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Exercice 1 (* à **)
Pour chacune des fonctions suivantes, déterminer le domaine de dérivabilité et étudier l’existence de

tangentes (éventuellement verticales) aux points posant problème. On essaiera également, lorsque c’est
possible, d’étudier les variations de la fonction et d’en tracer une allure de courbe représentative.

• f1(x) = ex+
1
x • f2(x) = x2 ln

(
1 +

1

x2

)
• f3(x) = (x2 − 1) arccos(x2)

• f4(x) =
√
xe−x • f5(x) = (1− x)

√
1− x2 • f6(x) = xe

1
ln(x)

• f7(x) = x
√
x+ x2 • f8(x) =

x
√
x

ex − 1
• fn(x) = xn sin

(
1

x

)
• f42(x) =

√
1− 2x

√
1− x2 • f10(x) =

{
x2 sin( 1x ) si x ̸= 0
0 si x = 0

Exercice 2 (*)

Soient a < b deux réels strictement positifs, montrer que la fonction f : x 7→ ln(1 + ax)

ln(1 + bx)
est strictement

croissante sur ]0,+∞[.

Exercice 3 (*)

Soit f la fonction définie sur ]0, 1[ par f(x) =
1

ln(x)
. Étudier le plus complètement possible la fonction f

(prolongement par continuité, variations, convexité, existence de points d’inflexion et calcul des tangentes
en ces points), puis tracer une allure soignée de sa courbe représentative.

Exercice 4 (**)
Soit f la fonction définie sur R par f(x) = x2n. Calculer la dérivée n-ème de f de deux façons différentes

(directement, et à l’aide de la formule de Leibniz en écrivant f sous forme de produit), puis en déduire la

valeur de
n∑

k=0

(
n

k

)2

.

Exercice 5 (*)

Soit f : R → C une fonction dérivable. À quelle condition la fonction g : x 7→ |f(x)| est-elle dérivable
en a ? Donner dans ce cas l’expression de g′(a).

Exercice 6 (**)
Soit f : [0, a] → R une fonction dérivable, telle que f(0) = f(a) = f ′(0) = 0.

1. Montrer que la dérivée de la fonction f : x 7→ f(x)

x
s’annule sur ]0, a[.

2. En déduire que la courbe de f admet une tangente passant par l’origine autre que celle en 0.
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Exercice 7 (***)

Soit f la fonction définie (et C∞) sur R par f(x) =
1

1 + x2

1. Montrer que, ∀n ∈ N, f (n)(x) =
Pn(x)

(1 + x2)n+1
, où Pn est un polynôme dont on précisera le degré.

On donnera également une relation entre Pn+1, Pn et P ′
n.

2. Calculer P1, P2 et P3, et déterminer leurs racines (si possible).
3. En appliquant la formule de Leibniz à l’égalité (1 + x2)f(x) = 1, montrer que, ∀n ⩾ 1, Pn+1(x) +

2(n+ 1)xPn(x) + n(n+ 1)(1 + x2)Pn−1(x) = 0.
4. En déduire que P ′

n(x) = −n(n+ 1)Pn−1(x).
5. Les polynômes Pn peuvent-ils avoir des racines réelles multiples (indication : un théorème qu’on

verra dans le prochain chapitre affirme que a est racine double d’un polynôme P si et seulement si
P (a) = P ′(a) = 0, puis a est racine triple si de plus P ′′(a) = 0, et ainsi de suite) ?

Exercice 8 (***)
Soit f la fonction définie sur R par f(x) = (1− x2)n, où n est un entier naturel non nul. Montrer que

f (n) est un polynôme de degré n admettant exactement n racines simples réelles comprises entre −1 et 1
(une récurrence pourrait être utile, mais pas forcément sur l’entier n).

Exercice 9 (**)

On considère la fonction f définie sur [0, 1[ par f(x) =
1√

1− x2
. Démontrer que, ∀n ∈ N, f (n)(x) ⩾ 0

(sur tout l’intervalle [0, 1[).

Exercice 10 (**)
Le but de cet exercice est de déterminer les triangles ABC d’aire maximale inscrits dans le cercle

trigonomtrique. Soit donc un tel triangle pour lequel A et B appartiennent tout deux à la droite horizontale
d’équation y = k, avec k ∈ [−1, 1] (on peut faire cette supposition sans perte de généralité).

1. Déterminer l’aire maximale possible pour le triangle ABC sous cette hypothèse, qu’on notera f(k).
2. Conclure.

Exercice 11 (**)
1. Soient f et g deux fonctions continues sur [a, b] et dérivables sur ]a, b[. Montrer qu’il existe x ∈]a, b[

tel que f ′(x)(g(b)− g(a)) = g′(x)(f(b)− f(a)).
2. En déduire la règle de l’Hôpital : Si f et g s’annulent toutes les deux en un point a, sont continues

et dérivables au voisinage de a (sauf éventuellement en a pour la dérivabilité), ne s’annulent pas

au voisinage de a, et vérifient lim
x→a

f ′(x)

g′(x)
= l ∈ R, alors lim

x→a

f(x)

g(x)
= l.

3. En déduire les limites suivantes : lim
x→0

1− cos(x)

x2
et lim

x→0

ln(1 + x)− x

x2
.

Exercice 12 (**)
Soit f une fonction dérivable sur [0,+∞[ telle que lim

x→+∞
f ′(x) = l ∈ R.

1. Montrer que, ∀ε > 0, ∃A > 0, ∀x ⩾ A, |f ′(x)− l| ⩽ ε.
2. En déduire que, ∀x ⩾ A, |f(x)− lx| ⩽ ε(x−A) + |f(A)−Al|.

3. Montrer que, si l ̸= 0, lim
x→+∞

f(x)

lx
= 1.
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Exercice 13 (***)
On souhaite démontrer dans cet exercice le classique théorème de Darboux : une fonction dérivée

vérifie toujours le théorème des valeurs intermédiaires (même si elle n’est pas continue). Supposons donc
f dérivable sur un segment [a, b].

1. Supposons f ′(a) ⩾ 0 et f ′(b) ⩽ 0, montrer l’existence d’un réel c ∈ [a, b] tel que f ′(c) = 0.
2. Refaire la question précédente dans le cas où f ′(a) ⩽ 0 et f ′(b) ⩾ 0.
3. Démontrer le théorème de Darboux.
4. En déduire qu’il existe des fonctions non continues qui vérifient le théorème des valeurs intermé-

diaires.

Exercice 14 (***)
Soit f une fonction dérivable sur R, telle que ∀(x, y) ∈ R2, f(x+ y)(1− f(x)f(y)) = f(x) + f(y).

1. Calculer f(0).

2. Montrer que, ∀x ∈ R,
f ′(x)

1 + f(x)2
= f ′(0).

3. Montrer qu’il existe deux constantes a et b telles que ∀x ∈ R, arctan(f(x)) = ax+ b.
4. En déduire que f est constante, et conclure.

Exercice 15 (** à ***)
Démontrer les diverses inégalités suivantes (questions indépendantes) :

1. ∀x ∈ R,
√
x2 + (x− 1)2 +

√
x2 + (x+ 1)2 ⩾ 2.

2. ∀(a1, a2, . . . , an) ∈ (R+∗)n, n
√
a1a2 . . . an ⩽

a1 + a2 + · · ·+ an
n

(on pourra étudier la convexité de
la fonction − ln pour commencer).

3. ∀x ∈
]
0,

π

2

[
,
(
sin(x)

x

)3

> cos(x).

4. si a1, a2, . . ., an sont n réels strictement positifs tels que
n∑

i=1

ai = 1, alors
n∑

i=1

(
ai +

1

ai

)2

⩾

(n2 + 1)2

n
.

Exercice 16 (**)

1. Étudier la convexité de la fonction f : x 7→ ln(1 + ex).

2. Montrer que, pour tous réels stritement positifs x1, x2, . . ., xn, on a 1+ n

√√√√ n∏
k=1

xk ⩽ n

√√√√ n∏
k=1

(1 + xk)

(bien entendu, on devrait pouvoir exploiter le résultat de la question précédente).

3. Montrer que, pour tous réels strictement positifs x1, x2, . . ., xn, y1, . . ., yn, on a n

√√√√ n∏
k=1

xk +

n

√√√√ n∏
k=1

yk ⩽ n

√√√√ n∏
k=1

(xk + yk).

Exercice 17 (***)

On définit une fonction f sur ]0,+∞[ par f(x) =
sin(x)

x
. Le but de l’exercice est d’étudier les dérivées

successives de la fonction f .

1. Calculer f ′′(x) pour x ∈]0,+∞[.
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2. On souhaite prouver, pour tout entier naturel n, l’existence de deux polynômes Pn et Qn tels que

f (n)(x) =
Pn(x) sin

(n)(x) +Qn(x) sin
(n+1)(x)

xn+1
. Donner les expressions des polynômes Pn et Qn

pour n = 0, n = 1 et n = 2. Quelle relation simple semble-t-on oberver entre les polynômes Pn et
Qn ?

3. Démontrer par récurrence l’existence des polynômes Pn et Qn. On déterminera lors de cette récur-
rence une expression de Pn+1 et Qn+1 en fonction de Pn et Qn

4. Montrer que Pn et Qn sont des ponynômes à coefficients entiers. Précisez le degré, la parité et le
coefficient dominant de ces polynômes.

5. Calculer P3 et Q3 à l’aide des relations de récurrence obtenues plus haut.
6. Montrer que, si U et V sont deux polynômes vérifiant U(x) sin(x) + V (x) cos(x) = 0 pour tout

x > 0, alors U = V = 0.
7. En appliquant la formule de Leibniz à l’égalité xf(x) = sin(x), obtenir deux nouvelles relations

entre Pn, Qn, Pn+1 et Qn+1.
8. En déduire que P ′

n = Qn, et montrer que Pn est solution d’une équation différentielle très simple
du second ordre.

9. En notant p =
⌊n
2

⌋
, justifier que Pn =

p∑
k=0

akX
n−2k, avec ak ∈ R, et déterminer une expression de

ak faisant intervenir un quotient de factorielles.
10. Résoudre sur R l’équation différentielle y′′ + y = xn, où n est un entier naturel quelconque.

Exercice 18 (**)

Soit (un) la suite définie par u0 = 1 et ∀n ∈ N, un+1 = un +
1

4
(2− u2

n).

1. On note f la fonction définie par f(x) = x +
1

4
(2 − x2). Étudier les variations de f et déterminer

ses points fixes.

2. Montrer que ∀x ∈ [1, 2], |f ′(x)| ⩽ 1

2
, et que f([1, 2]) ⊂ [1, 2].

3. En déduire que ∀n ∈ N, un ∈ [1, 2], et que |un+1 −
√
2| ⩽ 1

2
|un −

√
2|.

4. Prouver par récurrence que ∀n ∈ N, |un −
√
2| ⩽ 1

2n
, et en déduire la limite de la suite (un).

5. À partir de quel rang a-t-on |un −
√
2| ⩽ 10−9 ?

Exercice 19 (**)

On considère la fonction f définie sur
]
0,

1

e

[
∪
]
1

e
,+∞

[
par f(x) =

x

lnx+ 1
.

1. Montrer que f est prolongeable par continuité en 0. La fonction prolongée est-elle dérivable en 0 ?
2. Étudiez les variations de f et tracer l’allure de sa courbe représentative.
3. Déterminer les points fixes de f .
4. On définit une suite (xn) par x0 = 2 et ∀n ∈ N, xn+1 = f(xn).

(a) Étudiez sur R+ la fonction g : x 7→ x

(x+ 1)2
, en déduire que ∀x ∈]1,+∞[, 0 ⩽ f ′(x) ⩽

1

4
.

(b) En déduire que ∀n ∈ N, |xn+1 − 1| ⩽ 1

4
|xn − 1|, puis que |xn − 1| ⩽ 1

4n
.

(c) En déduire la limite de la suite (xn).

Exercice 20 (***)

On considère la fonction f définie par f(x) =
x

sh(x)
.

1. Montrer que f est de classe C∞ sur son ensemble de définition. Quelle est sa parité ?
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2. Montrer que f est prolongeable par continuité sur R, et que son prolongement est de classe C2 sur
R (en cas de grosse difficulté, on pourra appliquer la règle de l’Hôpital, objet d’étude de l’exercice
11). Préciser les valeurs de f ′(0) et f ′′(0).

3. Résoudre l’équation sh(x) = 1, on note α sa solution. Vérifier que α ∈]0, 1[ et calculer ch(α).

4. Étudier le signe sur R de ch(t)− t, puis prouver que ∀t ⩾ 0, 0 ⩽ t ch(t)− sh(t) ⩽
1

2
sh2(t).

5. On définit une suite (un) par u0 = 0 et ∀n ∈ N, un+1 = f(un). Déterminer la nature de la suite
(un).

Problème 1 (***)
Le but de ce problème est d’étudier numériquement les solutions d’équations du type xn+xn−1+ · · ·+

x = a.

1. Résolution numérique de l’équation x2 + x− 1 = 0.

On considère dans cette question la fonction f définie sur R+ par f(x) =
1

x+ 1
.

(a) Montrer que l’équation x2 + x − 1 = 0 a une seule racine dans l’intervalle ]0, 1[ et préciser la
valeur de cette racine, qu’on notera désormais r2.

(b) Montrer que, ∀x ∈
[
1

2
, 1

]
, f(x) ∈

[
1

2
, 1

]
.

(c) Calculer la dérivée f ′ de f et prouver que, ∀x ∈
[
1

2
, 1

]
, |f ′(x)| ⩽ 4

9
.

(d) On considère la suite (un) définie par u0 = 1 et ∀n ∈ N, un+1 = f(un). Prouver que ∀n ∈ N,

|un − r2| ⩽
(
4

9

)n

, et en déduire la convergence de (un).

2. Résolution numérique de l’équation x3 + x2 + x− 1 = 0.

On considère désormais la fonction g définie par g(x) =
1

x2 + x+ 1
.

(a) Montrer que l’équation x3 + x2 + x− 1 = 0 a une unique solution r3 appartenant à ]0, 1[.

(b) Montrer que l’intervalle
[
1

3
, 1

]
est stable par g.

(c) Calculer les dérivées g′ et g′′ et déterminer le maximum de |g′(x)| sur l’intervalle
[
1

3
, 1

]
.

(d) On considère la suite (vn) définie par v0 = 1 et ∀n ∈ N, vn+1 = g(vn). Majorer |vn − r3| en
fonction de n, et prouver la convergence de (vn) vers r3.

3. Racine positive de l’équation xn + xn−1 + · · ·+ x2 + x− a = 0.
On désigne désormais par a un réel strictement positif, et on note, pour tout entier n ⩾ 2, hn

la fonction définie par hn(x) = xn + xn−1 + · · ·+ x2 + x− a.

(a) Montrer que sur l’intervalle ]0,+∞[, l’équation hn(x) = 0 possède une unique racine qu’on
notera tn, puis que tn ∈]0, 1[ si n > a.

(b) Montrer que (x− 1)hn(x) = xn+1 − (a+ 1)x+ a.
(c) Montrer que hn+1(tn) > hn(tn), et en déduire que la suite (tn) est strictement décroissante,

puis qu’elle converge vers une limite qu’on notera désormais α.
(d) Montrer que, si A ∈ N, on aura 0 < tnn ⩽ tnA si n ⩾ A. En déduire, en choisissant A > a, que

lim
n→+∞

tnn = 0.

(e) Exprimer la limite α en fonction de a.

4. Racine positive de l’équation nxn + (n− 1)xn−1 + · · ·+ 2x2 + x− a = 0.
On note dans cette partie in(x) = nxn + (n− 1)xn−1 + · · ·+ 2x2 + x− a.

(a) Montrer que l’équation in(x) = 0 possède une unique solution sur ]0,+∞[, et que cette solution
appartient à l’intervalle ]0, 1[ si n(n+ 1) > 2a. On notera cette solution yn.

(b) Prouver la relation (x− 1)2in(x) = nxn+2 − (n+ 1)xn+1 + x− a(x− 1)2.
(c) Montrer que in+1(yn) > in(yn). En déduire la décroissance de la suite (yn), et sa convergence

vers un réel β ∈ [0, 1[.
(d) Montrer que 0 ⩽ nynn ⩽ nynA dès que n ⩾ A, où A(A+ 1) ⩾ 2a. En déduire la limite de la suite

(nynn), puis déterminer β en fonction de a.
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Problème 2 : un classique des suites récurrentes.
On va s’intéresser dans cet exercice à toutes les suites définies par des relations de récurrence du type

un+1 = kun(1−un), avec u0 ∈ [0, 1] et k un réel positif fixé. En pratique, on se contentera d’une étude dans
les cas particuliers k = 1, k = 2, k = 4 et k = 6, mais les cas intermédiaires auraient des comportements
assez similaires. On notera dans tout l’exercice f(x) = kx(1−x), la fonction f étant donc différente d’une
question à l’autre puisque la valeur de k va changer.

1. Écrire une fonction Python prenant comme paramètres un réel u (qui correspondra à la valeur
initiale de la suite) et un autre réel k et qui trace dans un même repère (à l’aide du module
matplotlib.pyplot) la représentation graphique de la fonction f (avec la valeur de k choisie par
l’utilisateur), la droite y = x et les 30 premiers termes de la suite (un) lorsque u0 = u. Si vraiment
on est trop mauvais en Python pour y arriver, on se contentera de faire un dessin dans chacun des
cas étudiés.

2. Étude du cas k = 1.
(a) Étudier la fonction f sur l’intervalle [0, 1], en précisant les points fixes éventuels et le signe

de f(x) − x (un petit graphique ne fera pas de mal même si on a fait le programme Python
demandé à la question précédente).

(b) Montrer que, quelle que soit la valeur de u0, la suite (un) est monotone et convergente, et
préciser sa limite.

3. Étude du cas k = 2.
(a) Étudier la fonction f sur l’intervalle [0, 1], en précisant les points fixes éventuels et le signe de

f(x)− x (là encore, un petit graphique aidera).
(b) Que se passe-t-il lorsque u0 = 0 ou u0 = 1 ?

(c) Montrer que l’intervalle
]
0,

1

2

]
est stable par f . En déduire que, si u0 ∈

]
0,

1

2

]
, la suite (un)

sera monotone et convergera.

(d) Que se passe-t-il si
1

2
< u0 < 1 ?

4. Étude du cas k = 4.
(a) Déterminer les variations (toujours sur [0, 1]) et points fixes de f , ainsi que la valeur de f ′(0).

(b) Montrer que, si x ∈
[
0,

1

2

]
, f(x) > x. En déduire que la suite (un) ne peut converger vers 0 que

s’il existe un entier n pour lequel un = 0 (question difficile).
(c) Montrer qu’il existe une infinité de valeurs de u0 pour lesquelles la suite (un) va être stationnaire

et converger vers 0 (question assez difficile également).

(d) Montrer que, si u0 = sin2
(π
5

)
, la suite (un) est périodique (la période n’est pas grande...) et

donc ne converge pas.
(e) La suite (un) peut-elle tendre vers ±∞ (en supposant comme toujours u0 ∈ [0, 1]) ?

On peut en fait prouver que, pour k = 4, si on exclut l’infinité de valeurs initiales pour lesquelles

la suite sera stationnaire (égale à 0 ou à
3

4
à partir d’un certain rang), la suite ne converge jamais,

mais qu’on peut « converger vers une suite périodique », c’est-à-dire par exemple que (u2n) et
(u2n+1) peuvent converger vers deux limites différentes correspondant à des valeurs de u0 pour
lesquelles la suite serait périodique de période 2.

5. Étude du cas k = 6.
(a) Déterminer les valeurs de x appartenant à l’intervalle [0, 1] pour lesquelles f(x) /∈ [0, 1].
(b) Montrer que, pour toutes ces valeurs initiales, la suite (un) diverge vers −∞.
(c) Montrer qu’il existe cependant une infinité de valeurs initiales pour lesquelles la suite converge.
(d) Tester votre programme Python avec pour valeur initiale une valeur pour laquelle la suite est

censée converger (par exemple la valeur du point fixe autre que 0) et constater que Python n’est
pas vraiment infaillible.
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