf (n)(x)+n2f (n−1)(x).
Démontrons alors la propriété souhaitée par récurrence double sur n. Les fonction f et f ′ (calculée
plus haut) sont positives sur [0, 1[, ce qui prouve la double initialisation de la récurrence. Supposons
maintenant que f (n−1) et f (n) sont positives sur [0, 1[ (décaler l’hypothèse de récurrence est plus
pratique ici au vu des calculs effectués), alors (2n + 1)xf (n)(x) + n2f (n−1)(x) est aussi positif sur
[0, 1[, donc (1− x2)f (n+1)(x) > 0 et f (n+1)(x) > 0, ce qui prouve l’hérédité de notre récurrence.

Exercice 10 (**)

1. Supposons donc que les points A et B aient pour coordonnées (
√
1− k2, k) et (−

√
1− k2, k)

(pour que les points soient sur le cercle trigonométrique, ils doivent satisfaire à l’équation
x2+y2 = 1), et notons (x, y) les coordonnées du point C. En prenant comme base du triangle
le côté [AB] qui a donc pour longueur 2

√
1− k2, l’aire du triangle est égale à

√
1− k2×|y−k|

(la hauteur du triangle correspond simplement à la distance entre les ordonnées des points
C et A puisque la base est par hypothèse « horizontale »). Or, y varie entre −1 et 1, donc
|y − k| est maximale quand y = 1 (si k 6 0) ou quand y = −1 (si k > 0), et l’aire maximale
recherchée est donnée par f(k) =

√
1− k2(1 + |k|).

2. La fonction f est paire, contentons-nous de chercher son maximum sur [0, 1], où f(k) =√
1− k2(1 + k). On calcule (f n’est dérivable que sur ]0, 1[ a priori, mais c’est bien suffi-

sant pour étudier les variations) f ′(k) =
−2k

2
√
1− k2

(1 + k) +
√
1− k2 =

1− k2 − k − k2√
1− k2

=

1− k − 2k2√
1− k2

. Cette dérivée est du signe de son numérateur, qui a pour racine évidente k = −1,

et pour deuxième racine k =
1

2
. Elle est positive entre ses racines, ce qui prouve que f admet

un maximum en
1

2
, de valeur f

(

1

2

)

=
3
√
3

4
. Cela correspond au cas d’un triangle équilatéral.
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Exercice 11 (**)

1. Posons donc h : x 7→ f(x)(g(b) − g(a)) − g(x)(f(b) − f(a)). La fonction h est évidemment
continue sur [a, b] et dérivable sur ]a, b[. De plus, h(a) = f(a)g(b) − f(a)g(a) − g(a)f(b) +
g(a)f(a) = f(a)g(b)−g(a)f(b), et h(b) = f(b)g(b)−f(b)g(a)−g(b)f(b)+g(b)f(a) = h(a). La
fonction h vérifie les hypothèses du théorème de Rolle, sa dérivée s’annule sur ]a, b[. Comme
cette dérivée vaut h′(x) = f ′(x)(g(b)− g(a))− g′(x)(f(b)− f(a)), le point d’annulation de la
dérivée vérifie exactement l’équation de l’énoncé.

2. Plaçons-nous sur un voisinage de a où toutes les hypothèses sont vérifiées, si on note b un
point d’un tel voisinage, il existe d’après la question précédente un x entre a et b tel que

f ′(x)g(b) = g′(x)f(b) (par hypothèse, f(a) = g(a) = 0), ou encore
f ′(x)

g′(x)
=

f(b)

g(b)
. Si on

fait tendre b vers a, puisque x est compris entre a et b, x tend également vers a, donc

lim
b→a

f(b)

g(b)
= lim

x→a

f ′(x)
g′(x) = l.

3. On vérifie aisément que les hypothèses de la question précédente sont présentes : en posant
f(x) = 1−cos(x) et g(x) = x2, f(0) = g(0) = 0, les deux fonctions sont continues et dérivables

partout, et les deux fonctions ne s’annulent pas sur ]−π;π[. Enfin,
f ′(x)

g′(x)
=

sin(x)

2x
a bien une

limite finie en 0, en l’occurence
1

2
en utilisant la limite classique lim

x→0

sin(x)

x
= 1. On conclut

de l’application de la règle de l’Hôpital que lim
x→0

1− cos(x)

x2
=

1

2
.

Le deuxième cas est très similaire : on pose f(x) = ln(1 + x) − x et g(x) = x2, les deux

fonctions s’annulent en 0, sont évidemment dérivables et
f ′(x)

g′(x)
=

1
1+x

− 1

2x
=

−x

(1 + x)2x
=

− 1

2(1 + x)
a pour limite −1

2
en 0. On conclut comme précédemment que lim

x→0

ln(1 + x)− x

x2
=

−1

2
, ou encore que ln(1+x) =

x→0
x− 1

2
x2 + x2ε(x), avec lim

x→0
ε(x) = 0. C’est le développement

limité à l’ordre 2 de la fonction x 7→ ln(1+x) en 0, développement limité dont on peut obtenir
la suite par la même méthode. Si on pose désormais f(x) = ln(1 + x)− x+ 1

2x
2 et g(x) = x3,

les fonctions vérifient les hypothèses de la règle de l’Hôpital, et
f ′(x)

g′(x)
=

1
1+x

− 1 + x

3x2
=

1 + x2 − 1

3x2(1 + x)
=

1

3(1 + x)
, qui a pour limite

1

3
quand x tend vers 0. Autrement dit, ln(1+x) =

x→0

x − x2

2
+

x3

3
+ x3ε2(x). Vous pouvez deviner la suite, on le démontrera dans un prochain

chapître.

Exercice 12 (**)

1. Il n’y a absolument rien à prouver, c’est la définition de la limite (on peut toujours choisir un
A strictement positif quitte à le prendre volontaire « trop grand ») !

2. On pose g(x) = f(x)− lx, fonction certainement dérivable sur [A,+∞[, et qui vérifie d’après
la question précédente |g′(x)| 6 ε sur cet intervalle. On peut donc en déduire (inégalité des
accroissements finis) que, si x > A, |g(x) − g(A)| 6 ε|x − A|, puis par inégalité triangulaire
|f(x)− lx| = |g(x)| 6 |g(x) − g(A)| + |g(A)| 6 ε|x−A|+ |f(A)−Al|.

3. On divise l’inégalité précédente par |l|x :

∣

∣

∣

∣

f(x)

lx
− 1

∣

∣

∣

∣

6 ε
x−A

|l|x +
|f(A)−Al|

|l|x . Le premier

terme du membre de droite est inférieur à
ε

|l| , et le deuxième tend vers 0, donc sera inférieur à
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ε

|l| quitte à se placer sur un intervalle [A′,+∞[ un peu plus restreint. Autrement dit, ∀ε > 0,

∃A′ > 0, ∀x > A′,

∣

∣

∣

∣

f(x)

lx
− 1

∣

∣

∣

∣

6
2ε

|l| . Comme
2

|l| est une constante, on a une propriété

équivalente à la définition de la limite, ce qui prouve que lim
x→+∞

f(x)

lx
= 1.

Exercice 13 (***)

1. Si f ′(a) = 0 ou f ′(b) = 0, on n’a plus rien à chercher, supposons donc que les deux inégalités
sont strictes. La fonction f étant continue sur le segment [a, b] puisque dérivable, elle y admet
d’après le théorème du maximum un maximum atteint en un certain point c. Or, comme on a
supposé f ′(a) > 0, le taux d’accroissement τa,f prend nécessairement des valeurs strictement
positives sur un voisinage à droite de 0 (on écrit par exemple la définition de la limite avec

ε =
f ′(a)

2
pour obtenir un tel voisinage), ce qui implique que f(x) > f(a) sur un voisinage à

droite de a. En particulier, on ne peut pas avoir c = a. Le même raisonnement prouve que,
comme f ′(b) < 0, la fonction f prend des valeurs strictement supérieures à f(b) à gauche de
b, ce qui prouve qu’on ne peut pas avoir non plus c = b. On en déduit que c ∈]a, b[, et un
théorème du cours nous assure alors que f ′(c) = 0.

2. On suppose de même f ′(a) < 0 et f ′(b) > 0. Cette fois-ci c’est le minimum de la fonction qui
ne peut pas être atteint en a (on a des valeurs de f strictement inférieures à f(a) à droite de
a) ni en b, ce qui prouve à nouveau l’existence d’un point d’annulation de f ′ sur [a, b].

3. Supposons donc f dérivable sur le segment [a, b] et c ∈ [f(a), f(b)] (intervalle dans un sens
ou dans l’autre, peu importe, on suppose par souci de simplicité que f ′(a) 6 f ′(b)). On pose
alors g(x) = f(x)− cx, la fonction g est tout aussi dérivable sur [a, b] et g′(a) = f ′(a)− c 6 0,
g′(b) = f ′(b)− c > 0. Les questions précédentes prouvent alors que g′ s’annule sur l’intervalle
[a, b]. Comme g′(x) = f ′(x)− c, cela prouve qu’il existe un point pour lequel f ′(x) = c, ce qui
est exactement l’énoncé du théorème de Darboux.

4. Il suffit de trouver une fonction dérivable dont la dérivée n’est pas continue sur un segment.
Il existe plein d’exemples classiques, mais rien de très très simple. Par exemple, f(x) =

x2 sin

(

1

x

)

, prolongée par continuité en 0 en posant f(0) = 0 est une fonction qui convient :

on sait que −x2 6 f(x) 6 x2 si x 6= 0, ce qui suffit à prouver que lim
x→0

f(x) = 0 et valide donc

le prolongement par continuité. De plus, f ′(x) = 2x sin

(

1

x

)

− cos

(

1

x

)

(toujours si x 6= 0,

bien entendu). Cette fonction n’a pas de limite en 0 (le morceau de gauche tend vers 0 par
encadrement, mais il est facile de créer des suites pour lesquelles celui de droite tend vers 0

ou vers 1 par exemple). Pourtant, τ0,f (h) = x sin

(

1

x

)

a bien une limite nulle en 0 (toujours

le même encadrement, ici par −|x| et par |x|), ce qui prouve que f est dérivable en 0 et que
f ′(0) = 0.

Exercice 14 (***)

1. En posant x = y = 0, on trouve f(0)(1−f(0)2) = 2f(0), donc soit f(0) = 0, soit 1−f(0)2 = 2,
ce qui est impossible car cela impliquerait f(0)2 = −1. On peut donc conclure directement
que f(0) = 0.

2. On fixe dans l’égalité précédente la valeur de y et on dérive pour obtenir f ′(x + y)(1 −
f(x)f(y)) − f ′(x)f(y)f(x + y) = f ′(x). Posons alors x = 0 et n’oublions pas que f(0) = 0
pour trouver f ′(y) − f ′(0)f(y)2 = f ′(0), soit f ′(0)(1 + f(y)2) = f ′(y), ou encore (on peut
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diviser, ça ne s’annule jamais)
f ′(y)

1 + f(y)2
= f ′(0). La variable importe peu, on peut remplacer

les y par des x pour trouver la formule de l’énoncé.

3. Notons a = f ′(0), on vient de prouver que
f ′(x)

1 + f(x)2
= a, soit (arctan(f(x)))′ = a. Il suffit

d’intégrer cette équation pour trouver arctan(f(x)) = ax + b, où a et b sont effectivement
deux constantes réelles.

4. Le problème de l’égalité précédente, c’est qu’on sait bien que la fonction arctan ne prend ses
valeurs qu’entre −1 et 1. En particulier, arctan(f(x)) ∈] − 1, 1[ quelle que soit la fonction
f . On devrait donc avoir, ∀x ∈ R, ax + b ∈] − 1, 1[. Ce n’est possible que si a = 0, donc
si la fonction f est constante égale à b. Comme on sait que f(0) = 0, la constante b est
nécessairement nulle, et la fonction f est donc nulle. Réciproquement, la fonction nulle est
bien solution du problème posé.

Exercice 15 (** à ***)

1. Posons donc f(x) =
√

x2 + (x− 1)2+
√

x2 + (x+ 1)2 et essayons d’étudier les variations de la
fonction f . Elle est définie et dérivable sur R (ce qui est sous chaque racine carrée est toujours
positif comme somme de deux carrés et même strictement positif car les deux carrés ne peuvent

pas s’annuler simultanément) et ∀x ∈ R, f ′(x) =
2x− 1

√

x2 + (x− 1)2
+

2x+ 1
√

x2 + (x+ 1)2
. Cette

dérivée est trivialement positive sur l’intervalle

[

1

2
,+∞

[

où chacun des deux numérateurs est

positif. Si x 6
1

2
, on aura f ′(x) > 0 si

2x+ 1
√

x2 + (x+ 1)2
6

1− 2x
√

x2 + (x− 1)2
, donc en élevant

tout au carré (par hypothèse sur l’intervalle de travail, tout est positif) et en faisant le produit
en croix, si (2x+1)2(x2+(x−1)2) > (1−2x)2(x2+(x+1)2), soit (4x2+4x+1)(2x2−2x+1)−
(4x2−4x+1)(2x2+2x+1) > 0, ou encore en développant tout sans même essayer de faire des
choses subtiles (on peut gagner un peu de temps) si 8x4−2x2+2x+1−(8x4−2x2−2x+1) > 0.
Tout se simplifie ou presque, il ne reste que la condition très simple 4x > 0. La fonction f est
donc en fait décroissante sur ]−∞, 0] et croissante sur [0,+∞[, avec un minimum de valeur
f(0) =

√
1+

√
1 = 2, ce qui prouve l’inégalité demandée. Existe-t-il une méthode pour obtenir

ce résultat sans bourriner salement les calculs ? Pas à ma connaissance...

2. Quitte à tout passer dans un joli ln, l’inégalité demandée est équivalente à
1

n
ln(a1a2 . . . an) 6

ln

(

a1 + · · ·+ an

n

)

, ou encore avec les propriétés bien connues de la fonction ln :
1

n

n
∑

i=1

ln(ai) 6

ln

(

1

n

n
∑

i=1

ai

)

. Ce qui ressemble énormément à une inégalité de Jensen appliquée avec les co-

efficients ti =
1

n
(dont la somme est bien égale à 1). Elle est « dans le mauvais sens » et sera

donc vérifiée si la fonction ln est concave, ou si on préfère la remettre dans le bon sens si − ln

est convexe, ce qui est bien sûr le cas (par exemple car, en posant f(x) = − ln(x), f ′(x) = −1

x

puis f ′′(x) =
1

x2
qui est positif sur ]0,+∞[).

3. Pour simplifier les calculs, on va réécrire l’inégalité légèrement différemment : tout étant

positif, on peut changer de côté out ce qu’on veut pour se ramener à montrer que
sin3(x)

cos(x)
> x3.

Posons donc f(x) =
sin3(x)

cos(x)
−x3 =

sin(x)(1 − cos2(x))

cos(x)
−x3 = tan(x)− sin(x) cos(x)−x3. La

fonction f est certainement de classe C∞ sur
[

0,
π

2

[

, ce qui tombe plutôt bien puisqu’on va
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la dériver quelques fois, jusqu’à obtenir une expression dont le signe n’est pas trop pénible à
obtenir : f ′(x) = 1+ tan2(x)− cos2(x) + sin2(x)− 3x2, trop compliqué, f ′′(x) = 2 tan(x)(1 +
tan2(x)) + 4 cos(x) sin(x) − 6x = 2 tan(x) + 2 tan3(x) + 4 cos(x) sin(x) − 6x, encore trop
compliqué, f ′′′(x) = 2+2 tan2(x)+6 tan2(x)+6 tan4(x)+4 cos2(x)−4 sin2(x)−6 = 8 tan2(x)+
6 tan4(x) − 8 sin2(x) en appliquant la formule cos2(x) = 1 − sin2(x) pour faire disparaitre
toutes les constantes. Or, sur notre intervalle d’étude, sin(x) 6 x 6 tan(x) (concavité du
sinus et convexité de la tangente, qui ont une tangente commune d’équation y = x en 0),
donc 8 tan2(x) − 8 sin2(x) > 0, ce qui implique facilement f ′′′(x) > 0. La dérivée seconde f ′′

est donc croissante sur
[

0,
π

2

[

, et comme f ′′(0) = 0 (tous les termes sont nuls), f ′′ est donc

elle-même positive. On continue à remonter : f ′ est croissante et f ′(0) = 0 (les seuls termes
non nuls sont le 1 et le − cos2(0) égal à −1), donc f ′ est positive et f croissante. Il ne reste
plus qu’à vérifier que f(0) = 0 pour en déduire la positivité de la fonction f et l’inégalité
souhaitée.

4. Posons donc f(x) =

(

x+
1

x

)2

= x2 + 2 +
1

x2
. La fonction f est définie et de classe C∞

sur ]0,+∞[, et f ′(x) = 2x − 2

x3
, puis f ′′(x) = 2 +

6

x4
> 0, donc la fonction f est convexe.

Appliquons l’inégalité de Jensen aux réels ai avec des coefficients tous égaux à
1

n
(pour avoir

une somme égale à 1) : f

(

1

n

n
∑

i=1

ai

)

6
1

n

n
∑

i=1

f(ai). Comme on a de plus supposé
n
∑

i=1

ai = 1,

cela revient à dire que
n
∑

i=1

(

ai +
1

ai

)2

> nf

(

1

n

)

= n

(

n+
1

n

)2

=
(n2 + 1)2

n
, soit l’inégalité

souhaitée.

Exercice 16 (**)

1. La fonction f est définie et de classe C∞ sur R puisque 1+ex > 1. On calcule donc simplement

f ′(x) =
ex

1 + ex
= 1− 1

1 + ex
, puis f ′′(x) =

ex

(1 + ex)2
, qui est manifestement toujours positive.

La fonction f est donc convexe sur R.

2. Écrivons l’inégalité de Jensen pour la fonction f , avec des coefficients égaux (et donc tous

égaux à
1

n
pour avoir une somme égale à 1) : ln

(

1 + e
1
n

∑
n

i=1 yi
)

6
1

n

n
∑

i=1

ln(1 + eyi). Les

propriétés de la fonction ln et de la fonction exponentielle permettent de réécrire ceci sous la

forme ln



1 +

(

n
∏

i=1

eyi

) 1
n



 6 ln





(

n
∏

i=1

(1 + eyi)

) 1
n



. On peut évidemment supprimer les ln

dans les deux membres de l’inégalité, et il ne reste plus qu’à poser xi = eyi (ou autrement dit
yi = ln(xi), ce qu’on peut faire puisque les nombres sont supposés strictement positifs) pour
reconnaître l’inégalité demandée.

3. Une astuce débile : on applique l’inégalité précédente aux réels strictement positifs
xk

yk
:

1+ n

√

√

√

√

n
∏

k=1

xk

yk
6 n

√

√

√

√

n
∏

k=1

1 +
xk

yk
, puis on multiplie les deux membres de l’inégalité par n

√

√

√

√

n
∏

k=1

yk

(qui est évidemment positif), ce qui donne exactement la nouvelle inégalité souhaitée.
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Exercice 17 (***)

1. Commençons par calculer f ′(x) =
x cos(x)− sin(x)

x2
, puis dérivons une deuxième fois : f ′′(x) =

−x3 sin(x)− 2x(x cos(x)− sin(x))

x4
=

2 sin(x)− 2x cos(x)− x2 sin(x)

x3
.

2. Rappelons déjà que sin(0)(x) = sin(x), sin′(x) = cos(x), sin′′(x) = − sin(x) et sin′′′(x) =
− cos(x). On en déduit que P0 = 1, Q0 = 0, puis P1 = X et Q1 = 1, et enfin P2 = X2 − 2 et
Q2 = 2X (en faisant attention aux signes). Il semblerait bien qu’on ait Qn = P ′

n.

3. La récurrence a déjà été triplement initialement lors de la question précédente. Supposons

donc que, pour un certain entier n, f (n)(x) =
Pn(x) sin

(n)(x) +Qn(x) sin
(n+1)(x)

xn+1
, alors en

dérivant ce quotient, f (n+1)(x)

=
xn+1(P ′

n(x) sin
(n)(x) + Pn(x) sin

(n+1)(x) +Q′
n(x) sin

(n+1(x) +Qn(x) sin
(n+2)(x))

xn+2

−(n+ 1)xn(Pn(x) sin
(n)(x) +Qn(x) sin

(n+1)(x))
. En simplifiant tout par xn et en utilisant le

fait que sin(n+2)(x) = − sin(n)(x), on peut obtenir la forme f (n+1)(x)

=
(xQn(x)− xP ′

n(x) + (n+ 1)Pn(x)) sin
(n+2)(x) + (xPn(x) + xQ′

n(x)− (n+ 1)Qn(x)) sin
(n+1)(x)

xn+2
,

ce qui est de la forme souhaitée en posant Pn+1 = XPn + XQ′
n − (n + 1)Qn et Qn+1 =

XQn −XP ′
n + (n+ 1)Pn. Ce calcul prouve l’hérédité et achève donc notre récurrence.

4. On prouve par une récurrence immédiate (et simultanée) que Pn et Qn sont à coefficients
entiers : c’est le cas de P0 et Q0, et en supposant que Pn et Qn sont à coefficients entiers,
alors Q′n et P ′

n le sont également donc Pn+1 et Qn+1 aussi vu les formules obtenues à la
question précédente.

Il semblerait au vu des premières valeurs calculées que Pn soit de degré n et Qn de degré
n−1 (pour n > 1), et que Pn ait pour coefficient dominant 1 et Qn pour coefficiant dominant
n. Prouvons-le à nouveau par récurrence. L’initialisation a déjà été faite, supposons donc les
relations vérifiées au rang n. Les polynômes XPn, XQ′

n et (n + 1)Qn sont alors de degrés
respectifs n + 1, n − 1 et n − 1, ce qui prouve que Pn+1 est nécessairement de degré n + 1.
De plus, son coefficient dominant est celui de XPn, donc le même que celui de Pn qui a été
supposé égal à 1. Concernant Qn+1, on a un tout petit peu plus de travail : XQn a pour terme
dominant nXn, XP ′

n a pour terme dominant X× (nXn−1) = nXn qui va donc s’annuler avec
le précédent quand on va faire la différence des deux polynômes ; et (n + 1)Pn a pour terme
dominant (n + 1)Xn. Finalement, Qn+1 aura donc un terme dominant égal à (n + 1)Xn, ce
qui prouve bien l’hérédité de notre récurrence.

Enfin, une dernière récurrence permet de prouver que Pn a la même parité que n et Qn la
parité opposée. C’est vrai pour les premiers polynômes calculés, et en le supposant vrai au
rang n, alors XPn, Qn et XQ′

n ont tous les trois une parité opposée à celle de Pn (le produit
par X change la parité, la dérivation également, et Qn est par hypothèse de récurrence de
parité opposée à Pn), donc Pn+1 est de parité opposée à Pn. De même, Qn est de parité
opposée à Qn.

5. On calcule donc P3 = XP2 + XQ′
2 − 3Q2 = X3 − 2X + 2X − 6X = X3 − 6X et Q3 =

XQ2 −XP ′
2 + 3P2 = 2X2 − 2X2 + 3X2 − 6 = 3X2 − 6.

6. Supposons la relation U(x) sin(x) + V (x) cos(x) vérifiée pour tout réel, alors en particulier
U(nπ) cos(nπ)+V (nπ) sin(nπ) = 0, ce qui implique que, pour tout entier naturel n, U(nπ) =
0. Le polynôme U admet donc une grosse infinité de racines, il est nécessairement nul. On a
alors V (x) sin(x) = 0, ce qui implique également que V s’annule énormément (pour tous les
réels pour lesquels sin(x) 6= 0), et donc que V = 0.
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7. Toutes les fonction impliquées sont de classe C∞, on peut donc appliquer la formule de Leibniz
(au rang n+1 pour avoir plus rapidement les relations souhaitées) pour obtenir sin(n+1)(x) =

(id×f)(n+1)(x) =

n+1
∑

k=0

(

n+ 1

k

)

id(k)(x)f (n+1−k)(x) = xf (n+1)(x)+ (n+1)f (n)(x). Autrement

dit, en multipliant tout par xn+1, xn+1 sin(n+1)(x) = (Pn+1(x) + (n+ 1)Qn(x)) sin
(n+1)(x) +

((n + 1)Pn(x)−Qn+1(x)) sin
(n)(x). La question précédente montre qu’on peut alors affirmer

que les coefficients devant sin(n) et sin(n+1) sont nuls (au signe près, l’un des deux est égal à
sin et l’autre à cos). On en déduit que Pn+1 + (n+ 1)Qn = Xn+1 et (n+ 1)Pn −Qn+1 = 0.

8. En identifiant ces formules avec celles déjà obtenues pour Pn+1 et Qn+1, on obtient d’une part
à l’aide de la deuxième équation (n+1)Pn −XQn +XP ′

n − (n+ 1)Pn = 0 donc Qn = P ′
n, et

d’autre part à l’aide de la première formule XPn +XQ′
n − (n + 1)Qn + (n + 1)Qn = Xn+1,

donc XPn +XP ′′
n = Xn+1 et Pn + P ′′

n = Xn.

9. La forme générale demandée découle immédiatement de la parité du polynôme Pn donnée
plus haut dans l’exercice (un terme sur deux s’annule à partir de Xn). De plus, si Pn =
p
∑

k=0

akX
n−2k, alors P ′′

n =

p
∑

k=0

ak(n − 2k)(n − 2k − 1)Xn−2k−2, et la relation Pn + P ′′
n = Xn

implique les égalités suivantes par identification des coefficients : a0 = 1, puis a1+n(n−1)a2 =
0, donc a2 = −n(n− 1), puis a2 + (n− 2)(n− 3)a1 = 0, donc a2 = n(n− 1)(n− 2)(n− 3) =

n!

(n − 4)!
. On démontre alors facilement (par récurrence) que ak = (−1)k

n!

(n− 2k)!
, donc

Pn =

p
∑

k=0

(−1)k
n!

(n− 2k)!
Xn−2k.

10. On a vu plus haut que le polynôme Pn était une solution particulière de cette équation
linéaire du second ordre à coefficients constants. Or, les solutions de l’équation homogène
associée sont les fonctions de la forme x 7→ A cos(x) + B sin(x), avec (A,B) ∈ R

2 (c’est
du cours !), donc les solutions de l’équation complète sont toutes les fonctions de la forme
y : x 7→ A cos(x) +B sin(x) + Pn(x), avec (A,B) ∈ R

2.

Exercice 18 (**)

1. La fonction f est C∞ sur R, de dérivée f ′(x) = 1 − 1

2
x. Elle admet donc un maximum en

x = 2, de valeur f(2) = 1 +
1

4
(2 − 4) =

3

2
, et est croissante sur ] − ∞, 2] et décroissante

sur [2,+∞[. Les points fixes sont déterminés en résolvant l’équation f(x) = x, c’est-à-dire
1

4
(2− x2) = 0, d’où deux points fixes pour x =

√
2 et x = −

√
2.

2. En effet, si 1 6 x 6 2, −1 6 −1

2
x 6 −1

2
et 0 6 f ′(x) 6

1

2
, donc |f ′(x)| 6 1

2
. Quant à l’image

de [1, 2] par f , comme la fonction est croissante sur cette intervalle, elle vaut [f(1), f(2)] =
[

5

4
,
3

2

]

⊂ [1, 2].

3. C’est une récurrence toute simple : u0 = 1 ∈ [1, 2], et si un ∈ [1, 2], on a d’après la question
précédente f(un) ∈ [1, 2], soit un+1 ∈ [1, 2]. Comme un ∈ [1, 2] et

√
2 ∈ [1, 2], et que |f ′(x)| 6

1

2
sur cet intervalle, on peut appliquer l’IAF entre un et

√
2 et obtenir |f(un) − f(

√
2)| 6

1

2
|un −

√
2|. Comme f(

√
2) =

√
2 (c’est un point fixe de f) et f(un) = un+1 (par définition),

on a bien |un+1 −
√
2| 6 1

2
|un −

√
2|.

4. Prouvons par récurrence Pn : |un −
√
2| 6

1

2n
. Pour n = 0, la propriété P0 stipule que
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|1 −
√
2| 6 1, ce qui est vrai. Supposons désormais Pn vraie, on a alors d’après la question

précédente |un+1−
√
2| 6 1

2
|un−

√
2|, et par ailleurs, par hypothèse de récurrence |un−

√
2| 6

1

2n
. On peut combiner les deux inégalités pour obtenir |un+1 −

√
2| 6 1

2
× 1

2n
=

1

2n+1
. Cela

prouve Pn+1 et achève la récurrence.

Comme lim
n→+∞

1

2n
= 0, et 0 6 |un −

√
2| 6 1

2n
, le théorème des gendarmes permet d’affirmer

que lim
n→+∞

|un −
√
2| = 0, soit lim

n→+∞
un =

√
2.

5. On sait que l’inégalité sera vérifiée dès que
1

2n
6 10−9, soit en passant au logarithme −n ln 2 6

−9 ln 10, ou encore n >
9 ln 10

ln 2
≃ 30. Il faut donc calculer le trentième terme de la suite pour

être certain d’avoir une valeur approchée de
√
2 à 10−9 près. En pratique, on constate en fait

que le terme u19 est déjà une valeur approchée à 10−9 près.

Exercice 19 (**)

1. En effet, on a lim
x→0+

f(x) = 0 (pas de forme indéterminée). De plus, f est dérivable et C1 sur
]

0;
1

e

[

, de dérivée f ′(x) =
lnx+ 1− 1

(lnx+ 1)2
=

lnx

(lnx+ 1)2
, qui a également pour limite 0 en 0 (en

factorisant par exemple par ln(x) en haut et en bas). D’après le théorème de prolongement
de la dérivée, la fonction f est donc dérivable en 0, et f ′(0) = 0.

2. On a déjà calculé f ′, il est donc facile de constater que f est décroissante sur

[

0;
1

e

[

et sur
]

1

e
; 1

]

, et croissante sur [1;+∞[. On peut ainsi tracer la courbe suivante :

0 1 2 3 4 5 6

0

1

2

3

4

−1

−2

3. Résolvons f(x) = x. Si on élimine la valeur 0 (qui est effectivement un point fixe de f), on

peut simplifier par x et obtenir
1

lnx+ 1
= 1, soit lnx+ 1 = 1, donc x = 1. Il y a donc deux

points fixes : 0 et 1.

4. (a) La fonction g est C∞ sur R+, de dérivée g′(x) =
(x+ 1)2 − 2x(x+ 1)

(x+ 1)4
=

1− x

(x+ 1)3
. Elle

admet donc un maximum en 1, de valeur g(1) =
1

4
. Comme g(0) = 0 et lim

x→+∞
g(x) = 0,
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on en déduit que ∀x > 0, 0 6 g(x) 6
1

4
. Or, on a f ′(x) = g(ln x). Si x > 1, lnx > 0, et on

peut lui appliquer l’inégalité précédente : 0 6 g(ln x) 6
1

4
, c’est-à-dire 0 6 f ′(x) 6

1

4
.

(b) Pour appliquer l’IAF, il faut d’abord vérifier que ∀n ∈ N, xn ∈ [1,+∞[. En constatant
que l’intervalle [1,+∞[ est stable par f , on peut le prouver par une simple récurrence :
x0 = 2 > 1, et en supposant xn > 1, on obtient, en utilisant la croissance de f sur [1,+∞[,
f(xn) > f(1) = 1, donc xn+1 > 1, ce qui achève la récurrence.

On a donc 1 ∈ [1,+∞[ et xn ∈ [1,+∞[. De plus, |f ′(x)| 6 1

4
sur [1;+∞[. En appliquant

l’IAF, on obtient donc |f(xn)− f(1)| 6 |xn − 1|, soit |xn+1 − 1| 6 1

4
|xn − 1|.

Prouvons ensuite par récurrence la propriété Pn : |xn − 1| 6
1

4n
. Pour n = 0, P0

stipule que |2 − 1| 6 1, ce qui est vrai. Supposons ensuite Pn vraie, on obtient alors

|xn+1 − 1| 6 1

4
|xn − 1| (cf plus haut) 6

1

4
× 1

4n
(hypothèse de récurrence), ce qui prouve

Pn+1 et achève la récurrence.

(c) Comme lim
n→+∞

1

4n
= 0, et 0 6 |xn− 1| 6 1

4n
, le théorème des gendarmes permet d’affirmer

que lim
n→+∞

|xn − 1| = 0, soit lim
n→+∞

xn = 1.

Exercice 20 (***)

1. La fonction f est définie et de classe C∞ sur R
∗ comme quotient de fonctions usuelles. Par

ailleurs, en tant que quotient de fonctions impaires, la fonction f est paire.

2. On sait que lim
x→0

sh(x)

x
= 1 (et si on ne le sait pas, on le retrouve par exemple en constatant

que
sh(x)

x
est le taux d’accroissement de sh en 0, et a donc pour limite ch(0) = 1 en 0),

donc lim
x→0

x

sh(x)
= 1, et on peut prolonger la fonction f en posant f(0) = 1. La dérivée de f

est f ′(x) =
sh(x)− x ch(x)

sh2(x)
. Pas de méthode simple malheureusement pour calculer la limite

en 0 de cette dérivée, il faut soit utiliser des développements limités (c’est alors très simple)
soit au moins avoir recours à la règle de l’Hôpital de l’exercice 11. On peut alors écrire, sous

réserve d’existence de toutes ces limites, lim
x→0

sh(x)− x ch(x)

sh2(x)
= lim

x→0

ch(x)− ch(x)− x sh(x)

2 ch(x) sh(x)
=

lim
x→0

−x sh(x)

2 ch(x) sh(x)
. Ce quotient a manifestement pour limite 0 en 0. La fonction f est dé-

rivable en 0, et f ′(0) = 0. Ce n’est pas une surprise dans la mesure où la fonction est

paire. Passons à la dérivée seconde : f ′′(x) =
−x sh3(x)− 2 ch(x) sh(x)(sh(x)− x ch(x))

sh4(x)
=

2x ch2(x)− 2 ch(x) sh(x)− x sh2(x)

sh3(x)
. Tentons une fois de plus le recours à la règle de l’Hôpital,

le quotient des dérivées vaut
2 ch2(x) + 4x ch(x) sh(x)− 2 ch2(x)− 2 sh2(x)− sh2(x)− 2x ch(x) sh(x)

3 ch(x) sh2(x)

=
2x ch(x) sh(x)− 3 sh2(x)

3 ch(x) sh2(x)
=

2x ch(x)− 3 sh(x)

3 ch(x) sh(x)
=

x→0

2

3

x

sh(x)
− 1

ch(x)
, qui a pour limite −1

3
en 0, donc par applciation du théorème de prolongement de la dérivée (à la dérivée de f), la

fonction f est deux fois dérivable en 0 et f ′′(0) = −1

3
.

Pour les curieux, avec les développements limités, on aurait simplement pu écrire ceci :
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f(x) =
x

sh(x)
=

x→0

x

x+ x3

3 + o(x3)
=

1

1 + x2

3 + o(x2)
= 1− x2

3
+ o(x2) et en déduire immédia-

tement les valeurs demandées.

3. Il s’agit de résoudre l’équation ex − e−x = 2, soit e2x − 2ex − 1 = 0 quitte à multiplier par
ex. En posant X = ex, on se ramène à l’équation du second degré X2 − 2X − 1 = 0, qui

a pour discriminant ∆ = 4 + 4 = 8, et admet deux solutions X1 =
2−

√
8

2
= 1 −

√
2, et

X2 = 1 +
√
2. Puisque X1 < 0, on peut éliminer cette solution, et garder comme unique

solution de l’équation initiale α = ln(X2) = ln(1 +
√
2). Comme 1 +

√
2 < e (on a environ

2, 42 à gauche, et 2, 72 à droite), α ∈]0, 1[. Comme on sait que ch2(α) − sh2(α) = 1, on peut
dire que ch2(α) = 2, donc ch(α) =

√
2 (cette fonction ne prenant que des valeurs positives).

4. La fonction g : t 7→ ch(t) − t a pour dérivée sh(t) − 1, dont on vient de voir qu’elle s’annule
uniquement en α. La fonction g est donc décroissante sur ]−∞, α] et croissante sur [α,+∞[.
Elle admet pour minimum g(α) = ch(α) − α =

√
2 − α > 0 puisque α ∈]0, 1[. La fonction

g est donc strictement positive sur R. Pour démontrer les inégalités suivantes, commençons
par poser h(t) = t ch(t)− sh(t), alors h′(t) = ch(t) + t sh(t)− ch(t) = t sh(t) > 0. La fonction
h est donc croissante sur R

+, comme h(0) = 0, la fonction h est positive. Posons désormais

i(t) =
1

2
sh2(t) − t ch(t) + sh(t), on calcule i′(t) = sh(t) ch(t) − t sh(t) = sh(t)(ch(t) − t) > 0

d’après le début de la question. La fonction i est donc croissante, et s’annule elle aussi en 0,
elle est positive, ce qui prouve la deuxième inégalité.

5. La fonction f étant décroissante sur R
+, vérifiant f(0) = 1 et lim

x→+∞
f(x) = 0 (par croissance

comparée), elle admet nécessairement un point fixe sur [0,+∞[. Vous n’êtes pas convaincus ?
Posez g(x) = f(x) − x, alors g est elle aussi décroissante sur R

+ (même si c’est ici inutile
de s’en rendre compte), vérifie g(0) = 1, et g(1) = f(1) − 1 < 0, puisque f(1) < f(0) = 1,
donc en appliquant le théorème des valeurs intermédiaires à la fonction g, celle-ci s’annule
entre 0 et 1, ce qui correspond à un point fixe de f . En fait, on connait très bien ce point
fixe : c’est α puisque f(α) =

α

sh(α)
= α (par définition, sh(α) = 1). La fonction f ′ étant

majorée en valeur absolue par
1

2
d’après la question précédente, on peut écrire que, ∀n ∈ N,

|f(un) − f(α)| 6 1

2
|un − α|, soit |un+1 − α| 6 1

2
|un − α|. Par une récurrence facile (et très

classique), on prouve alors que ∀n ∈ N, |un−α| 6 1

2n
: c’est vrai au rang 0 car |u0−α| = α 6 1,

et en le supposant au rang n, alors |un+1 − α| 6 1

2
|un − α| 6 1

2
× 1

2n
6

1

2n+1
. Une simple

application du théorème des gendarmes permet alors d’affirmer que lim
n→+∞

|un − α| = 0, donc

lim
n→+∞

un = α.

Problème 1 (***)

1. (a) C’est une équation du second degré, qu’on sait très bien résoudre : ∆ = 1 + 4 = 5,

x1 =
−1 +

√
5

2
et x2 =

−1−
√
5

2
. La deuxième solution est manifestement négative,

quant à la première, on peut l’encadrer en partant de 4 < 5 < 9 ⇒ 2 <
√
5 < 3, donc

1

2
< x1 < 1. Il y a donc bien une solution unique à l’équation sur l’intervalle ]0, 1[.

(b) Si
1

2
6 x 6 1, on a

3

2
6 x+ 1 6 2, donc

1

2
6 f(x) 6

2

3
. Comme

2

3
< 1, on en déduit que

1

2
6 f(x) 6 1.

(c) La fonction f est bien sûr dérivable sur son ensemble de définition, et f ′(x) = − 1

(x+ 1)2
.
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En reprenant la question précédente, si
1

2
6 x 6 1, on a

1

2
6

1

x+ 1
6

2

3
, donc en élevant

au carré (tout est positif),
1

4
6

1

(x+ 1)2
6

4

9
, soit

1

2
6 |f ′(x)| 6 4

9
.

(d) Commençons par prouver par récurrence que ∀n ∈ N, un ∈
[

1

2
, 1

]

: u0 = 1 appartient

bien à l’intervalle

[

1

2
, 1

]

. Supposons désormais que
1

2
6 un 6 1, alors d’après les questions

précédentes
1

2
6 f(un) 6 1, soit

1

2
6 un+1 6 1, ce qui achève la récurrence.

Constatons par ailleurs que r2 est un point fixe de la fonction f : on sait que r2 vérifie

r22 + r2 − 1 = 0, soit r2(r2 + 1) = 1, donc r2 =
1

r2 + 1
ou encore f(r2) = r2.

On peut désormais appliquer l’IAF à un et r2, qui appartiennent tous deux à l’intervalle
[

1

2
, 1

]

(cf questions précédentes), sur lequel on a vu que |f ′(x)| 6 4

9
. On en déduit que

|f(un)− r2| 6
4

9
|un − r2|, soit |un+1 − r2| 6

4

9
|un − r2|.

Montrons enfin par récurrence la propriété Pn : |un− r2| 6
(

4

9

)n

. Pour n = 0, |u0− r2| =
|1−r2| 6 1 car r2 ∈]0; 1[, ce qui prouve P0. Si on suppose Pn vérifiée, on peut faire le calcul
suivant en utilisant successivement le résultat précédent et l’hypothèse de récurrence :

|un+1 − r2| 6
4

9
|un − r2| 6

4

9
×
(

4

9

)n

6

(

4

9

)n+1

. Cette dernière inégalité prouve Pn+1

et achève donc la récurrence.

Comme
4

9
< 1, la suite

(

4

9

)n

converge vers 0, et le théorème des gendarmes nous permet

d’affirmer que lim
n→+∞

|un − r2| = 0, c’est-à-dire que lim
n→+∞

un = r2.

2. (a) Cette fois-ci, on ne sait pas résoudre l’équation, il faut donc étudier un peu le polynôme
x3 + x2 + x− 1. Sa dérivée, 3x2 +2x+1, a un discriminant négatif, elle est donc toujours
positive. La fonction x 7→ x3 + x2 + x− 1 est donc strictement croissante et bijective sur
R. Comme elle prend la valeur −1 pour x = 0 et la valeur 2 pour x = 1, on en déduit
qu’elle s’annule entre 0 et 1. L’équation proposée a donc une unique solution (à cause de
la bijectivité) qui appartient à l’intervalle ]0, 1[.

(b) Le trinome x2 + x+ 1 étant strictement croissant sur R
+, on aura, si

1

3
6 x 6 1, f(1) 6

f(x) 6 f

(

1

3

)

. Comme f(1) =
1

3
et f

(

1

3

)

=
1

1
9 + 1

3 + 1
< 1, on aura bien

1

3
6 f(x) 6 1,

donc l’intervalle est stable.

(c) La fonction g est C∞ sur R (son dénominateur ayant un discriminant négatif, il ne s’annule

jamais), et g′(x) = − 2x+ 1

(x2 + x+ 1)2
, et en dérivant g′ comme un produit,

g′′(x) = − 2

(x2 + x+ 1)2
− (2x+ 1)× −2(2x+ 1)

(x2 + x+ 1)3
=

2(2x + 1)2 − 2(x2 + x+ 1)

(x2 + x+ 1)3

=
8x2 + 8x+ 2− 2x2 − 2x− 2

(x2 + x+ 1)3
=

6x(x+ 1)

(x2 + x+ 1)2
. Cette dérivée seconde étant toujours po-

sitive sur

[

1

3
, 1

]

, la dérivée g′ y est strictement croissante. Comme g′
(

1

3

)

=
2
3 + 1

(19 +
1
3 + 1)2

=

5
3

169
81

=
135

169
et g′(1) =

3

9
=

1

3
, on peut en déduire que ∀x ∈

[

1

3
, 1

]

, |g′(x)| 6 135

169
.

(d) On aimerait appliquer l’IAF à r3 et à vn en utilisant la majoration de |f ′(x)| obtenue à la
question précédente. Il faut pour cela vérifier que vn est toujours dans cet intervalle, ce qui
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se fait en utilisant la stabilité de l’intervalle par une récurrence identique à celle du début

la question 1.d, et que r3 ∈
[

1

3
, 1

]

et est un point fixe de g. Comme
1

33
+

1

32
+

1

3
− 1 =

1

27
+

1

9
+

1

3
− 1 = −14

27
< 0, on a effectivement r3 >

1

3
(cf étude de la question a). De

plus, r33 + r23 + r3 − 1 = 0 ⇒ r3(r
2
3 + r3 + 1) = 1 ⇒ r3 = f(r3), donc r3 est un point fixe

de f . On peut donc bien appliquer l’IAF pour obtenir |f(vn)− f(r3)| 6
135

169
|vn − r3|, soit

|vn+1 − r3| 6
135

169
|vn − r3|.

On fait ensuite notre petite récurrence classique pour prouver que |un − r3| 6
(

135

169

)n

(comme dans la question 1.d, on majore |v0 − r3| par 1 en utilisant que
1

3
6 r3 6 1, et le

reste de la récurrence est identique en remplaçant les
4

9
par des

135

169
).

La conclusion est également la même :
135

169
< 1 donc le membre de droite de notre inégalité

tend vers 0, et en appliquant le théorème des gendarmes, lim
n→+∞

|vn − r3| = 0, c’est-à-dire

que lim
n→+∞

vn = r3.

3. (a) La fonction hn est C∞ sur R+, de dérivée h′n(x) = nxn−1+(n− 1)xn−2 + · · ·+2x+1. La
fonction hn étant stricement croissante sur R+, elle y est bijective. Comme hn(0) = −a < 0
et lim

x→+∞
hn(x) = +∞, on en déduit que l’équation hn(x) = 0 a bien une solution (unique

par bijectivité) sur [0,+∞[. De plus, on a hn(1) = n − a, donc hn(1) > 0 si n > a. En
appliquant le théorème des valeurs intermédiaires, hn s’annule alors sur l’intervalle ]0, 1[
et tn ∈]0, 1[.

(b) C’est un simple calcul : (x−1)hn(x) = (x−1)(xn+xn−1+ · · ·+x2+x−a) = xn+1+xn+
· · ·+x3+x2−ax−xn−xn−1−· · ·−x2−x+a = xn+1−ax−x+a = xn+1− (a+1)x+a.

(c) Notons que hn+1(x) = xn+1 + hn(x). Comme hn(tn) = 0 (par définition), on a donc
hn+1(tn) = tn+1

n > 0, donc hn+1(tn) > hn(tn). Comme par ailleurs on a aussi, toujours
par définition, hn+1(tn+1) = 0, on en déduit que hn+1(tn) > hn+1(tn+1). La fonction hn+1

étant strictement croissante sur R
+, cela implique tn > tn+1, et la suite (tn) est donc

strictement décroissante. Étant minorée par 0, elle est donc convergente.
(d) On vient de voir que la suite (tn) était décroissante, donc ∀A > n, 0 < tn 6 tA, et comme

tn et tA sont tous deux strictement inférieurs à 1, 0 < tnn 6 tnA. Fixons donc A > a (de
façon à ce que tA soit une constante). Comme tA < 1 dans ce cas, lim

n→+∞
tnA = 0. En

appliquant le théorème des gendarmes, on en déduit que lim
n→+∞

tnn = 0.

(e) En reprenant la relation obtenue à la question b et en l’appliquant pour x = tn, on obtient
0 = tn+1

n − (a+1)tn+a, soit (a+1)tn−a = tn× tnn. Le membre de droite convergeant vers

0 d’après la question précédente, on a donc lim
n→+∞

(a+1)tn−a = 0, soit lim
n→+∞

tn =
a

a+ 1
.

4. (a) Tout comme pour la fonction hn, in est dérivable de dérivée strictement positive sur R
+,

donc y est strictement croissante et bijective. Comme in(0) = −a < 0, et lim
x→+∞

in(x) =

+∞, la fonction s’annule nécessairement une unique fois sur R+. De plus, in(1) = n+n−
1+ · · ·+2+1−a =

n(n+ 1)

2
−a. Si n(n+1) > 2a, on aura donc in(1) > 0, et la fonction

in s’annulera alors sur ]0, 1[.

(b) Encore du calcul : (x − 1)2in(x) = (x2 − 2x + 1)
k=n
∑

k=1

kxk − a(x − 1)2 =
k=n
∑

k=1

kxk+2 −

k=n
∑

k=1

2kxk+1+

k=n
∑

k=1

kxk−a(x−1)2 =

k=n+2
∑

k=3

(k−2)xk−
k=n+1
∑

k=2

(2k−2)xk+

k=n
∑

k=1

kxk−a(x−1)2 =
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(n−1)xn+1+nxn+2−2x2−2nxn+1+x+2x2−a(x−1)2 = nxn+2−(n+1)xn+1+x−a(x−1)2.

(c) Même chose qu’à la question 3.c en constatant que in+1(x) = in(x) + (n + 1)xn+1, donc
in+1(yn) > in(yn). On en déduit que in+1(yn) > 0, soit in+1(yn) > in+1(yn+1) puis, par
croissance de la fonction in+1, yn > yn+1. La suite (yn) est donc décroissante et minorée
par 0, elle converge.

(d) Encore une fois, la décroissance de la suite donne immédiatement l’inégalité, et en fixant
A à une valeur convenable, on sait que yA < 1, donc lim

n→+∞
nynA = 0 (un petit coup de

croissance comparée ici) et, par théorème des gendarmes, lim
n→+∞

nynn = 0.

Reprenons alors la relation de la question b, appliquée à x = yn, pour en déduire en passant
à la limite que lim

n→+∞
yn+a(yn−1)2 = 0, soit β−a(β−1)2 = 0, soit aβ2−(1+2a)β+a = 0,

équation du second degré dont le discriminant vaut ∆ = (1 + 2a)2 − 4a2 = 1 + 4a,

qui est toujours positif, et admet donc deux racines β1 =
1 + 2a+

√
1 + 4a

2a
, et β2 =

1 + 2a−
√
1 + 4a

2a
. Reste à savoir laquelle des deux valeurs est la bonne. On sait que

0 6 β < 1. Or, β1 > 1 (son numérateur est plus grand que son dénominateur). On a donc

β =
1 + 2a−

√
1 + 4a

2a
.

Problème 2 (***)

1. Mon tout bête programme maison (j’ai rajouté un troisième paramètre n correspondant au
nombre de termes calculés) :

import matplotlib.pyplot as plt

def logistique(x,k,n) :

abscisses=[i/1000.0 for i in range(1001)]

def f(a) :

return k*a*(1-a)

ordonnees=[f(i) for i in abscisses]

plt.plot(abscisses,abscisses)

plt.plot(abscisses,ordonnees)

l1=[x]

l2=[0]

for i in range(n) :

y=f(x)

l1.append(x)

l2.append(y)

l1.append(y)

l2.append(y)

x=y

plt.plot(l1,l2)

return l1

2. (a) On a donc pour l’instant f(x) = x(1− x) = x− x2. La fonction est dérivable sur [0, 1], de
dérivée f ′(x) = 1− 2x, et on peut donc dresser le tableau de variations suivant :
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x 0 1
2 1

f ′(x) + 0 −

f

0

�✒
�

�

1
4

❅
❅
❅❘
0

f(x)− x 0 + +

Le signe de f(x)− x est ici évident, le seul point fixe est x = 0.

(b) L’intervalle [0, 1] étant stable par f (d’après le tableau de variations précédent, on a
f([0, 1]) =

[

0, 14
]

⊂ [0, 1]), on aura toujours 0 6 un 6 1 (récurrence évidente), et donc
toujours un+1 − un = f(un) − un 6 0. La suite est donc décroissante et minorée par 0,
elle converge donc. Comme 0 est le seul point fixe de f , on a nécessairement lim

n→+∞
un = 0.

Une illustration (issue de mon programme Python) lorsque u0 =
3

4
:

3. (a) Cette fois-ci, f(x) = 2x− 2x2, et f ′(x) = 2− 4x. En fait, on peut d’ores et déjà constater
que le signe de f ′(x) ne dépend absolument pas de la valeur de k, seul le maximum de la
fonction changera, ainsi que le signe de f(x)− x. Ici, f(x)− x = x− 2x2 s’annule quand

x = 0 et quand x =
1

2
, avec un signe positif entre ces deux racines, d’où le tableau suivant :

x 0 1
2 1

f ′(x) + 0 −

f

0

�✒
�

�

1
2

❅
❅
❅❘
0

f(x)− x 0 + 0 −

(b) Si u0 = 0, la suite sera constante égale à 0 puisqu’il s’agit d’un poin fixe. Si u0 = 1, on
aura u1 = f(1) = 0, et la suite va donc stationner à 0 à partir du rang 1.

(c) La stabilité de l’intervalle est évidente vues les variations de f : la fonction est croissante et

0 et
1

2
sont deux points fixes, donc f

([

0,
1

2

])

=

[

0,
1

2

]

. Si u0 se trouve dans cet intervalle,

ce sera donc aussi le cas de tous les autres termes de la suite (récurrence triviale), et on

aura un+1 − un = f(un)− un > 0, donc la suite est croissante. Étant majorée par
1

2
, elle

converge donc, et sa limite est égale à
1

2
(on ne peut pas converger vers 0 en partant de

u0 > 0 pour une suite croissante).
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(d) Dans ce cas, u1 ∈
[

0,
1

2

]

, et la suite devient donc croissante à partir du rang 1, et conver-

gera de même vers
1

2
. Une illustration, cette fois en partant de u0 =

9

10
:

4. (a) Les variations n’ont toujours pas changé, le maximum de f valant maintenant 1. Les points
fixes sont désormais obtenues en résolvant l’équation 3x−4x2 = 0, donc on a comme points

fixes x = 0 et x =
3

4
. De plus, f ′(0) = 4 (cette valeur ne sera pas vraiment utilisée par la

suite, mais le fait qu’elle soit (largement) plus grande que 1 explique que 0 est un point
fixe répulsif, donc que la suite (un) ne va pas pouvoir tendre vers 0, sauf dans le cas d’une
suite stationnaire.

(b) En effet, le signe de f(x) − x est, comme précédemment, positif entre les deux points

fixes, donc sur tout l’intervalle

[

0,
3

4

]

. L’énoncé était imprécis, si on veut une inégalité

stricte f(x) > x, il faut bien sûr prendre un intervalle ouvert du côté de 0. Par l’absurde,
supposons donc que la suite (un) tende vers 0 en ne prenant jamais la valeur 0. Alors,

en appliquant la définition de la limite avec ε =
1

2
, il existe un entier n0 à partir duquel

on aura toujours 0 < un 6
1

2
. Mais dans ce cas, ∀n > n0, un+1 − un = f(un) − un > 0,

donc la suite est strictement croissante à partir du rang n0. On a donc nécessairement
un > un0 > 0, ce qui est contradictoire avec une limite nulle (si (un) converge, sa limite
sera supérieure ou égale à un0). Notre hypothèse est donc impossible : si (un) tend vers 0,
c’est qu’on aura nécessairement un0 = 0 pour un certain entier n0.

(c) C’est déjà le cas si u0 = 0 (suite constante) ou u0 = 1 (suite stationnaire à 0 à partir du

rang 1). Mais cela se produira aussi si u0 =
1

2
, puisque dans ce cas u1 = f

(

1

2

)

= 1, puis la

suite devient stationnaire à 0 à partir du rang 2. Ce sera aussi le cas si u0 est un antécédent

de
1

2
, ou un antécédent de cet antécédent etc. Or, tout nombre compris entre 0 (exclus) et

1 admet un antécédent par f qui est strictement positif et strictement plus petit que lui, ce
qui permet de construire de proche en proche une infinité de valeurs de u0 pour lesquelles
la suite va finir par prendre la valeur 1, puis stationner à 0. Concrètement, en notant g

la réciproque de la fonction f restreinte à l’intervalle

[

0,
1

2

]

, g effectue une bijection de

]0, 1] vers

]

0,
1

2

]

. La suite (vn) définie par v0 = 1 et la relation de récurrence vn+1 = g(vn)

prendra des valeurs toutes distinctes et qui correspondent toutes à des valeurs de u0 pour
lesquelles la suite stationne à 0.

(d) Dans ce cas, u1 = 4 sin2
(π

5

)(

1− sin2
(π

5

))

=
(

2 sin
(π

5

)

cos
(π

5

))2
= sin2

(

2π

5

)

en

exploitant la formule de duplication bien connue sin(2a) = 2 sin(a) cos(a). Le même calcul
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montre que u2 = sin2
(

4π

5

)

, mais en fait u2 = u0 puisque sin

(

4π

5

)

= sin
(

π − π

5

)

=

sin
(π

5

)

. La suite sera donc périodique de période 2.

(e) Non, sûrement pas, puisque l’intervalle [0, 1] reste stable par f , donc tous les termes de la
suite vont rester dans l’intervalle [0, 1] (toujours la même récurrence triviale). Une suite
bornée ne peut pas avoir une limite infinie.

Quelques exemples supplémentaires avec des valeurs de k non entières, en pratique le
comportement de la suite devient de plus imprévisible quand k varie dans l’intervalle [3, 4]
(pour k < 3, la suite va toujours converger vers un de ses points fixes, puis on voit apparaitre
progressivement des « cycles » de période 2, puis de période 4 puis des choses de plus en plus
étranges quand on est en gros dans l’intervalle [3.75, 4] pour le paramètre k). Par exemple,

pour u0 =
1

4
et k = 3.2, on a un cas typique de « rapprochement d’une suite périodique de

période 2 » :

Avec u0 = 0.6 et k = 3.5, on se rapproche très vite d’un cycle de période 4 (sur ce
graphique et les deux qui l’entourent, on a représenté les 100 premiers termes de la suite et
pas seulement les 30 premiers) :

Enfin, un cas typique de « chaos total » quand u0 =
1

4
et k = 3.9 :
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5. (a) Les variations de f sont toujours les mêmes, mais le maximum est désormais de valeur

f

(

1

2

)

=
3

2
. Il faut donc résoudre l’équation f(x) = 1 pour déterminer l’intervalle sur

lequel on va « déborder ». L’équation 6x2−6x+1 = 0 a pour discriminant ∆ = 36−24 = 12

et admet donc pour racines x1 =
6−

√
12

12
=

1

2
− 1

2
√
3
, et x2 =

6 +
√
12

12
=

1

2
+

1

2
√
3
. Ces

deux valeurs sont bien comprises entre 0 et 1, et f(x) > 1 si x ∈]x1, x2[.
(b) Si u0 appartient à cet intervalle, on aura u1 > 1 et donc u2 < 0. Or, l’intervalle ] −∞, 0[

est stable par f , et sur cet intervalle on a toujours f(x) < x. La suite va donc être à
valeurs négatives à partir du range 2 (récurrence triviale), et strictement décroissante à
partir de u2. Comme il n’existe pas de point fixe strictement négatif, la suite ne peut pas
être minorée (sinon elle convergerait), donc elle tend nécessairement vers −∞.

Montrer que, pour toutes ces valeurs initiales, la suite (un) diverge vers −∞.

(c) C’est le même principe que plus haut : si u0 = x1 ou u0 = x2, la suite va stationner à 0 à
partir du rang 2. Mais si u0 est un antécédent de x1, ou un antécédent de cet antécédent
etc, ce sera pareil (on stationnera seulement un peu plus tard). Or, comme précédemment,
tout nombre α compris entre 0 et 1 amdet toujours un antécédent dans l’intervalle ]0, α[,
on conclut exactement de la même façon.

(d) Le point fixe en question vaut
5

6
, mais comme Python arrondit la valeur, il finit par

s’éloigner de la suite constante qu’on devrait théoriquement avoir, et même au point de
finir par se retrouver en-dessous de 0, et donc de donner des valeurs divergeant vers +∞.
Le même phénomène se produit si on prend par exemple u0 = x1.
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