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Exercice 1 (*)

Commençons par écrire la décomposition du nombre 150 en facteurs premiers : 150 = 2 × 75 =
2 × 3 × 52. Si on veut écrire 150 comme produit de deux entiers premiers entre eux, il faut donc
séparer les facteurs 2, 3, 5 et 5 en deux ensembles, avec la condition que les deux facteurs 5 doivent
être dans le même ensemble (pour avoir des nombres premiers entre eux). Quatre choix possibles :
52 = 25 d’un côté, 2×3 = 6 de l’autre ; 52×3 = 75 d’un côté, 2 de l’autre ; 52×2 = 50 d’un côté et 3
de l’autre ; et enfin la solution triviale 150 et 1. Si on accepte les entiers relatifs, on a huit solutions au
lieu de quatre : S = {(150, 1), (75, 2), (50, 3), (25, 6), (−150,−1), (−75,−2), (−50,−3), (−25,−6)}.

Exercice 2 (*)

Il suffit d’écrire n4−20n2+4 = (n4−4n2+4)−16n2 = (n2−2)2−(4n)2 = (n2−4n+2)(n2+4n+2).
Les deux facteurs n2 − 4n + 2 et n2 + 4n + 2 sont évidemment entiers tous les deux, et ne peuvent
pas être égaux tous les deux à ±1 puisque leur écart est égal à 8n. Le seul cas qui pourrait poser
problème est n = 0 pour lequel n4 − 20n + 4 = 4 n’est pas un nombre premier. On a donc bien
prouvé que cette expression ne donnait jamais un nombre premier.

Exercice 3 (*)

Supposons donc n = 3p × 5q, alors les diviseurs de n (on se restreint ici aux diviseurs positifs,
les énoncés sont malheureusement souvent un peu ambigus à ce sujet) sont tous les entiers de la
forme 3i × 5j, avec 0 6 i 6 p et 0 6 j 6 q. Leur produit peut donc s’écrire sous la forme z =
p
∏

i=0

q
∏

j=0

3i5j = 3(q+1)
∑p

i=0 i×5(p+1)
∑q

j=0 j = 3
(q+1)p(p+1)

2 ×5(p+1)
q(q+1)

2 (il ne faut pas oublier que quand

on « sort » un terme constant d’un produit, il est élevé à une puissance égale au nombre de termes
du produit). Or, 4542 = (32 × 5)42 = 384542, donc on doit avoir (q + 1)p(p + 1) = 168 = 2 × 84 et
(p + 1)q(q + 1) = 84, ce qui impose évidemment p = 2q, puis q(q + 1)(2q + 1) = 84. On n’a besoin
que de trouver une solution évidente, q = 3 convient puisque 3× 4× 7 = 84. Bien sûr, on aura alors
p = 6, donc n = 36 × 53 = 729 × 125 = 91 125.

Exercice 4 (**)

Modulo 9, on calcule facilement 94 ≡ 4[9]. Par ailleurs, les régles de calcul sur les congruences
assurent qu’en posant a, b et c les restes modulo 9 des nombres entiers x, y et z, on aura toujours
x3+y3+z3 ≡ a3+b3+c3[9]. Calculons donc tous les restes possibles de cubes modulo 9 : 03 ≡ 0[9], 13 ≡
1[9], 23 ≡ −1[9], 33 ≡ 0[9], 43 ≡ 1[9], 53 ≡ −1[9], 63 ≡ 0[9], 73 ≡ 1[9] et 83 ≡ −1[9] (on peut éviter
de faire certains calculs entièrement, par exemple 73 ≡ (−2)3[9] ≡ −8[9] ≡ 1[9]). En additionnant
des 0, des 1 et des −1, on n’obtiendra jamais 4 (du moins pas avec trois nombres au départ), donc
l’équation n’a pas de solution. En fait, on démontre de même que l’équation x3+y3+z3 = a ne peut
pas avoir de solutions dans Z pour un gros paquet de valeurs possibles de a (toutes celles congrues
à 4 ou 5 modulo 9.
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Exercice 5 (*)

Rappelons que ce critère revient à dire qu’un nombre est divisible par 9 si et seulement si la
somme de ses chiffres est elle-même divisible par 9. On peut en fait démontrer mieux : un nombre
entier n a toujours le même reste modulo 9 que la somme de ses chiffres. En effet, si on note a0,
a1, . . ., ak les chiffres de l’écriture décimale de n (en sens inverse : a0 est le chiffre des unités, a1

celui des dizaines etc), alors n =

k
∑

i=0

ak10
k, donc n ≡

k
∑

i=0

ak10
k[9]. Or, 10 ≡ 1[9] donc ∀k ∈ N,

10k ≡ 1k[9] ≡ 1[9]. On en déduit immédiatement que n ≡
k
∑

i=0

ak[9], ce qui est exactement ce qu’on

voulait démontrer. La même démonstration fonctionne bien entendu pour le critère de divisibilité
par 3 puisque 10 ≡ 1[3].

Exercice 6 (*)

Le plus simple est de faire le raisonnement modulo 7 : on note a et b les restes modulo 7 des deux
entiers n et p, et on suppose donc que a2+ b2 ≡ 0[7] (ce qui revient exactement à dire que n2+p2 est
divisible par 7. Or, a2 ∈ 0, 1, 4, 9, 16, 25, 36, donc a2 ≡ 0, 1, 2, 4[7] (notation pas vraiment autorisée
mais vous aurez tous compris), et de même bien sûr pour b2. Si on veut avoir a2 + b2 ≡ 0[7], la seule
possibilité est a2 = b2 = 0[7], ce qui à son tour implique a = b = 0. Les deux entiers n et p sont donc
bien divisibles tous les deux par 7.

Exercice 7 (**)

1. Allons-y pour une récurrence brutale : u0 = 32 + 5 = 14 est divisible par 14. Supposons
désormais un divisible par 14, alors un+1 = 34n+6 + 52n+3 = 34 × (un − 52n+1) + 52n+3 =
81un + 52n+1 × (25− 81) = 81un − 56× 52n+1. Comme un est divisible par 14 (hypothèse de
récurrence) et 56 est lui-même un multiple de 14, on a manifestement un+1 divisible par 14,
ce qui achève la récurrence.

2. Puisque un = 9× (34)n + 5× (52)n, les racines de l’équation caractéristique correspondantes
devraient être 34 et 52, et l’équation caractéristique elle-même est donc x2 − (81 + 25)x +
81 × 25 = 0, soit x2 − 106x + 2 025. Les entiers a et b demandés par l’énoncé sont donc
respectivement égaux à 106 et −2 025 (non, je ne ferai pas la vérification, c’est inutile).

3. Avec la relation de récurrence un+2 = 106un+1 − 2 025, l’hérédité de la récurrence double
devient triviale : si un et un+1 sont deux multiples de 14, un+2 est la somme de deux multiples
de 14, donc aussi un multiple de 14. Par contre, il nous faut une initialisation double, donc
on doit calculer u1 = 36 − 53 = 729 + 125 = 854 = 14× 61, qui est bien lui aussi un multiple
de 14.

Exercice 8 (**)

1. En notant a le reste de la division de n par 8, on aura n2 ≡ a2[8]. On calcule donc simplement
les restes modulo 8 de 0, 1, 4, 9, 16, 25, 36 et 49, qui donnent respectivement 0, 1, 4, 1, 4, 1,
4, 1.

2. Si n s’écrivait sous la forme n = a2 + b2 + c2, on aurait enparticulier a2 + b2 + c2 ≡ 7[8]. Or,
il est impossible d’obtenir un reste égal à 7 en additionnant des 0, des 1 et des 4 (on peut
obtenir 0, 1, 2, 3, 4, 5 et 6 assez facilement par contre).

Exercice 9 (**)

1. En écrivant n3+5 = n(n2+7)+5−7n, on constate que, si n2+7 | n3+5, alors n2+7 | 7n−5.
Cela suppose en particulier que n2 + 7 6 |7n − 5| 6 7|n| + 5. En notant x = |n|, on doit
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donc avoir x2 − 7x+ 2 6 0. Ce trinôme a pour discriminant ∆ = 49− 8 = 41 et admet pour

racines x1 =
7−

√
41

2
et x2 =

7 +
√
41

2
. Comme 6 <

√
41 < 7, on a x1 > 0 et x2 < 7. Le

trinôme étudié est négatif entre ses racines, ce qui impose que |n| ∈ {1, 2, 3, 4, 5, 6}. Il ne reste
plus qu’à tester brutalement les douze valeurs de n possibles (oui, parfois, l’arithmétique ce
n’est pas très subtil). Pour n = 1, n2 + 7 = 8 et 7n − 5 = 2, ça ne marche pas. Pour n = 2,
n2 + 7 = 11 et 7n− 5 = 9, toujours pas. Pour n = 3, n2 + 7 = 16 et 7n− 5 = 16, miracle, on
a trouvé une solution. Pour n = 4, n2 + 7 = 23 et 7n− 5 = 23, une deuxième solution ! Pour
n = 5, n2+7 = 32 et 7n−5 = 30, ça ne marche pas. Et pour n = 6, n2+7 = 43 et 7n−5 = 37,
ça ne marche pas non plus (oui, la majoration de la valeur absolue par l’inégalité triangulaire
en cours de calcul n’était pas optimale, on aurait pu éviter quelques vérifications ultérieures.
Aucune valeur négative ne fonctionne (les valeurs de n2+7 sont les mêmes que celles calculées
pour les entiers positifs, et 7× (−1)− 5 = −12 n’est pas multiple de 8 ; −14− 5 = −19 n’est
pas multiple de 11 ; −21 − 5 = −26 pas multiple de 16 ; −28 − 5 = −33 pas multiple de 23 ;
−35 − 5 = −40 pas multiple de 30 et enfin −42 − 5 = −47 par multiple de 43). Finalement,
S = {3, 4}.

2. Si

√

11n− 5

n+ 4
est un entier, son carré

11n− 5

n+ 4
aussi, ce qui implique que n+4 divise 11n− 5.

Or, 11n − 5 = 11(n + 4)− 49, donc on aura dans ca cas également 49 qui est un multiple de
n+4. Comme 49 n’a pas des tonnes de diviseurs, n+4 doit donc appartenir à l’ensemble fini
{−49,−7,−1, 1, 7, 49}, soit n ∈ {−53,−11,−5,−3, 3, 45}. Devinez quoi ? On va tester toutes

ces possibilités une par une. Si n = −53,
11n− 5

n+ 4
=

−588

−49
= 12, qui n’est pas vraiment un

carré parfait. Si n = −11,
11n − 5

n+ 4
=

−126

−7
= 18, toujours pas un carré parfait. Si n = −5,

11n − 5

n+ 4
=

−60

−1
, toujours pas de carré parfait à l’horizon. Si n = −3, c’est encore pire

puisque le quotien est alors négatif. Si n = 3,
11n − 5

n+ 4
=

28

7
= 4, ça marche ! Et si n = 45,

11n − 5

n+ 4
=

490

49
= 10 qui n’est pas un carré, donc S = {3}.

Exercice 10 (**)

Comme n est supposé non premier, on peut écrire n sous la forme a × b. Si a 6= b, les deux
diviseurs sont certainement plus petits que

n

2
, donc que n − 2 (pour un entier plus grand que 4,

n

2
< n− 2), donc ils apparaissent tous les deux comme facteurs de (n− 2)!, qui par conséquent est

divisible par n. C’est un peu plus dur dans le cas où n est un carré parfait, et donc a = b =
√
n.

Dans ce cas, il faut faire apparaitre deux facteurs a dans (n− 2)!, ce qui sera le cas si 2a 6 n− 2. Or
2a 6 n−2 ⇔ a2−2a−2 > 0 puisque par hypothèse n = a2. Ce sera donc le cas si (a−1)2 > 3, donc
si (a − 1) > 2 (tous ces nombres sont des entiers naturels), soit a > 3. Comme on a supposé n > 6,
c’est bien le cas, ce qui prouve que a et 2a seront facteurs de (n − 2)!, et donc que cette dernière
valeur est divisible par a2 = n.

Exercice 11 (**)

Faisons tous les cas possibles un par un selon le nombre k d’entiers consécutifs à ajouter :

• pour k = 1 on est dans le cas trivial, on se contente de prendre 1 050.
• pour k = 2, on devrait avoir 1 050 = p+(p+1) = 2p+1, ce qui parait difficile dans le mesure

où 1 050 est un entier pair.
• pour k = 3, on devrait avoir 1 050 = p + (p + 1) + (p + 2) = 3p + 3, donc en particulier

1 050 ≡ 0[3], ce qui est le cas. Il ne reste qu’à calculer
1 050− 3

3
= 349 pour savoir où partir :
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1 050 = 349 + 350 + 351.

• de façon plus générale, si 1 050 = p + (p + 1) + (p + 2) + · · · + (p + k − 1) = kp +
k−1
∑

i=1

i =

kp+
k(k − 1)

2
, alors 1 050 est nécessairement divisible par

k

2
. Écrivons alors la décomposition

en facteurs premiers de 1 050 pour gagner un peu de temps et isoler les candidats potentiels :
1 050 = 2 × 525 = 2 × 3 × 175 = 2 × 3 × 52 × 7, donc les diviseurs naturels de 1 050 sont
1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 25, 30, 35, 42, 50, 75, 105, 150, 175, 210, 350, 525 et 1 050, auxquels il
faudra rajouter les doubles 4, 12, 14, 20, 28, 60, 70, 84, 100, 150, 210, 300, 350, 420, 700 et 2 100.

• pour k = 4, on devrait avoir 1 050 = 4p + 6, donc p =
1 044

4
= 261. En effet, 1 050 =

261 + 262 + 263 + 264.

• pour k = 5, on devrait avoir 1 050 = 5p + 10, donc p =
1 040

5
= 208. En effet, 1 050 =

208 + 209 + 210 + 211 + 212.

• pour k = 6, on devrait avoir 1 050 = 6p + 15, donc p =
1 035

6
qui n’est pas entier (c’est en

fait normal, seuls les multiples de 4 pourront fonctionner parmi les doubles).

• pour k = 7, on devrait avoir 1 050 = 7p + 21, donc p =
1 029

7
= 147. En effet, 1 050 =

147 + 148 + 149 + 150 + 151 + 152 + 153.

• pour k = 10, on devrait avoir 1 050 = 10p + 45, donc p =
1 005

10
qui n’est pas entier, comme

prévu.

• pour k = 12, on devrait avoir 1 050 = 12p + 78, donc p =
978

12
, qui n’est pas non plus entier.

• pour k = 14, on devrait avoir 1 050 = 14p+ 91, donc p =
959

14
qui n’est pas entier.

• pour k = 15, on devrait avoir 1 050 = 15p + 105, donc p =
945

15
= 63. En effet, 1 050 =

63 + 64 + 65 + 66 + 67 + 68 + 69 + 70 + 71 + 72 + 73 + 74 + 75 + 76 + 77.

• pour k = 20, on devrait avoir 1 050 = 20p + 190, donc p =
860

20
= 43. En effet, 1 050 =

43+44+45+46+47+48+49+50+51+52+53+54+55+56+57+58+59+60+61+62.

• pour k = 21, on devrait avoir 1 050 = 21p + 210, donc p =
840

21
= 40. Bon, je ne vais pas

écrire toutes les décompositions, car ça deviendrait lassant, mais ça fonctionne : 1 050 =
40 + 41 + 42 + · · ·+ 59 + 60.

• pour k = 25, on devrait avoir 1 050 = 25p + 300, donc p =
750

25
= 30, donc 1 050 =

30 + 31 + · · · + 53 + 54 (belle somme centrée sur la magnifique valeur 42).

• pour k = 28, on devrait avoir 1 050 = 28p + 378, donc p =
672

28
= 24, donc 1 050 =

24 + 25 + · · · + 50 + 51.

• pour k = 30, on devrait avoir 1 050 = 30p+ 435, donc p =
615

30
, qui n’est pas trop entier.

• pour k = 35, on devrait avoir 1 050 = 35p + 595, donc p =
455

35
= 13, donc 1 050 =

13 + 14 + · · · + 46 + 47.

• pour k = 42, on devrait avoir 1 050 = 42p+861, donc p =
189

42
, qui n’est hélas pas entier (ça

ne marche pas pour 42, c’est scandaleux).

• pour k = 50, on devrait avoir 1 050 = 50p+1225, donc p = −175

25
, qui en plus de ne pas être

entier est négatif, on oublie.

• pour k = 60, on devrait avoir 1 050 = 60p + 1 770, donc p = −720

60
= −12, donc 1 050 =

(−12) + (−11) + · · ·+ (−1) + 0 + 1 + · · ·+ 12 + 13 + 14 + · · ·+ 46 + 47, ce qui est en fait la
même somme que pour k = 35 si on simplifie les valeurs négatives avec les premiers entiers
positifs.
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• pour k = 75, on devrait avoir 1 050 = 75p + 2 775, donc p = −−1 725

75
= −23. Cette

solution n’est pas valable puisque l’énoncé parlait d’entiers naturels, mais on a bel et bien
1 050 = (−23)+(−22)+ · · ·+(−1)+0+1+ · · ·+50+51 = 24+25+ · · ·+50+51, c’est-à-dire
une solution déjà obtenue pour k = 28.

• les valeurs suivantes donneront toujours des points de départ négatifs, et donc des cas déjà
traités dans les cas où ça fonctionne.

On a obtenu au total pas moins de 10 décompositions différentes. Je vous laisse maintenant le
soin de faire le même travail pour 105 050 (en fait, on peut arriver à compter les cas sans les écrire
tous, mais ça nécessite un peu de soin).

Exercice 12 (**)

1. Puisque l’équation ne fait intervenir que les carrés des trois inconnues, si (x, y, z) est solution,
alors (|x|, |y|, |z|) sera un triplet de solutions dans N

3. Réciproquement d’ailleurs, si (x, y, z)
est une solution dans N

3, alors tous les triplets de la forme (±x,±y,±z) seront solutions du
problème.

2. (a) Notons simplement d le pgcd des entiers x0, y0 et z0. Par définition du pgcd, les nombres

x1 =
x0

d
, y1 =

y0

d
et z1 =

z0

d
sont entiers, et ont un pgcd égal à 1. Or, le triplet (x1, y1, z1)

est clairement solution de l’équation de départ.
(b) Faisons donc un petit tableau, toutes les valeurs étant donc des restes modulo 7 :

n 0 1 2 3 4 5 6

n2 0 1 4 2 2 4 1

−n2 0 6 3 5 5 3 6

(c) Puisqu’on a bien entendu 7z21 ≡ 0[7], l’équation initiale implique que x21 + y21 ≡ 0[7], ou
encore que x21 ≡ −y21[7]. D’après le tableau précédent, les seuls carrés pouvant être opposés
modulo 7 sont ceux de nombres divisibles par 7 (on ne trouve aucun couple de valeurs
identiques dans les deux dernières lignes du tableau ailleurs que dans la première colonne).
Les nombres x21 et y21 doivent donc être tous les deux divisibles par 7 pour que le triplet
(x1, y1, z1) puisse être solution. Or, si 7 divise x21 = x1 × x1, alors 7 divise x1 puisque 7
est un nombre premier. De même pour y1.

(d) Si x1 et y1 sont tous les deux divisibles par 7, alors x21+y21 est divisible par 72, donc 7z21 est
un multiple de 49, ce qui implique que z21 est un multiple de 7, et donc que z1 également
(même raisonnement qu’à la question précédente). Les trois nombres z1, y1 et x1 sont
donc des multiples de 7, ce qui contredit le fait que leur pgcd soit égal à 1. L’hypothèse
qu’il existe une solution non triviale est donc absurde. NOtre équation a donc pour unique
solution (0, 0, 0).

3. Le triplet (1, 2, 1) est solution de l’équation x2 + y2 = 5z2 puisque 12 + 22 = 5 = 5 × 12.
Or, multiplier une solution par un entier naturel quelconque produira toujours une nouvelle
solution (si x2 + y2 = 5z2, alors (nx)2 + (ny)2 + 5(nz)2), ce qui produit directement une
infinité de solutions distinctes de la forme (n, 2n, n). Ce ne sont d’ailleurs pas du tout les
seules : on peut changer les signes, permuter les valeurs de x et de y, et même trouver encore
d’autres solutions comme (2, 11, 5) (puisque 4 + 121 = 5 × 25) qui ne peut pas être obtenue
à l’aide des manipulations précédentes. Il existe bien sûr des solutions pour lesquelles x = 42
(par exemple (42, 84, 42) ou (42, 21, 21)), et aussi pour lesquelles z = 42 (encore une fois,
(42, 84, 42) convient !).

L’équation x2+ y2 = 13z2 admet comme solution non triviale (2, 3, 1), à partir de laquelle
on construit aisément une infinité de solutions non triviales de la forme (2n, 3n, n). Il suffit
bien sûr de prendre n = 42 pour avoir comme solution (84, 126, 42), pour laquelle z = 42.
Mais en posant n = 21, on trouve aussi (42, 63, 21) qui est une solution pour laquelle x = 42.
En fait ce n’était pas vraiment plus dur avec 13 qu’avec 5.
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Exercice 13 (**)

Supposons donc que x =
p

q
soit solution de l’équation, avec tant qu’à faire p ∧ q = 1. On aurait

donc
p3

q3
+
p2

q2
+
2p

q
+1 = 0, et a fortiori p3+qp2+2pq2+q3 = 0. Ceci implique que q3 = −p3−qp2−2pq2

divise p, ce qui n’est possible que si q3 = 1 puisque p et q (et donc p et q3) sont supposés premiers
entre eux. On a donc q = 1, ce qui revient à dire que x est en fait un nombre entier. Or, x3+x2+2x+1
est toujours un entier impair lorsque x est entier, et ne peut donc jamais être égal à 0.

Exercice 14 (**)

1. Puisque b = cq + r, on peut écrire ab = acq+r = pcq+r − 1 = pr × (pcq − 1) + pr − 1 =

pr(pcq − 1) + ar. Or, on peut écrire pcq − 1 = (pc)q − 1 = (pc − 1)

q−1
∑

i=0

(pc)i, qui est un multiple

de ac. On peut donc écrire ab sous la forme kac + ar. Un diviseur commun de ab et de ac
divisera donc aussi ab−kac = ar, et réciproquement, tout diviseur commun de ar et de ac sera
un diviseur de ab. Le pgcd des deux couples (ab, ac) et (ac, ar) est donc également le même.

2. Il suffit d’appliquer l’algorithme d’Euclide à partir de b et de c. En notant ri les restes succesifs,
la question précédente assure que ab ∧ ac = ari ∧ ari+1 pour tout entier i. Au moment où
l’agorithme s’achèvera, on aura ab ∧ ac = ab∧c ∧ a0, et comme a0 = 0, ce dernier pgcd est
simplement égal à ab∧c, ce qui achève la preuve.

Exercice 15 (***)

1. On calcule donc F0 = 22
0
+ 1 = 2 + 1 = 3 qui est premier, F1 = 22 + 1 = 5 qui est

aussi premier, F2 = 24 + 1 = 17 qui est encore premier (ça vous rappelle des histoires de
découpage de gâteau ? C’est tout à fait normal). C’est moins évident pour F3 = 28+1 = 257,
mais il est bien premier (pas divisible par 3 ni 5 par critères usuels, puis 257 = 7 × 36 + 5,
257 = 11 × 23 + 4 et 257 = 13 × 19 + 10, pas la peine d’aller plus loin puisque 17 >

√
257).

Enfin, F4 = 216+1 = 65 537. Pour vérifier la primalité, on écrit un programme Python bateau
du genre :

def premier(n) :

for i in range(2,int(n**0.5)+1) :

if n%i==0 : return False

return True

Pas de mauvaise suprise, 65 537 est bien premier.

2. On écrit simplement Fn+1 − 2 = 22
n+1

+1 = (22
n

)2 − 1 = (22
n − 1)(22

n

+1) = (Fn − 2)Fn via
une classique identité remarquable.

3. On conjecture facilement à partir de la formule précédente que Fn = 2 +

n−1
∏

i=0

Fi, ce qu’on

prouve par une récurrence simple : au rang 1, F1 = 5 = 2+ F0, puis en supposant la formule

vraie au rang n, on aura d’après la question précédente Fn+1 = 2 +
n−1
∏

i=0

Fi(Fn) = 2 +
n
∏

i=0

Fi.

4. En effet un diviseur commun de Fn et de Fp (en supposant par exemple que n est le plus

grand des deux entiers), diviserait Fn et
n−1
∏

i=0

Fi, donc d’après la question précédente diviserait

2. C’est évidemment peu crédible (les nombres Fn sont tous impairs), la seule possibilité est
que ce diviseur soit égal à 1, ce qui prouve que le pgcd recherché est lui-même égal à 1.
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Exercice 16 (**)

Pour compter le nombre de diviseurs, le plus simple est de commencer par écrire la décomposition
en facteurs premiers du nombre : 10! = 2×3×22×5×2×3×7×23×32×2×5 = 28×34×52×7. Un
diviseur de 10! sera nécessairement de la forme 2a×3b×5c×7d, avec a ∈ {0, 1, . . . , 8}, b ∈ {0, 1, 2, 3, 4},
c ∈ {0, 1, 2} et d ∈ {0, 1} (cela découle des propriétés de la valuation p-adique vues en cours). Chaque
quadruplet d’entiers (a, b, c, d) donne un diviseur différent (par unicité de la décomposition en facteurs
premiers), ce qui fait 9× 5× 3× 2 = 270 diviseurs au total. Si on compte aussi les diviseurs négatifs,
il y en a deux fois plus, soit 540. Par exemple, pour a = 5, b = 1, c = 2 et d = 0, on trouve le diviseur
32 × 3× 25 = 2 400.

Exercice 17 (***)

1. Une astuce est d’écrire xy − 2x − 3y = 0, soit (x − 3)(y − 2) = 6. Comme il n’existe pas
trente-six mille façons d’écrire 6 comme produit de deux entiers, on peut faire une liste des
possibilités pour x− 3 et y − 2. Soit x− 3 = 6 et y − 2 = 1, ce qui donne la solution (9, 3) ;
soit x − 3 = 3 et y − 2 = 2, ce qui donne (6, 4) ; soit x − 3 = 2 et y − 2 = 3, ce qui donne
(5, 5) ; soit x − 3 = 1 et y − 2 = 6, ce qui donne (4, 8). Et n’oublions pas, bien entendu, les
diviseurs négatifs : x− 3 = −6 et y− 2 = −1 donne (−3, 1) ; x− 3 = −3 et y− 2 = −2 donne
(0, 0) ; x − 3 = −2 et y − 2 = −3 donne (1,−1) ; et enfin x − 3 = −1 et x − 2 = −6 donne
(2,−4). Finalement, S = {(−3, 1), (0, 0), (1,−1), (2,−4), (4, 8), (5, 5), (6, 4), (9, 3)}.

2. Il s’agit ici de mettre sous forme canonique : (x − 1)2 − 1 + (y + 2)2 − 4 − 5 = 0, soit
(x − 1)2 + (y + 2)2 = 10. Pour écrire 10 comme somme de deux carrés, il faut nécessai-
rement écrire 10 = (±1)2 + (±3)2 (si on dépasse 3 on sera largement au-dessus de 10,
et pour 2 rien ne marche). Cela laisse encore une fois huit possibilités : par exemple si
x − 1 = 1 et y + 2 = 3, on trouve la solution (2, 1). Je vous passe les détails, on obtient
S = {(4,−1), (4,−3), (2, 1), (2,−5), (0, 1), (0,−5), (−2,−1), (−2,−3)}. Bien sûr, vous aurez
reconnu dans le membre de gauche une équation de cercle : (x − 1)2 + (y + 2)2 = 10, cercle
de centre A(1,−2) et de rayon

√
10. On a donc prouvé que ce cercle passait par exactement

huit points du plan dont les deux coordonnées sont entières (voir illustration ci-dessous) :

0 1 2 3 4 5−1−2−3

0

1

2

−1

−2

−3

−4

−5

−6

A

3. Même technique que ci-dessus, x2 −
(

3y − 39

6

)2

+
169

4
= 40, soit en factorisant

(

x− 3y +
13

2

)(

x+ 3y − 13

2

)

= −9

4
. Quitte à tout multiplier par 4, on trouve donc

l’équation (6y − 2x − 13)(2x + 6y − 13) = 9. Il y a six possibilités pour écrire 9 comme
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un produit de deux entiers, qui vont donner à chaque fois un système à résoudre. D’abord
{

6y − 2x − 13 = 9
2x + 6y − 13 = 1

. En additionnant les deux équations, 12y−26 = 10, soit 12y =

36 et y = 3, ce qui donne 2x = 14 − 6y = −4, donc x = −2. Passons au deuxième système :
{

6y − 2x − 13 = 3
2x + 6y − 13 = 3

. La somme des deux équations donne 12y − 26 = 6, soit y =

32

12
=

8

3
, solution qui ne nous intéresse pas. Troisième système :

{

6y − 2x − 13 = 1
2x + 6y − 13 = 9

.

On somme comme d’habitude : 12y − 26 = 10, on retrouve y = 3, mais cette fois-ci 2x =

22 − 6y = 4, donc x = 2. Quatrième système :

{

6y − 2x − 13 = −9
2x + 6y − 13 = −1

. On ad-

ditionne : 12y − 26 = −10, soit y =
4

3
, solution à éliminer ici. On trouvera la même

valeur pour y avec −1 et −9 au lieu de −9 et −1. Reste donc le cinquième système :
{

6y − 2x − 13 = −3
2x + 6y − 13 = −3

. On trouve 12y − 26 = −6, soit y =
5

3
. Là encore, pas de

solution entière en vue. Finalement, il n’y que deux couples solutions : S = {(2, 3), (−2, 3)}
(notons que cette fois on a cherché les points à coordonnées entières sur une hyperbole).

4. Pas vraiment de méthode très subtile ici, il suffit de trouver toutes les possibilités en faisant

augmenter la valeur de x puis celle de y. Si x = 1, on a déjà
1

x
= 1, donc on ne peut pas trouver

de valeurs de y et de z convenables (en supposant les entiers naturels). Si x = 2, on doit avoir
1

y
+

1

z
=

1

2
. Il faut donc avoir au moins y = 3 pour que l’égalité puisse être vérifiée. Si y = 3,

z = 6 convient puisque
1

3
+

1

6
=

1

2
. Si y = 4, on peut prendre z = 4. Si y > 4, on va trouver

des valeurs éventuelles de z plus petites que y, donc des couples déjà obtenus (à l’ordre près).
Passons donc à x = 3, si on ne veut pas retomber sur des solutions déjà trouvées, il faudra
prendre y > 3 et z > 3, mais alors la seule possibilité est x = y = z = 3. Finalement, les seuls
triplets possibles sont (2, 3, 6), (2, 4, 4) et (3, 3, 3) ainsi que leurs permutations. Si on accepte
les entiers relatifs dans les solutions, on trouve plus de possibilité puisque tous les triplets

(1, n,−n) seront solution (et leurs permutations, bien entendu). Par ailleurs,

∣

∣

∣

∣

1

n
+

1

p

∣

∣

∣

∣

<
1

2
si n et p sont de signe opposés et (en valeur absolue) supérieurs ou égaux à 2. Il est donc
impossible de trouver des solutions en entiers relatifs avec trois entiers tous différents de 1.

5. On a bien sûr très envie de factoriser cette équation sous la forme (3x+y)(3x−y) = 32. Comme
32 = 25, cela ne laisse que cinq possibilités pour le décomposer comme produit de deux entiers :
soit 3x+ y = 1 et 3x− y = 32, ce qui en sommant implique 6x = 33, on ne va pas obtenir une
valeur très entière pour x, on oublie ; soit 3x+ y = 2 et 3x− y = 16, ce qui donnera cette fois
6x = 18, donc x = 3, puis y = −7 ; soit 3x + y = 4 et 3x − y = 8, ce qui implique 6x = 12,
donc x = 2, puis y = −2. Les autres possibilités changeront simplement le signe de y ou celui
de x (si on considère les décompositions comme produit de facteurs négatifs), on a donc huit
solutions au total : S = {(3,−7), (3, 7), (−3,−7), (−3, 7), (2,−2), (2, 2), (−2,−2), (−2, 2)}.

6. J’ai une soudaine envie de regarder cette équation modulo 3 : les règles de calcul sur les
congruences impliquent que 2y2 ≡ 0[3], donc que 2y2 est divisible par 3. Comme 2 est premier
avec 3, y2 doit donc être divisible par 3, et y également. Autrement dit, y = 3k, avec k ∈ Z.
On peut alors réécrire l’équation sous la forme 15x2 − 7 × 9k2 = 9, soit 5x2 − 21k2 = 3. Le
même raisonnement modulo 3 que ci-dessus donne alors x2 divisible par 3, donc x = 3 × j,
avec j ∈ Z, puis on se ramène à 15j2−7k2 = 1. Devinez quoi ? On va encore raisonner modulo
3. On doit désormais avoir 2k2 ≡ 1[3]. Ce ne sera pas le cas si k est un multiple de 3, ni si
k ≡ 1[3] (dans ce cas 2k2 ≡ 2[3]), ni si k ≡ 2[3] puisque 2× 22 ≡ 2[3]. Ce ne sera donc en fait
jamais le cas, l’équation ne peut pas avoir de solution : S = ∅.

7. On devrait donc avoir y3 = x(x + 1). Or les entiers x et x + 1 sont premiers entre eux (un
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diviseur commun de x et de x+1 étant aussi diviseur de x+1−x = 1). Tout facteur premier
apparaissant avec une puissance non nulle dans la décomposition en facteurs premiers de x

devra donc avoir une puissance multiple de 3 (il n’apparaitra pas dans celle de x+1, et toutes
les valuations p-adiques de y3 sont nécessairement multiples de 3). Cela revient exactement
à dire que x est un cube parfait (cube d’un entier relatif). On peut faire exactement le
même raisonnement pour x+1 qui doit lui aussi être un cube parfait. Or, deux cubes parfaits
consécutifs dans Z, c’est très rare : soit x = 0 et x+1 = 1 (donc y = 0), soit x = −1 et x+1 = 0
(et toujours y = 0). Notre équation a donc exactement deux solutions : S = {(0, 0), (−1, 0)}.

Exercice 18 (**)

1. Via la propriété d’additivité des valuations p-adiques, vp(n!) =
n
∑

k=1

vp(k). Or, le nombre d’en-

tiers inférieurs ou égaux à n qui sont multiples de pk (pour un certain entier k) est égal à

⌊

n

pk

⌋

.

Il y a donc entre 1 et n un nombre d’entiers dont la valuation p-adique vaut exactement k

qui est égal à

⌊

n

pk

⌋

−
⌊

n

pk+1

⌋

. On en déduit que vp(n!) =

q
∑

i=1

i

(⌊

n

pi

⌋

−
⌊

n

pi+1

⌋)

, la somme

allant jusqu’au premier entier q pour lequel

⌊

n

pq

⌋

= 0 (cet entier existe, il vaut d’ailleurs

⌈logp(n)⌉). Cette somme est « partiellement télescopique, il ne reste après simplification que
q
∑

i=1

⌊

n

pi

⌋

, qui est bien la même expression que la somme infinie de l’énoncé, dont tous les

termes deviennent nuls à partir de k = q.

2. Pour qu’un entier n ait une écriture décimale se terminant par au moins k zéros, il doit
être divisible par 10k, donc à la fois par 2k et par 5k. Plus précisément, le nombre de zéros
terminant l’écriture décimale de n vaut exactement min(v2(n), v5(n)). Il suffit donc de calculer

v5(100!) =

+∞
∑

k=1

⌊

100

5k

⌋

= 20+4 = 24, et v2(100!) =
+∞
∑

k=1

⌊

100

2k

⌋

= 50+25+12+6+3+1 = 97.

Notre nombre se finit donc par 24 zéros.

Exercice 19 (***)

1. Un récurrence simple suffit ici : F2F0 − F 2
1 = 0 − 1 = −1 = (−1)1, donc P1 est vraie.

Supposons Pn vraie, alors Fn+2Fn −F 2
n+1 = (Fn+1 +Fn)Fn −F 2

n+1 = Fn+1Fn +F 2
n −F 2

n+1 =
Fn+1(Fn − Fn+1) + F 2

n . Or, Fn+1 = Fn + Fn−1, donc Fn − Fn+1 = −Fn−1, donc l’expression
devient F 2

n − Fn+1 − Fn−1 = −(−1)n = (−1)n+1 en exploitant l’hypothèse de récurrence. On
a bien prouvé la propriété au rang n+ 1.

2. Dans le cas où n est pair, l’égalité précédente est une identité de Bezout aFn+1 + bFn = 1,
avec a = Fn−1 et b = −Fn qui sont des coefficients entiers, donc Fn et Fn+1 sont premiers
entre eux. Si n est impair, il suffit de changer les signes pour aboutir à la même conclusion.

3. On va cette fois-ci effectuer une récurrence double sur l’entier p, n étant fixé. Pour p = 1,
FnF0 + Fn+1F1 = Fn+1, donc la propriété est vraie au rang 1. Si p = 2, FnF1 + Fn+1F2 =
Fn+Fn+1 = Fn+2, donc la propriété est également vraie au rang 2. Supposons l’égalité valable
aux rangs p et p+1, alors Fn+p+2 = Fn+p+1+Fn+p = FnFp+Fn+1Fp+1+FnFp−1+Fn+1Fp =
Fn(Fp + Fp−1) + Fn+1(Fp+1 + Fp) = FnFp+1 + Fn+1Fp+1, ce qui prouve la propriété au rang
p+ 2 et achève la récurrence.

Un diviseur commun à Fn et Fp sera donc diviseur de Fn+p, et par conséquent diviseur
commun à Fn et Fn+p. De façon similaire, un diviseur commun à Fn et Fn+p sera diviseur
de Fn+1Fp, et Fn et Fn+1 étant premiers entre eux, le diviseur de Fn divisera nécessairement
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Fp, et sera par conséquent diviseur commun de Fn et Fp. Les diviseurs communs des deux
couples sont donc identiques.

4. D’après la question précédentes, Fn ∧ Fm = Fn ∧ Fn−m = Fn ∧ Fn−km pour tout entier k

(quitte à appliquer plusieurs fois de suite la relation). En appliquant successivement toutes
les étapes de l’algorithme d’Euclide de recherche du pgcd aux entiers n et m, les couples (a, b)
obtenus à toutes les étapes vérifieront donc Fn ∧ Fm = Fa ∧ Fb. Puisque le dernier couple
obtenu sera (n ∧m, 1), on a donc Fn ∧ Fm = Fn∧m ∧ F1 = Fn∧m.

5. En effet, par contraposée, si n n’est pas premier, on peut choisir un diviseur m de n non
trivial, et on a alors Fn ∧ Fm = Fn∧m = Fm. En particulier, Fn est divisible par Fm et c’est
certainement un diviseur distinct de 1 et de Fn. La réciproque est complètement fausse :
F3 = 2 est premier, F4 = 3, F5 = 5 est premier, F6 = 8, F7 = 13 est premier, F8 = 21,
F9 = 34, F10 = 55, F11 = 89 est premier, F12 = 144, F13 = 233 est premier, F14 = 377,
F15 = 610, F16 = 987, F17 = 1 597 qui est premier, F18 = 2 584, F19 = 4181. Et là, hop, au
moment où plus personne n’y croit, 4 181 = 37 × 113 alors que 19 est premier !

6. On vient de calculer les premiers termes, la vérification est donc facile, et en effet F8 = 3× 7
est le premier nombre de la suite divisible par 7. Si on calcule plus précisément les restes de
la division par 7 des termes de la suite, on obtient pour les huit premiers termes 1, 1, 2, 3,
5, 1, 6, 0, puis on obtiendra ensuite (via la relation de récurrence définissant la suite) 6, 6,
5, 4, 2, 6, 1, 0, puis 1, 1, et on constate que la suite des restes est périodique de période 16,
et donc qu’elle reprendra les valeurs 0 quand n ≡ 0[16] ou n ≡ 8[16], c’est-à-dire exactement
quand n est divisible par 8.

Exercice 20 (**)

1. Les diviseurs de 32 sont 1, 2, 4, 8, 16 et 32 lui-même, donc S(32) = 1+2+4+8+16+32 = 63
(une belle somme de suite géométrique). Pour 28, on a comme diviseurs 1, 2, 4, 7, 14 et 28, donc
S(28) = 1+2+4+7+14+28 = 56. Enfin, 60 admet beaucoup de diviseurs : 1, 2, 3, 4, 5, 6, 10,
12, 15, 20, 30 et 60, ce qui donne S(60) = 1+2+3+4+5+6+10+12+15+20+30+60 = 168.

2. Un nombre premier n’admet comme diviseurs que 1 et lui-même. Dans ce cas, on a donc
S(n) = n+ 1.

3. Les seuls diviseurs de pk sont les puissances inférieures de p : 1, p, p2, . . ., pk. On a donc une

somme géométrique à calculer, comme pour S(32) plus haut : S(pk) =
k
∑

i=0

pi =
pk+1 − 1

p− 1
.

4. Le plus simple est de rédiger une récurrence sur l’entier k. Le cas où k = 1 est exactement
celui traité à la question précédente, la formule obtenue correspond bien à celle de l’énoncé.

Supposons donc, en posant m =
k−1
∏

i=1

pαi

i , que S(m) =
k−1
∏

i=1

p
αi+1
i − 1

pi − 1
. Tout diviseur de n peut

alors s’écrire sous la forme d×p
j
k, avec d un diviseur quelconque de m (on notera D l’ensemble

de ces diviseurs) et j ∈ {0, . . . , αk}. On a donc S(n) =
∑

d∈D

k
∑

j=0

dp
j
k =

(

∑

d∈D

d

)

× pk+1
k − 1

pk − 1
. Il

ne reste plus qu’a appliquer l’hypothèse de récurrence pour conclure.

5. C’est assez évident : n =
k
∏

i=1

pαi

i et m =
k′
∏

j=1

q
βj

j , avec des pi et qj qui sont tous distincts deux

à deux puisque les entiers n et m sont premiers entre eux. On a donc nm =

k
∏

i=1

p
αi

i

k′
∏

j=1

q
βj

j puis

en appliquant la formule de la question précédente S(nm) =

k
∏

i=1

pαi+1
i − 1

pi − 1
×

k′
∏

j=1

q
βj+1
j − 1

qj − 1
=
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S(n)× S(m).

Exercice 21 (***)

1. Cela revient simplement à dire que 2 est le seul nombre premier pair, ce qui est effectivement
vrai.

2. Faisons donc ce qu’on nous dit : notons p1, p2, . . ., pk les seuls nombres premiers congrus à 3

modulo 4 (en supposant par l’absurde qu’il y en a un nombe fini) et posons m = 4
k
∏

i=1

pi − 1.

L’entier m est évidemment impair, et ne peut avoir aucun des pi comme facteur premier par
construction (car cahque pi est un diviseur de m+1). Tous ses facteurs premiers sont donc des
entiers impairs congrus à 1 modulo 4. Or, le produit de deux tels entiers est lui-même congru
à 1× 1 = 1 modulo 4, donc m devrait être congru à 1 modulo 4. Mais la construction même
de l’entier m montre que m ≡ −1[4], ce qui est évidemment contradictoire. Conclusion : on a
bien une infinité de nombres premiers de la forme 4k + 3.

3. Commençons par constanter que, hormis 2 et 3, tous les nombres premiers sont nécessairement
congrus à 1 ou 5 modulo 6 (si leur congruence était paire, ils seraient eux-mêmes pairs, et
tout nombre congru à 3 modulo 6 est divisible par 3). On fait ensuite exactement le même
raisonnement par l’absurde : supposons que la liste finie des entiers premiers congrus à 5

modulo 6 soit p1, p2, . . ., pk, et posons m = 6

k
∏

i=1

pi − 1. Le nombre m est impair (pas de

facteur 2 dans sa décomposition en facteurs premiers), pas divisible par 3 (puisque congru
par construction à −1 modulo 3), et ne peut avoir aucun des pi comme facteur premier. Tous
ses facteurs premiers sont donc congrus à 1 modulo 6, ce qui implique que m ≡ 1[6], ce qui
est manifestement faux. On a donc une infinité de nombres premiers congrus à 5 modulo 6.

Si vous avez quelques heures (jours ?) devant vous, vous pouvez maintenant vous attaquer au très
intéressant mais fort difficile théorème de Dirichlet : pour tout entier n non nul et tout entier
k premier avec n, il existe une infinité de nombres premiers congrus à k modulo n (autrement dit,
une suite arithmétique comporte toujours une infinité de nombres premiers si son premier terme est
premier avec sa raison).

Exercice 22 (**)

1. En notant d et m le pgcd et le ppcm de a et de b, on a a = da′ et b = db′, avec a′ ∧ b′ = 1. On
en déduit que a+ b = d(a′ + b′). De plus, m = da′b′ puisque d×m = ab. Comme m et a+ b

sont divisibles par d, il suffit donc de prouver que a′ + b′ et a′b′ sont premiers entre eux pour
prouver qu’il s’agit de leur pgcd. Or, si a′ + b′ et a′b′ avaient un diviseur commun (autre que
1), on pourrait le choisir premier. Dans ce cas, il diviserait soit a′, soit b′ (puisqu’il divise leur
produit). S’il divise par exemple a′, il divisera aussi (a′ + b′)− a′ = b′, et donc aussi a′b′, ce
qui contredit notre définition. Les nombres a′ + b′ et a′b′ sont donc bien premiers entre eux,
et (a+ b) ∧ (a ∨ b) = a ∧ b.

2. En gardant les notations de la réponse précédente, on aurait d = a∧b = (a+b)∧m = 144∧420.
Or, 144 = 122 = 24×32, et 420 = 4×105 = 22×3×5×7, donc on obtient d = 12. Les entiers

a′ et b′ ont donc une somme égale à 12 et un produit égal à
420

12
= 35. Ils sont alors solution

de l’équation du second degré x2−12x+35 = 0, qui a pour discriminant ∆ = 144−140 = 4 et

pour racines x1 =
12− 2

2
= 5 et x2 =

12 + 2

2
= 7. On peut donc avoir a′ = 5 et b′ = 7, ce qui

donne a = 60 et b = 84, ou le contraire. Il y a donc deux solutions : S = {(60, 84), (84, 60)}.
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Exercice 23 (***)

1. En effet, les diviseurs de 6 sont 1, 2, 3 et 6 dont la somme est bien égale à 12 = 2 × 6. De
même, 28 a pour diviseurs 1, 2, 4, 7, 14 et 28 dont la somme vaut 56 = 2× 28.

2. Raisonnons par contraposée. Si p n’est pas premier, alors on peut écrire p = a×b, avec a, b tous

les deux supérieurs ou égaux à 2. On peut alors écrire 2p − 1 = (2a)b − 1 = (2a − 1)

b−1
∑

k=0

(2a)k.

On a écrit 2n − 1 comme produit de deux facteurs supérieurs ou égaux à 2, donc il n’est pas
premier, ce qui prouve la propriété demandée.

3. Comme 2p−1 est un entier premier, la décomposition en facteurs premiers de n est donnée par
n = 2p−1(2p−1). Tous les diviseurs de n sont alors de la forme 2k, avec k ∈ {0, 1, . . . , p−1}, ou

2k(2p−1), pour les mêmes valeurs de k. On calcule alors aisément S(n) = (1+2p−1)

p−1
∑

k=0

2k =

2p × 2p − 1

2− 1
= 2p(2p − 1) = 2n, donc n est un nombre parfait.

4. La valeur n = 6 correspond à p = 2, n = 28 = 4 × (8 − 1) correspond à n = 3. On ne peut
pas tester p = 4 qui n’est pas vraiment un nombre premier, passons donc à p = 5, qui donne
n = 16 × 31 = 496, qui est donc un entier parfait. Pour information, le suivant vaut 8 128
pour p = 7.

5. (a) Je vous laisse (re)lire la correction de l’exercice 19 qui prouve que, si n et m sont premier
entre eux, alors S(mn) = S(m)S(n). Ici, on obtient donc S(n) = S(2a)S(b) et il ne reste

plus qu’à calculer S(2a) = 1 + 2 + · · · + 2a =
2a+1 − 1

2− 1
= 2a − 1, ce qui donne bien la

formule annoncée. Mais on doit aussi avoir, puisque n est un entier parfait, S(n) = 2n,
donc (2a − 1)S(b) = 2n = 2a+1b, donc 2a+1b = (2a+1 − 1)S(b). La décomposition en
facteurs premiers de S(b) contient donc le facteur 2a+1 (puisque 2a+1 − 1 est impair, il ne
peut contenir aucun facteur 2), ce qui revient bien à dire que S(b) = 2a+1 × c.

(b) D’après la question précédente, S(b) = 2a+1c et 2a+1b = (2a+1 − 1)S(b), donc b = (2a+1 −
1)c, puis S(b) = b+ c. Or, b et c sont des diviseurs distincts de b, il est donc indispensable
d’avoir c = 1, ce qui implique que S(b) = b+ 1, donc que b n’a pas d’autre diviseur que 1
et lui-même, et que b est donc un nombre premier.

(c) Comme b = 2a+1 − 1, on a n = 2a × (2a+1 − 1), avec 2a+1 − 1 premier. C’est exactement
ce qu’on voulait prouver.

Pour les curieux : on connait donc (au moins théoriquement, car déterminer si 2p − 1 est un nombre
premier n’est pas évident, les nombres correspondants sont d’ailleurs appelés nombres de Mersenne)
tous les nombres parfaits pairs. Qu’en est-il des nombres parfaits impairs ? On conjecture qu’il n’en
existe aucun, mais personne n’a encore réussi à le prouver.

Problème (***)

1. Tout est assez évident, l’ensemble contient les deux éléments neutres 0 et 1, il est manifes-
tement stable par somme et par produit (si a, b, c, d sont quatre entiers relatifs, ad + bc et
ac− bd sont aussi entiers, donc (a+ bi)(c + di) ∈ G), ainsi que par passage à l’opposé. C’est
bien un sous-anneau de C.

2. Si G admettait des diviseurs de 0, ils le seraient également dans C qui est intègre, donc G

l’est aussi.

3. Pour x et y entiers de Gauss (avec y non nul), on note a et b les parties réelle et imaginaire

de
x

y
.
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(a) Calculons explicitement
c+ id

e+ if
=

(c+ id)(e − if)

e2 + f2
=

ce+ df

e2 + f2
+

de− cf

e2 + f2
i. Les nombres

a =
ce+ df

e2 + f2
et b =

de− cf

e2 + f2
sont certainement rationnels.

(b) L’existence ne pose aucun problème (l’unicité par contre serait fausse pour cette « division
euclidienne »), elle serait même vraie pour tout nombre réel. Si on pose n = ⌊a⌋, on aura
n 6 a < n + 1, avec (n + 1 − a) + (a − n) = 1. On a donc une somme de deux nombres

positifs qui est égale à 1, au moins l’un des deux est inférieur ou égal à
1

2
, ce qui prouve

que 0 6 a − n 6
1

2
ou 0 6 n + 1 − a 6

1

2
et donne une valeur de p convenable. C’est

exactement pareil pour q.
(c) Avec les notations de la question précédente, on peut écrire |(a + ib) − (p + iq)| =

√

(a− p)2 + (b− q)2 6

√

1

4
+

1

4
6

1√
2

< 1. En notant z = p + iq, z est donc un en-

tier de Gauss vérifiant

∣

∣

∣

∣

x

y
− z

∣

∣

∣

∣

< 1. Il suffit de multiplier cette majoration par |y| et

d’appliquer les règles de calcul usuelles sur les modules pour en déduire |x− yz| < |y|.
(d) Prenons par exemple x = 1 et y = 1 − i. On a donc |y| =

√
2. On peut poser z = 0 :

|x−0y| = |x| = 1 < |y|, mais on peut aussi poser z = i par exemple : |x−iy| = |1−i−1| =
1 < |y|. Il y en fait ici quatre valeurs de z convenables : 0, 1, i et i+ 1.

4. (a) Les propriétés de multiplicativité des modules impliquent que, dans ce cas, |y|2 = |xz|2 =
|x|2|z|2. Le module de z étant un entier naturel (comme pour tout entier de Gauss, il est
de la forme a2 + b2 avec (a, b) ∈ Z

2, |x|2 est bien un diviseur de |y|2.
(b) D’après la question précédente, la norme des diviseurs potentiels de y sera majorée par

|y|. en particulier, si x = a+ ib divise y, alors |a| 6 |y| et |b| 6 |y|. On a donc un nombre
fini de valeurs possibles pour a et b, et par conséquent un nombre fini de couples (a, b)
pouvant correspondre à un entier de Gauss divisant y.

(c) Il suffit tout simplement d’appliquer tel quel l’algorithme d’Euclide (si on a des choix à faire
lors de certaines divisions euclidiennes qui n’ont pas un couple quotient/reste unique, on
choisit n’importe quel couple convenable). Par construction, si on part de deux entiers de
Gauss x et y, et qu’on construit une suite rn telle que r0 = x, r1 = y et rn−1 = qrn+rn+1,
les entiers de Gauss divisant rn et rn+1 seront les mêmes que ceux divisant rn et rn+1(donc
leur diviseur commun de plus grand module aura le même module), donc l’avant dernier
reste obtenu avant d’avoir rn = 0 sera un diviseur commun de plus grand module possible
pour a et b. On est bien sûr certain d’avoir rn = 0 au bout d’un nombre fini d’étapes,
puisque la division euclidienne assure la stricte décroissance des carrés des modules des
entiers de Gauss rn, qui forment donc une suite strictement décroissante d’entiers positifs,
qui finira par atteindre 0.

(d) On pose donc r0 = 7 + 11i et r1 = 1 + 8i. Pour effectuer leur division euclidienne, on
calcule tout simplement leur quotient puis on cherche l’entier de Gauss le plus proche du

résultat, qui servira de quotient :
7 + 11i

1 + 8i
=

(7 + 11i)(1 − 8i)

1 + 64
=

95− 45i

65
=

19

13
− 9

13
i.

On va donc prendre comme quotient q = 1− i, et calculer r2 = r0 − qr1 = 7 + 11i− (1−
i)(1 + 8i) = 7 + 11i − 1− 8i+ i− 8 = −2 + 4i (qui a bien un carré de module largement

inférieur à 65). On continue :
1 + 8i

−2 + 4i
=

(1 + 8i)(−2 − 4i)

4 + 16
=

30− 20i

20
=

3

2
− i. On peut

par exemple prendre q = 1 − i (l’autre choix possible étant q = 2 − i), ce qui donnera
r3 = 1+8i− (1− i)(−2−4i) = 1+8i+2+4i−2i−4 = −1+2i. Pas besoin de se fatiguer
beaucoup pour se rendre compte que r2 = 2r3, donc le prochain reste sera nul, et notre
diviseur de plus grand module est r3 = −1+2i, qui a pour module

√
5. On peut vérifier que

c’est bien un diviseur commun : 7+11i = (−1+2i)(3−5i) et (1+8i) = (−1+2i)(3−2i).

5. Si un entier de Gauss divise 1, d’après la question 4.a, le carré de son module divise |1|2 = 1,
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donc son mudole est égal à 1. Il n’y a que quatre entiers de Gauss de module 1 : 1, −1, i et
−i. Les quatre sont des diviseurs de 1 puisque (−1)× (−1) = i× (−i) = 1. Il y a donc quatre
unités dans G.

6. C’est assez évident, il contient 1, est stable par produit (puisque le module du produit de
deux entiers de Gauss de module 1 sera nécessairement un entier de Gauss de module 1) et
par passage à l’inverse, c’est bien un sous-groupe multiplicatif de C

∗.

7. Soit donc d un diviseur de plus grand module de x et de y, alors les nombres −d, id et −id

sont aussi des entiers de Gauss divisant x et y et ont le même module que d, ce qui nous fait
(au moins) quatre diviseurs de plus grand module possible pour x et y. Réciproquement, si d′

est un diviseur de plus grand module de x et y autre que d, on a nécessairement d qui divise
d′ (et réciproquement), donc d′ = zd, avec z un entier de Gauss qui par construction devra
être de module 1 puisque |d| = |d′|. Il s’agit donc nécessairement d’une unité de G, ce qui
prouve que d′ est l’un des quatre nombres d, −d, id ou −id.

8. (a) Attention, un nombre premier au sens classique du terme ne sera pas toujours un entier
de Gauss élémentaire. Par exemple, 2 est un nombre premier mais 2 = (1 + i)(1− i) n’est
pas un entier de Gauss élémentaire. Par contre, 1 + i et 1 − i sont élémentaires (ils ont
un carré de module égal à 2, donc leurs diviseurs doident avoir un carré de module égal à
1 ou 2, autrement dit ce sont soit des unités, soit des multiples de 1 + i ou 1 − i par des
unités).

(b) On peut faire exactement la même démonstration que pour les nombres premiers : si la liste

est finie, notons p1, p2, . . ., pn tous les entiers de Gauss élémentaires, et posons n =

n
∏

i=1

pi+i

(histoire de faire intervenir un peu plus les complexes), alors n n’est divisible par aucun
des nombres pi (si pi divisait n, comme il divise n−i, il diviserait également i et serait donc
une unité de G). Soit n lui-même est un entier de Gauss élémentaire (et notre hypothèse
était fausse), soit il admet des diviseurs élémentaires (tout entier de Gauss admet des
diviseurs élémentaires, s’il n’est pas lui-même élémentaire, on l’écrit sous la forme yz, et
si ni y ni z ne sont élémentaires, on recommence, le carré du module diminue strictement
à chaque étape donc on tombera nécessairement sur un entier de Gauss élémentaire au
bout d’un moment) qui n’appartiennent pas non plus à la liste des pi, et on aboutit à la
même contradiction.

9. (a) C’est exactement la même démonstration que pour le théorème de Bézout sur les entiers.

(b) C’est exactement la même démonstration que pour le théorème de Gauss sur les entiers.
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