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Exercice 1 (*)

Commengons par écrire la décomposition du nombre 150 en facteurs premiers : 150 = 2 x 75 =
2 x 3 x 52. Si on veut écrire 150 comme produit de deux entiers premiers entre eux, il faut donc
séparer les facteurs 2, 3, 5 et 5 en deux ensembles, avec la condition que les deux facteurs 5 doivent
étre dans le méme ensemble (pour avoir des nombres premiers entre eux). Quatre choix possibles :
52 = 25 d'un coté, 2 x 3 = 6 de l'autre ; 52 x 3 = 75 d’un coté, 2 de I'autre; 52 x 2 = 50 d'un coté et 3
de I'autre ; et enfin la solution triviale 150 et 1. Si on accepte les entiers relatifs, on a huit solutions au
lieu de quatre : § = {(150, 1), (75,2), (50, 3), (25,6), (=150, —1), (=75, —2), (=50, —3), (—25, —6) }.

Exercice 2 (*)

1 suffit d’écrire n?—20n2+4-4 = (n*—4n244)—16n% = (n?>—2)%2—(4n)? = (n®>—4n+2)(n®>+4n+2).
Les deux facteurs n? — 4n + 2 et n? 4+ 4n + 2 sont évidemment entiers tous les deux, et ne peuvent
pas étre égaux tous les deux & +1 puisque leur écart est égal & 8n. Le seul cas qui pourrait poser
probléme est n = 0 pour lequel n* — 20n + 4 = 4 n’est pas un nombre premier. On a donc bien
prouvé que cette expression ne donnait jamais un nombre premier.

Exercice 3 (*)

Supposons donc n = 3P x 5%, alors les diviseurs de n (on se restreint ici aux diviseurs positifs,
les énoncés sont malheureusement souvent un peu ambigus & ce sujet) sont tous les entiers de la
forme 3* x 57, avec 0 < ¢ < p et 0 < j < ¢. Leur produit peut donc s’écrire sous la forme z =

P q
H H 3i5d = 3D ot 5 5D X — 3% X 5(p+1)q(q2+1) (il ne faut pas oublier que quand
i=0 j=0

on i sort » un terme constant d’un produit, il est élevé & une puissance égale au nombre de termes
du produit). Or, 452 = (32 x 5)*2 = 38452 donc on doit avoir (g + 1)p(p + 1) = 168 = 2 x 84 et
(p+ 1)g(g + 1) = 84, ce qui impose évidemment p = 2¢, puis ¢(q+ 1)(2¢ + 1) = 84. On n’a besoin
que de trouver une solution évidente, ¢ = 3 convient puisque 3 x 4 x 7 = 84. Bien str, on aura alors
p =6, donc n = 3% x 53 = 729 x 125 = 91 125.

Exercice 4 (**)

Modulo 9, on calcule facilement 94 = 4[9]. Par ailleurs, les régles de calcul sur les congruences
assurent qu’en posant a, b et c les restes modulo 9 des nombres entiers z, y et z, on aura toujours
2343423 = a®+b3+c3[9]. Calculons donc tous les restes possibles de cubes modulo 9 : 03 = 0[9], 12 =
1[9], 23 = —1[9], 33 = 0[9], 43 = 1[9], 5% = —1[9], 6% = 0[9], 7> = 1]9] et 8 = —1[9] (on peut éviter
de faire certains calculs entiérement, par exemple 73 = (—2)3[9] = —8[9] = 1[9]). En additionnant
des 0, des 1 et des —1, on n’obtiendra jamais 4 (du moins pas avec trois nombres au départ), donc
I'équation n’a pas de solution. En fait, on démontre de méme que 1’équation 23 4y + 23 = a ne peut
pas avoir de solutions dans Z pour un gros paquet de valeurs possibles de a (toutes celles congrues
a 4 ou 5 modulo 9.



Exercice 5 (*)

Rappelons que ce critére revient a dire qu'un nombre est divisible par 9 si et seulement si la
somme de ses chiffres est elle-méme divisible par 9. On peut en fait démontrer mieux : un nombre
entier n a toujours le méme reste modulo 9 que la somme de ses chiffres. En effet, si on note ag,

ai, ..., ax les chiffres de I'écriture décimale de n (en sens inverse : ag est le chiffre des unités, a;
k k

celui des dizaines etc), alors n = Zakwk, donc n = Zak10k[9]. Or, 10 = 1]9] donc Vk € N,
i=0 i=0

k
10F = 1%[9] = 1[9]. On en déduit immédiatement que n Zak [9], ce qui est exactement ce qu’'on
1=0

voulait démontrer. La méme démonstration fonctionne bien entendu pour le critére de divisibilité
par 3 puisque 10 = 1[3].

Exercice 6 (*)

Le plus simple est de faire le raisonnement modulo 7 : on note a et b les restes modulo 7 des deux
entiers n et p, et on suppose donc que a?+b? = 0[7] (ce qui revient exactement a dire que n?+p? est
divisible par 7. Or, a? € 0,1,4,9,16,25,36, donc a® = 0,1,2,4[7] (notation pas vraiment autorisée
mais vous aurez tous compris), et de méme bien siir pour b?. Si on veut avoir a? + b? = 0[7], la seule
possibilité est a? = b? = 0[7], ce qui & son tour implique a = b = 0. Les deux entiers n et p sont donc
bien divisibles tous les deux par 7.

Exercice 7 (**)

1. Allons-y pour une récurrence brutale : ug = 3% 4+ 5 = 14 est divisible par 14. Supposons
désormais u, divisible par 14, alors u, 1 = 36 4 52043 = 34 x (y,, — 520+l 4 52043 —
8luy, + 52" x (25 — 81) = 81u, — 56 x 52"+, Comme u, est divisible par 14 (hypothése de
récurrence) et 56 est lui-méme un multiple de 14, on a manifestement u,1 divisible par 14,
ce qui achéve la récurrence.

2. Puisque u, = 9 x (3*)" +5 x (52)", les racines de I'équation caractéristique correspondantes
devraient étre 3* et 52, et I'équation caractéristique elle-méme est donc 22 — (81 + 25)z +
81 x 25 = 0, soit 2 — 106z + 2 025. Les entiers a et b demandés par I’énoncé sont donc
respectivement égaux a 106 et —2 025 (non, je ne ferai pas la vérification, c’est inutile).

3. Avec la relation de récurrence up4+o = 106u,+1 — 2 025, 'hérédité de la récurrence double
devient triviale : si u,, et u,41 sont deux multiples de 14, u, 12 est la somme de deux multiples
de 14, donc aussi un multiple de 14. Par contre, il nous faut une initialisation double, donc
on doit calculer u; = 3% — 5% = 729 4+ 125 = 854 = 14 x 61, qui est bien lui aussi un multiple
de 14.

Exercice 8 (**)

1. En notant a le reste de la division de n par 8, on aura n? = a?[8]. On calcule donc simplement
les restes modulo 8 de 0, 1, 4, 9, 16, 25, 36 et 49, qui donnent respectivement 0, 1, 4, 1, 4, 1,
4, 1.

2. Si n s’écrivait sous la forme n = a? + b? + 2, on aurait enparticulier a® + b2 + ¢ = 7[8]. Or,
il est impossible d’obtenir un reste égal & 7 en additionnant des 0, des 1 et des 4 (on peut
obtenir 0, 1, 2, 3, 4, 5 et 6 assez facilement par contre).

Exercice 9 (**)

1. En écrivant n®+5 = n(n?+7)+5—7Tn, on constate que, si n>+7 | n3+5, alors n2+7 | 7Tn—5.
Cela suppose en particulier que n? +7 < |Tn — 5| < 7|n| + 5. En notant x = |n|, on doit



donc avoir 2 — 7Tz 4+ 2 < 0. Ce trindéme a pour discriminant A = 49 — 8 = 41 et admet pour

7 — 41 7+ v41
Tet :%.Comm66<\/41<7,onax1>06tx2<7.Le

trindme étudié est négatif entre ses racines, ce qui impose que |n| € {1,2,3,4,5,6}. Il ne reste
plus qu’a tester brutalement les douze valeurs de n possibles (oui, parfois, 'arithmétique ce
n’est pas trés subtil). Pour n = 1, n? + 7 = 8 et 7n — 5 = 2, ¢a ne marche pas. Pour n = 2,
n?+7=11et Tn —5 =9, toujours pas. Pour n = 3, n> + 7 = 16 et 7n — 5 = 16, miracle, on
a trouvé une solution. Pour n =4, n? + 7 = 23 et 7n — 5 = 23, une deuxiéme solution! Pour
n=>5,n2+7=32et Tn—>5 = 30, ca ne marche pas. Et pour n = 6, n>47 = 43 et Tn—5 = 37,
¢a ne marche pas non plus (oui, la majoration de la valeur absolue par l'inégalité triangulaire
en cours de calcul n’était pas optimale, on aurait pu éviter quelques vérifications ultérieures.
Aucune valeur négative ne fonctionne (les valeurs de n2 +7 sont les mémes que celles calculées
pour les entiers positifs, et 7 x (—1) —5 = —12 n’est pas multiple de 8; —14 — 5 = —19 n’est
pas multiple de 11; —21 — 5 = —26 pas multiple de 16; —28 — 5 = —33 pas multiple de 23;
—35 — 5 = —40 pas multiple de 30 et enfin —42 — 5 = —47 par multiple de 43). Finalement,

racines r1 = 9

S ={3,4}.
[11ln —5 1In—-5
2. Si 272 st un entier, son carré —nTo aussi, ce qui implique que n 44 divise 11n — 5.
n+4 n+4

Or, 11n —5 = 11(n + 4) — 49, donc on aura dans ca cas également 49 qui est un multiple de
n+4. Comme 49 n’a pas des tonnes de diviseurs, n + 4 doit donc appartenir & ’ensemble fini
{—49,-7,—-1,1,7,49}, soit n € {—53,—11,—5,—-3,3,45}. Devinez quoi? On va tester toutes
1ln—5  —588

ces possibilités une par une. Si n = —53, = = 12, qui n’est pas vraiment un
tn—s —16" - Y
carré parfait. Si n = —11, n+—4 = — 7= 18, toujours pas un carré parfait. Si n = —5,
n [e—
1In -5 —60
n+4 = - toujours pas de carré parfait & ’horizon. Si n = —3, c’est encore pire
n p—
. . s e 11n -5 28 )
puisque le quotien est alors négatif. Si n = 3, oyl ST s 4, ca marche! Et si n = 45,
n
1ln—5 490

T 10 qui n’est pas un carré, donc S = {3}.

Exercice 10 (**)

Comme n est supposé non premier, on peut écrire n sous la forme a x b. Si a # b, les deux
n
diviseurs sont certainement plus petits que 5 donc que n — 2 (pour un entier plus grand que 4,

n
5 < n —2), donc ils apparaissent tous les deux comme facteurs de (n — 2)!, qui par conséquent est

divisible par n. C’est un peu plus dur dans le cas ot n est un carré parfait, et donc a = b = /n.
Dans ce cas, il faut faire apparaitre deux facteurs a dans (n — 2)!, ce qui sera le cas si 2a < n—2. Or
20 < n—2 < a®—2a—2 > 0 puisque par hypothése n = a?. Ce sera donc le cas si (a —1)? > 3, donc
si (a — 1) > 2 (tous ces nombres sont des entiers naturels), soit a > 3. Comme on a supposé n > 6,
c’est bien le cas, ce qui prouve que a et 2a seront facteurs de (n — 2)!, et donc que cette derniére

valeur est divisible par a? = n.

Exercice 11 (**)

Faisons tous les cas possibles un par un selon le nombre k£ d’entiers consécutifs & ajouter :

e pour £k =1 on est dans le cas trivial, on se contente de prendre 1 050.

e pour k = 2, on devrait avoir 1 050 = p+ (p+1) = 2p+ 1, ce qui parait difficile dans le mesure
ou 1 050 est un entier pair.

e pour k = 3, on devrait avoir 1 050 = p+ (p+ 1) + (p + 2) = 3p + 3, donc en particulier

1 050 = 0[3], ce qui est le cas. Il ne reste qu’a calculer Era—— 349 pour savoir ol partir :



1 050 = 349 + 350 + 351.
k—1

de fagon plus générale, si 1 0560 =p+ (p+ 1)+ (p+2)+---+(p+k—-1) :kp—i—Zz’:

i=1
k(k—1

en facteurs premiers de 1 050 pour gagner un peu de temps et isoler les candidats potentiels :
1050 =2x525 =2x3x175 =2x3x5%x7, donc les diviseurs naturels de 1 050 sont
1,2,3,5,6,7,10,14, 15, 21, 25, 30, 35, 42, 50, 75, 105, 150, 175, 210, 350, 525 et 1 050, auxquels il
faudra rajouter les doubles 4, 12,14, 20, 28, 60, 70, 84, 100, 150, 210, 300, 350, 420, 700 et 2 100.

k.
, alors 1 050 est nécessairement divisible par 5 Ecrivons alors la décomposition

pour k = 4, on devrait avoir 1 050 = 4p + 6, donc p = % = 261. En effet, 1 050 =
261 + 262 + 263 + 264.

pour k = 5, on devrait avoir 1 050 = 5p + 10, donc p = % = 208. En effet, 1 050 =
208 + 209 + 210 + 211 + 212.

pour k = 6, on devrait avoir 1 050 = 6p + 15, donc p = 12¥ qui n’est pas entier (c’est en
fait normal, seuls les multiples de 4 pourront fonctionner parmi les doubles).

pour k = 7, on devrait avoir 1 050 = 7p + 21, donc p = ﬁ = 147. En effet, 1 050 =

147 + 148 4+ 149 + 150 + 151 + 152 + 153. 1005
pour k = 10, on devrait avoir 1 050 = 10p + 45, donc p = 0 qui n’est pas entier, comme
prévu.

978
pour k = 12, on devrait avoir 1 050 = 12p + 78, donc p = 13 qui n’est pas non plus entier.

959
pour k = 14, on devrait avoir 1 050 = 14p + 91, donc p = i qui n’est pas entier.

945
pour k = 15, on devrait avoir 1 050 = 15p + 105, donc p = 5 = 63. En effet, 1 050 =

63 +64 +654+66+67+68+69+T0+71+72+73+7T74+75+76+77.

pour k = 20, on devrait avoir 1 050 = 20p 4+ 190, donc p = % = 43. En effet, 1 050 =
43+444+45+46+47+48+49+50+51+52+53 + 54+ 55+ 56 + 57+ 58 + 59+ 60 + 61 + 62.
pour k£ = 21, on devrait avoir 1 050 = 21p + 210, donc p = CTH 40. Bon, je ne vais pas
écrire toutes les décompositions, car ¢a deviendrait lassant, mais ¢a fonctionne : 1 050 =
40 +41 442 4 --- 4+ 59 + 60.

pour k = 25, on devrait avoir 1 050 = 25p + 300, donc p = 72i50 = 30, donc 1 050 =

30 +31+---+ 53 + 54 (belle somme centrée sur la magnifique valeur 42).

672
pour k = 28, on devrait avoir 1 050 = 28p + 378, donc p = — = 24, donc 1 050 =

28
24 +25+---+ 50+ 51.

615
pour k = 30, on devrait avoir 1 050 = 30p + 435, donc p = ——, qui n’est pas trop entier.

30
455
pour £ = 35, on devrait avoir 1 050 = 35p + 595, donc p = — = 13, donc 1 050 =

35
13+ 14 + -+ + 46 + 47.

189
pour k = 42, on devrait avoir 1 050 = 42p + 861, donc p = VTR qui n’est hélas pas entier (ga

175
pour k = 50, on devrait avoir 1 050 = 50p + 1225, donc p = ~ o5 qui en plus de ne pas étre

ne marche pas pour 42, c’est scandaleux).

entier est négatif, on oublie.

720
pour k = 60, on devrait avoir 1 050 = 60p + 1 770, donc p = %0 = —12, donc 1 050 =

(-12)+(-11)4+---+(-1)+0+1+4---+124+ 13+ 14+ --- + 46 + 47, ce qui est en fait la
méme somme que pour k = 35 si on simplifie les valeurs négatives avec les premiers entiers
positifs.



—-172
725 = —23. Cette

solution n’est pas valable puisque 1’énoncé parlait d’entiers naturels, mais on a bel et bien
1050 = (—23)+(—22)+---+(—-1)+0+1+4---+50+51 = 24+25+--- +50+51, c’est-a-dire
une solution déja obtenue pour k = 28.

e les valeurs suivantes donneront toujours des points de départ négatifs, et donc des cas déja
traités dans les cas ol ¢a fonctionne.

e pour k£ = 75, on devrait avoir 1 050 = 75p + 2 775, donc p = —

On a obtenu au total pas moins de 10 décompositions différentes. Je vous laisse maintenant le
soin de faire le méme travail pour 105 050 (en fait, on peut arriver & compter les cas sans les écrire
tous, mais ga nécessite un peu de soin).

Exercice 12 (**)

1. Puisque I’équation ne fait intervenir que les carrés des trois inconnues, si (z,y, z) est solution,
alors (|z|,|yl, |z|) sera un triplet de solutions dans N3. Réciproquement d’ailleurs, si (x,, z)
est une solution dans N3, alors tous les triplets de la forme (4, £y, +2) seront solutions du

probléme.
2. (a) Notons simplement d le pged des entiers zg, yo et zo. Par définition du pged, les nombres
x Z
T = —0, Y1 = Y0 ot z1 = 2 sont entiers, et ont un pged égal a 1. Or, le triplet (x1,y1, 21)

est clairement solution de ’équation de départ.
(b) Faisons donc un petit tableau, toutes les valeurs étant donc des restes modulo 7 :

n |o]1]2]3]4]5]6
nZ lol1l4]2]2]4]1
—n2]10|6[3|5]5|3]6

(c) Puisqu'on a bien entendu 722 = 0[7], I'équation initiale implique que z? + y? = 0[7], ou
encore que x% = —y% [7]. D’apreés le tableau précédent, les seuls carrés pouvant étre opposés

modulo 7 sont ceux de nombres divisibles par 7 (on ne trouve aucun couple de valeurs
identiques dans les deux derniéres lignes du tableau ailleurs que dans la premiére colonne).
Les nombres 22 et y2 doivent donc étre tous les deux divisibles par 7 pour que le triplet
(71,1, 21) puisse étre solution. Or, si 7 divise #2 = 21 x 1, alors 7 divise 21 puisque 7
est un nombre premier. De méme pour ;.

(d) Sixp et y;1 sont tous les deux divisibles par 7, alors 2% +? est divisible par 72, donc 727 est
un multiple de 49, ce qui implique que z% est un multiple de 7, et donc que z; également
(méme raisonnement qu’a la question précédente). Les trois nombres z1, y; et 1 sont
donc des multiples de 7, ce qui contredit le fait que leur pged soit égal a 1. L’hypothése
qu’il existe une solution non triviale est donc absurde. NOtre équation a donc pour unique
solution (0,0,0).

3. Le triplet (1,2,1) est solution de I’équation z2 + 32 = 522 puisque 12 + 22 = 5 = 5 x 12,
Or, multiplier une solution par un entier naturel quelconque produira toujours une nouvelle
solution (si 2% + y? = 522, alors (nz)? + (ny)? + 5(n2)?), ce qui produit directement une
infinité de solutions distinctes de la forme (n,2n,n). Ce ne sont d’ailleurs pas du tout les
seules : on peut changer les signes, permuter les valeurs de x et de y, et méme trouver encore
d’autres solutions comme (2,11,5) (puisque 4 + 121 = 5 x 25) qui ne peut pas étre obtenue
a I'aide des manipulations précédentes. Il existe bien stir des solutions pour lesquelles x = 42
(par exemple (42,84,42) ou (42,21,21)), et aussi pour lesquelles z = 42 (encore une fois,
(42,84, 42) convient!).

L’équation 22 + 52 = 1322 admet comme solution non triviale (2, 3,1), a partir de laquelle
on construit aisément une infinité de solutions non triviales de la forme (2n,3n,n). Il suffit
bien str de prendre n = 42 pour avoir comme solution (84,126,42), pour laquelle z = 42.
Mais en posant n = 21, on trouve aussi (42,63,21) qui est une solution pour laquelle x = 42.
En fait ce n’était pas vraiment plus dur avec 13 qu’avec 5.



Exercice 13 (**)

Supposons donc que x = P soit solution de I’équation, avec tant qu’a faire p A ¢ = 1. On aurait

3 2 9
donc p_3 + p_2 + i
qa q q
divise p, ce qui n’est possible que si ¢ = 1 puisque p et q (et donc p et ¢®) sont supposés premiers
entre eux. On a donc ¢ = 1, ce qui revient a dire que z est en fait un nombre entier. Or, 23422422 +1
est toujours un entier impair lorsque x est entier, et ne peut donc jamais étre égal a 0.

+1 =0, et a fortiori p?+gp®+2pg®+¢> = 0. Ceci implique que ¢> = —p3 —qp®—2pq>

Exercice 14 (**)

1. Puisque b = cq + r, on peut écrire ap = Gegyr = p9TT —1 =p" x (p9—1)+p" —1 =
q—1
p"(p®? —1) + a,. Or, on peut écrire p?—1 = (p)?1—1= (p°—1) Z(pc)i, qui est un multiple
=0
de a.. On peut donc écrire ap sous la forme ka. + a,. Un diviseur commun de a; et de a,
divisera donc aussi a;, — ka. = a,, et réciproquement, tout diviseur commun de a, et de a. sera
un diviseur de ap. Le pged des deux couples (ap, ac) et (ac, a,) est donc également le méme.

2. Il suffit d’appliquer I'algorithme d’Euclide a partir de b et de ¢. En notant r; les restes succesifs,
la question précédente assure que ap A a. = a,; A ar, 41 bour tout entier ¢. Au moment ol
I'agorithme s’achévera, on aura ap A a. = appe N ag, et comme ag = 0, ce dernier pged est
simplement égal & apae, ce qui achéve la preuve.

Exercice 15 (**%*)

1. On calcule donc Fy = 2 41 =2+1=3 qui est premier, F; = 22 +1 = 5 qui est
aussi premier, Fp = 24 + 1 = 17 qui est encore premier (¢a vous rappelle des histoires de
découpage de gateau ? C’est tout a fait normal). C’est moins évident pour Fy = 28 +1 = 257,
mais il est bien premier (pas divisible par 3 ni 5 par critéres usuels, puis 257 = 7 x 36 + 5,
257 = 11 x 23 + 4 et 257 = 13 x 19 4+ 10, pas la peine d’aller plus loin puisque 17 > \/ﬁ)
Enfin, Fy = 2'6+1 = 65 537. Pour vérifier la primalité, on écrit un programme Python bateau
du genre :

def premier(n) :
for i in range(2,int(n**0.5)+1) :
if n%i==0 : return False

return True

Pas de mauvaise suprise, 65 537 est bien premier.
2. On écrit simplement F, 1 —2 =22""" 41 = (22")2 -1 = (22" —1)(2%¥" +1) = (F,, — 2)F,, via
une classique identité remarquable.
n—1
3. On conjecture facilement & partir de la formule précédente que F,, = 2 + H F;, ce qu’on
i=0
prouve par une récurrence simple : au rang 1, F; =5 = 2 + F{, puis en supposant la formule
n—1 n
vraie au rang n, on aura d’apreés la question précédente Fj 1 =2+ H Fi(F,) =2+ H F;.
i=0 i=0
4. En effet un diviseur commun de F,, et de F), (en supposant par exemple que n est le plus
n—1
grand des deux entiers), diviserait F, et H F;, donc d’aprés la question précédente diviserait
i=0
2. C’est évidemment peu crédible (les nombres F), sont tous impairs), la seule possibilité est
que ce diviseur soit égal a 1, ce qui prouve que le pgcd recherché est lui-méme égal & 1.



Exercice 16 (**)

Pour compter le nombre de diviseurs, le plus simple est de commencer par écrire la décomposition
en facteurs premiers du nombre : 10! = 2x3x22x5x2x3x7Tx22x32x2x5=28%x34x52x7. Un
diviseur de 10! sera nécessairement de la forme 2% x3*x5¢x 7%, avec a € {0,1,...,8},b € {0,1,2,3,4},
c€{0,1,2} et d € {0,1} (cela découle des propriétés de la valuation p-adique vues en cours). Chaque
quadruplet d’entiers (a, b, ¢, d) donne un diviseur différent (par unicité de la décomposition en facteurs
premiers), ce qui fait 9 x 5 x 3 x 2 = 270 diviseurs au total. Si on compte aussi les diviseurs négatifs,
il y en a deux fois plus, soit 540. Par exemple, pour a =5, b =1, ¢ = 2 et d = 0, on trouve le diviseur
32 x 3 x 25 =2 400.

Exercice 17 (***)

1. Une astuce est d’écrire zy — 2z — 3y = 0, soit (z — 3)(y — 2) = 6. Comme il n’existe pas
trente-six mille facons d’écrire 6 comme produit de deux entiers, on peut faire une liste des
possibilités pour x — 3 et y — 2. Soit  —3 =6 et y —2 = 1, ce qui donne la solution (9, 3);
soit t —3 =3 et y —2 = 2, ce qui donne (6,4); soit £ —3 = 2 et y — 2 = 3, ce qui donne
(5,5); soit . —3 =1 et y —2 = 6, ce qui donne (4,8). Et n’oublions pas, bien entendu, les
diviseurs négatifs : t —3 = —6 et y—2 = —1 donne (—3,1); z—3 = —3 et y —2 = —2 donne
(0,0); x =3 =—-2et y—2 = —3 donne (1,—1); et enfin t —3 = —1 et z — 2 = —6 donne
(2,—4). Finalement, S = {(-3,1),(0,0),(1,-1),(2,—-4), (4,8), (5,5), (6,4),(9,3)}.

2. 11 s’agit ici de mettre sous forme canonique : (z — 1)2 — 1 + (y +2)2 —4 — 5 = 0, soit
(x — 1)2 + (y + 2)® = 10. Pour écrire 10 comme somme de deux carrés, il faut nécessai-
rement écrire 10 = (£1)? 4+ (4£3)% (si on dépasse 3 on sera largement au-dessus de 10,
et pour 2 rien ne marche). Cela laisse encore une fois huit possibilités : par exemple si
x—1=1ety+2 =3, on trouve la solution (2,1). Je vous passe les détails, on obtient
S ={(4,-1),4,-3),(2,1),(2,-5),(0,1),(0,-5),(—=2,—1),(—2,—3)}. Bien str, vous aurez
reconnu dans le membre de gauche une équation de cercle : (x — 1)2 + (y + 2)? = 10, cercle
de centre A(1,—2) et de rayon v/10. On a donc prouvé que ce cercle passait par exactement
huit points du plan dont les deux coordonnées sont entiéres (voir illustration ci-dessous) :

)

39\* 169
3. Méme technique que ci-dessus, z2 — <3y — F) + R 40, soit en factorisant
13 13 9 ) . .
x—3y+ EWAG + 3y — 5 =7 Quitte & tout multiplier par 4, on trouve donc

I'équation (6y — 2z — 13)(2z + 6y — 13) = 9. Il y a six possibilités pour écrire 9 comme



un produit de deux entiers, qui vont donner & chaque fois un systéme & résoudre. D’abord

6y — 2z — 13 = 9 " , . . . .
{ % + 6y — 13 = 1° En additionnant les deux équations, 12y —26 = 10, soit 12y =
36 et y = 3, ce qui donne 2x = 14 — 6y = —4, donc x = —2. Passons au deuxiéme systéme :
6y — 2z — 13 = 3 3 . _ . _
{ % + 6y — 13 = 3° La somme des deux équations donne 12y — 26 = 6, soit y =
g = § solution qui ne nous intéresse pas. Troisiéme systéme : Oy — 2z — 13 =1
123 d pas. y N2z + 6y — 13 = 9°
On somme comme d’habitude : 12y — 26 = 10, on retrouve y = 3, mais cette fois-ci 2z =
_ . .\ . )by — 2z — 13 = -9
22 — 6y = 4, donc x = 2. Quatriéme systéme : { % + 6y — 13 = —1° On ad-
4
ditionne : 12y — 26 = —10, soit y = —, solution & éliminer ici. On trouvera la méme

valeur pour y avec —1 et —9 au lieu de —9 et —1. Reste donc le cinquiéme systéme :
6y — 2¢ — 13 = -3
{2x+6y—13:—3
solution entiére en vue. Finalement, il n’y que deux couples solutions : S = {(2,3),(—2,3)}
(notons que cette fois on a cherché les points a coordonnées entiéres sur une hyperbole).

5
. On trouve 12y — 26 = —6, soit y = 3" La encore, pas de

4. Pas vraiment de méthode trés subtile ici, il suffit de trouver toutes les possibilités en faisant
augmenter la valeur de x puis celle de y. Si x = 1, on a déja — = 1, donc on ne peut pas trouver
x

de valeurs de y et de z convenables (en supposant les entiers naturels). Si x = 2, on doit avoir
1 1

-4 - = 3 Il faut donc avoir au moins y = 3 pour que I’égalité puisse étre vérifiée. Si y = 3,
Yy oz

1 1 1
z = 6 convient puisque 3 + 5 =3 Si y = 4, on peut prendre z = 4. Si y > 4, on va trouver

des valeurs éventuelles de z plus petites que y, donc des couples déja obtenus (& 'ordre preés).
Passons donc & & = 3, si on ne veut pas retomber sur des solutions déja trouvées, il faudra
prendre y > 3 et z > 3, mais alors la seule possibilité est x = y = z = 3. Finalement, les seuls
triplets possibles sont (2,3,6), (2,4,4) et (3,3,3) ainsi que leurs permutations. Si on accepte

les entiers relatifs dans les solutions, on trouve plus de possibilité puisque tous les triplets
1 1 1
npl <2
si n et p sont de signe opposés et (en valeur absolue) supérieurs ou égaux a 2. Il est donc

impossible de trouver des solutions en entiers relatifs avec trois entiers tous différents de 1.

(1,n,—n) seront solution (et leurs permutations, bien entendu). Par ailleurs,

5. On a bien sir trés envie de factoriser cette équation sous la forme (3z+y)(3z—y) = 32. Comme
32 = 2, cela ne laisse que cinq possibilités pour le décomposer comme produit de deux entiers :
soit 3z +y =1 et 3x —y = 32, ce qui en sommant implique 6x = 33, on ne va pas obtenir une
valeur trés entiére pour z, on oublie; soit 3x +y = 2 et 3z —y = 16, ce qui donnera cette fois
6x = 18, donc x = 3, puis y = —7; soit 3x +y = 4 et 3x —y = &, ce qui implique 6z = 12,
donc x = 2, puis y = —2. Les autres possibilités changeront simplement le signe de y ou celui
de z (si on considére les décompositions comme produit de facteurs négatifs), on a donc huit
solutions au total : S = {(3,-7),(3,7),(—3,-7),(=3,7),(2,-2),(2,2),(—2,-2),(-2,2) }.

6. J’ai une soudaine envie de regarder cette équation modulo 3 : les régles de calcul sur les
congruences impliquent que 2y? = 0[3], donc que 2y? est divisible par 3. Comme 2 est premier
avec 3, y? doit donc étre divisible par 3, et y également. Autrement dit, y = 3k, avec k € Z.
On peut alors réécrire I'équation sous la forme 1522 — 7 x 9k? = 9, soit 5z — 21k? = 3. Le
méme raisonnement modulo 3 que ci-dessus donne alors x? divisible par 3, donc z = 3 x j,
avec j € 7Z, puis on se raméne & 1552 — 7k? = 1. Devinez quoi ? On va encore raisonner modulo
3. On doit désormais avoir 2k? = 1[3]. Ce ne sera pas le cas si k est un multiple de 3, ni si
k = 1[3] (dans ce cas 2k? = 2[3]), ni si k = 2[3] puisque 2 x 22 = 2[3]. Ce ne sera donc en fait
jamais le cas, ’équation ne peut pas avoir de solution : S = ().

7. On devrait donc avoir y* = x(x + 1). Or les entiers x et  + 1 sont premiers entre eux (un



diviseur commun de z et de x + 1 étant aussi diviseur de x +1— 2 = 1). Tout facteur premier
apparaissant avec une puissance non nulle dans la décomposition en facteurs premiers de x
devra donc avoir une puissance multiple de 3 (il n’apparaitra pas dans celle de x+ 1, et toutes
les valuations p-adiques de 3> sont nécessairement multiples de 3). Cela revient exactement
a dire que x est un cube parfait (cube d’un entier relatif). On peut faire exactement le
méme raisonnement pour x4+ 1 qui doit lui aussi étre un cube parfait. Or, deux cubes parfaits
consécutifs dans Z, c’est trés rare : soit £ = 0 et x+1 =1 (donc y = 0), soitx = —let z+1 =0
(et toujours y = 0). Notre équation a donc exactement deux solutions : S = {(0,0), (—1,0)}.

Exercice 18 (**)

n
1. Via la propriété d’additivité des valuations p-adiques, vy(n!) = Z vp(k). Or, le nombre d’en-
k=1

tiers inférieurs ou égaux a n qui sont multiples de p® (pour un certain entier k) est égal a — 1
p

Il y a donc entre 1 et n un nombre d’entiers dont la valuation p-adique vaut exactement k

q
. , L n n P . n n
qui est égal a L?J — LWJ On en déduit que vy(n!) = E ) (L;J — \‘FJ ), la somme

i=1

n
allant jusqu’au premier entier g pour lequel {—qJ = 0 (cet entier existe, il vaut d’ailleurs
p
[log,(n)]). Cette somme est « partiellement télescopique, il ne reste apres simplification que
q
n
Z {—iJ, qui est bien la méme expression que la somme infinie de ’énoncé, dont tous les
=1
termes deviennent nuls & partir de k = q.
2. Pour qu’'un entier n ait une écriture décimale se terminant par au moins k zéros, il doit
étre divisible par 10*, donc a la fois par 2 et par 5*. Plus précisément, le nombre de zéros

terminant 1’écriture décimale de n vaut exactement min(vq(n), vs(n)). Il suffit donc de calculer

<X | 100 <X | 100

v5(1001) =) {5—4 =20+4 = 24, et v5(100!) = > {2—4 = 50+25+12+6+3+1=97.
k=1 k=1

Notre nombre se finit donc par 24 zéros.

Exercice 19 (**%*)

1. Un récurrence simple suffit ici : oy — F2 = 0—1 = —1 = (=1)!, donc P; est vraie.
Supposons P, vraie, alors Fj, o F),, — Fg_ﬂ = (Fp1+ EF)F, — Fg_ﬂ =F, 1 F, +F?— Fzﬂ =
Foi1(Fy — Fpyy) + F2. Or, Fyy1 = F,, + F,,_1, donc F,, — F,,y1 = —F,_1, donc l'expression
devient F2 — F,,41 — F,,_1 = —(=1)" = (=1)"*! en exploitant '’hypothése de récurrence. On
a bien prouvé la propriété au rang n + 1.

2. Dans le cas ou n est pair, 'égalité précédente est une identité de Bezout aF,, 41 + bF, = 1,
avec a = F,_1 et b = —F,, qui sont des coefficients entiers, donc F}, et Fj,4+1 sont premiers
entre eux. Si n est impair, il suffit de changer les signes pour aboutir & la méme conclusion.

3. On va cette fois-ci effectuer une récurrence double sur l'entier p, n étant fixé. Pour p = 1,
F,Fy + F11F1 = F,41, donc la propriété est vraie au rang 1. Si p = 2, F, F} + F,11F> =
F,+ F,11 = F,19, donc la propriété est également vraie au rang 2. Supposons 1’égalité valable
aux rangs p et p+1, alors Fyypyo = Fyypi1+Fnpp = B b+ Fo Fppn + B 1+ Fp By =
Fo(Fy + Fp_1) + Fri1 (Fp1 + Fp) = FFp1 + Fp1Fpy1, ce qui prouve la propriété au rang
p + 2 et achéve la récurrence.

Un diviseur commun a Fj, et I}, sera donc diviseur de Fj,,,, et par conséquent diviseur
commun a F, et Fj,1,. De facon similaire, un diviseur commun & F, et F),,, sera diviseur
de F,11F), et F, et Fj,11 étant premiers entre eux, le diviseur de F;, divisera nécessairement



F),, et sera par conséquent diviseur commun de F;, et F,. Les diviseurs communs des deux
couples sont donc identiques.

. D’apreés la question précédentes, F,, A F,,, = F,, N F,_,, = F,, N Fy,_ip, pour tout entier k

(quitte a appliquer plusieurs fois de suite la relation). En appliquant successivement toutes
les étapes de l'algorithme d’Euclide de recherche du pged aux entiers n et m, les couples (a, b)
obtenus a toutes les étapes vérifieront donc F,, A F,,, = F, A Fj. Puisque le dernier couple
obtenu sera (n Am,1), on a donc Fy, A Fy, = Fypm A F1 = Foam.

. En effet, par contraposée, si n n’est pas premier, on peut choisir un diviseur m de n non

trivial, et on a alors F,, A F},, = Fam = Fy,. En particulier, F), est divisible par F}, et c’est
certainement un diviseur distinct de 1 et de Fj,. La réciproque est complétement fausse :
F5 = 2 est premier, Fy = 3, F5 = 5 est premier, Fg = 8, Fy = 13 est premier, Fg = 21,
Fy = 34, Fiyg = 55, F1 = 89 est premier, Fio = 144, Fi3 = 233 est premier, 4 = 377,
Fi5 =610, F1g = 987, Fi7 = 1 597 qui est premier, Fig = 2 584, 9 = 4181. Et 14, hop, au
moment ol plus personne n’y croit, 4 181 = 37 x 113 alors que 19 est premier !

. On vient de calculer les premiers termes, la vérification est donc facile, et en effet Fg =3 x 7

est le premier nombre de la suite divisible par 7. Si on calcule plus précisément les restes de
la division par 7 des termes de la suite, on obtient pour les huit premiers termes 1, 1, 2, 3,
5, 1, 6, 0, puis on obtiendra ensuite (via la relation de récurrence définissant la suite) 6, 6,
5,4,2,6,1,0, puis 1, 1, et on constate que la suite des restes est périodique de période 16,
et donc qu’elle reprendra les valeurs 0 quand n = 0[16] ou n = 8[16], c’est-a-dire exactement
quand n est divisible par 8.

Exercice 20 (**)

1.

Les diviseurs de 32 sont 1, 2, 4, 8, 16 et 32 lui-méme, donc S(32) = 1+2+4+8+16+32 = 63
(une belle somme de suite géométrique). Pour 28, on a comme diviseurs 1, 2, 4, 7, 14 et 28, donc
S(28) = 1+2+4+7+14+28 = 56. Enfin, 60 admet beaucoup de diviseurs : 1, 2, 3, 4, 5, 6, 10,
12, 15, 20, 30 et 60, ce qui donne S(60) = 1+24+3+4+5+6+10+12+15+20+30+60 = 168.

. Un nombre premier n’admet comme diviseurs que 1 et lui-méme. Dans ce cas, on a donc

S(n) =n+1.

. Les seuls diviseurs de p* sont les puissances inférieures de p : 1, p, p?, .. ) pF. On a donc une

1
somme géométrique a calculer, comme pour S(32) plus haut : S(p Z pr=—

Le plus simple est de rédiger une récurrence sur l'entier k. Le cas ol k = 1 est exactement
celui traité a la question précédente, la formule obtenue correspond bien & celle de 1’énoncé.

k-1 041+1
Supposons donc, en posant m = H pit, que S(m H pl . Tout diviseur de n peut
i=1 i=1

alors s’écrire sous la forme d x pfg, avec d un diviseur quelconque de m (on notera D ’ensemble

k—i—l 1
de ces diviseurs) et j € {0,...,ax}. On a donc S(n Z de (Z d) 1 1l
i —

deD j=0 deD
ne reste plus qu’a appliquer I’hypothése de récurrence pour conclure.

k/

k
. C’est assez évident : n = pr” et m= H qu , avec des p; et g; qui sont tous distincts deux

i=1 j=1

a deux puisque les entiers n et m sont premiers entre eux. On a donc nm = H P; H q;’ puis
i=1
o;+1 K’ 5]"'1 1

en appliquant la formule de la question précédente S(nm) pzp 1 H ]q — =
i=1 j=1

10



S(n) x S(m).

Exercice 21 (***)

1. Cela revient simplement a dire que 2 est le seul nombre premier pair, ce qui est effectivement
vral.

2. Faisons donc ce qu’on nous dit : notons p1, po, ..., px les seuls nombres premiers congrus a 3
k

modulo 4 (en supposant par ’absurde qu’il y en a un nombe fini) et posons m = 4 H p; — 1.
L’entier m est évidemment impair, et ne peut avoir aucun des p; comme facteur prlenllier par
construction (car cahque p; est un diviseur de m+1). Tous ses facteurs premiers sont donc des
entiers impairs congrus a 1 modulo 4. Or, le produit de deux tels entiers est lui-méme congru
a1 x 1 =1 modulo 4, donc m devrait étre congru a 1 modulo 4. Mais la construction méme
de lentier m montre que m = —1[4], ce qui est évidemment contradictoire. Conclusion : on a
bien une infinité de nombres premiers de la forme 4k + 3.

3. Commencons par constanter que, hormis 2 et 3, tous les nombres premiers sont nécessairement
congrus & 1 ou 5 modulo 6 (si leur congruence était paire, ils seraient eux-mémes pairs, et
tout nombre congru & 3 modulo 6 est divisible par 3). On fait ensuite exactement le méme

raisonnement par l'absurde : supposons que la liste finie des entiers premiers congrus a 5
k

modulo 6 soit py, pa, ..., pi, et posons m = 61_[1% — 1. Le nombre m est impair (pas de
i=1

facteur 2 dans sa décomposition en facteurs premiers), pas divisible par 3 (puisque congru

par construction & —1 modulo 3), et ne peut avoir aucun des p; comme facteur premier. Tous

ses facteurs premiers sont donc congrus a 1 modulo 6, ce qui implique que m = 1[6], ce qui

est manifestement faux. On a donc une infinité de nombres premiers congrus a 5 modulo 6.

Si vous avez quelques heures (jours?) devant vous, vous pouvez maintenant vous attaquer au trés
intéressant mais fort difficile théoréme de Dirichlet : pour tout entier n non nul et tout entier
k premier avec n, il existe une infinité de nombres premiers congrus a k modulo n (autrement dit,
une suite arithmétique comporte toujours une infinité de nombres premiers si son premier terme est
premier avec sa raison).

Exercice 22 (**)

1. En notant d et m le pged et le ppcm de a et de b, on a a = da’ et b= dl, avec a’ Ab = 1. On
en déduit que a + b = d(a’ + V). De plus, m = da'b/ puisque d x m = ab. Comme m et a + b
sont divisibles par d, il suffit donc de prouver que a’ + b’ et a’b’ sont premiers entre eux pour
prouver qu’il s’agit de leur pged. Or, si a’ + V' et a/b’ avaient un diviseur commun (autre que
1), on pourrait le choisir premier. Dans ce cas, il diviserait soit a’, soit &’ (puisqu’il divise leur
produit). S’il divise par exemple @', il divisera aussi (¢’ + V') —a’ =¥, et donc aussi a'b’, ce
qui contredit notre définition. Les nombres a’ + ' et a’b’ sont donc bien premiers entre eux,
et (a+b)A(aVb)=aAb.

2. En gardant les notations de la réponse précédente, on aurait d = aAb = (a+b)Am = 144/A420.
Or, 144 = 122 = 24 x 32, et 420 = 4 x 105 = 22 x 3 x 5 x 7, donc on obtient d = 12. Les entiers

420
a’ et b ont donc une somme égale & 12 et un produit égal a T2 = 35. Ils sont alors solution
de I'équation du second degré x2 — 122435 = 0, qui a pour discriminant A = 144 —140 = 4 et

12 -2 12+ 2
=betzg = +

pour racines r; = = 7. On peut donc avoir a’ =5 et b’ = 7, ce qui

donne a = 60 et b = 84, ou le contraire. Il y a donc deux solutions : S = {(60, 84), (84, 60)}.

11



Exercice 23 (**%*)

1.

En effet, les diviseurs de 6 sont 1, 2, 3 et 6 dont la somme est bien égale & 12 = 2 x 6. De
méme, 28 a pour diviseurs 1, 2, 4, 7, 14 et 28 dont la somme vaut 56 = 2 x 28.

. Raisonnons par contraposée. Si p n’est pas premier, alors on peut écrire p = a x b, avec a, b tous
b—1
les deux supérieurs ou égaux a 2. On peut alors écrire 2P — 1 = (2¢)° —1 = (2% — 1) 2(2“)’“.

k=0
On a écrit 2" — 1 comme produit de deux facteurs supérieurs ou égaux a 2, donc il n’est pas

premier, ce qui prouve la propriété demandée.

. Comme 2P —1 est un entier premier, la décomposition en facteurs premiers de n est donnée par
n = 2P~1(2P —1). Tous les diviseurs de n sont alors de la forme 2¥, avec k € {0,1,...,p—1}, ou
p—1
2F(2P —1), pour les mémes valeurs de k. On calcule alors aisément S(n) = (14-2P —1) Z ok —
k=0
2P —1 )
2P x 51 = 2P(2P — 1) = 2n, donc n est un nombre parfait.
. La valeur n = 6 correspond a p =2, n =28 =4 x (8 — 1) correspond & n = 3. On ne peut

pas tester p = 4 qui n’est pas vraiment un nombre premier, passons donc & p = 5, qui donne
n = 16 x 31 = 496, qui est donc un entier parfait. Pour information, le suivant vaut 8 128
pour p = 7.

. (a) Je vous laisse (re)lire la correction de I'exercice 19 qui prouve que, si n et m sont premier

entre eux, alors S(mn) = S(m)S(n). Ici, on obtient donc S(n) = S(2%)S(b) et il ne reste
ga+1 _ 1
plus qu’a calculer 5(2‘1) =14+24+---4+2% = ﬁ = 2% _ 17 ce qu1 donne bien la

formule annoncée. Mais on doit aussi avoir, puisque n est un entier parfait, S(n) = 2n,
donc (2% — 1)S(b) = 2n = 29F1p donc 29F1b = (291 — 1)S(b). La décomposition en
facteurs premiers de S(b) contient donc le facteur 2! (puisque 2%*! — 1 est impair, il ne
peut contenir aucun facteur 2), ce qui revient bien a dire que S(b) = 29! x c.

(b) D’aprés la question précédente, S(b) = 27+ ¢ et 2071 = (2971 —1)S(b), donc b = (29+! —
1)e, puis S(b) = b+c. Or, b et ¢ sont des diviseurs distincts de b, il est donc indispensable
d’avoir ¢ = 1, ce qui implique que S(b) = b+ 1, donc que b n’a pas d’autre diviseur que 1
et lui-méme, et que b est donc un nombre premier.

(c) Comme b= 2%t —1 onan=2%x (20" — 1), avec 297! — 1 premier. C’est exactement
ce qu’on voulait prouver.

Pour les curieux : on connait donc (au moins théoriquement, car déterminer si 2P — 1 est un nombre
premier n’est pas évident, les nombres correspondants sont d’ailleurs appelés nombres de Mersenne)
tous les nombres parfaits pairs. Qu’en est-il des nombres parfaits impairs 7 On conjecture qu’il n’en
existe aucun, mais personne n’a encore réussi a le prouver.

Probléme (***)

1.

Tout est assez évident, ’ensemble contient les deux éléments neutres 0 et 1, il est manifes-
tement stable par somme et par produit (si a,b,c,d sont quatre entiers relatifs, ad + be et
ac — bd sont aussi entiers, donc (a + bi)(c + di) € G), ainsi que par passage a 'opposé. Cest
bien un sous-anneau de C.

. Si G admettait des diviseurs de 0, ils le seraient également dans C qui est intégre, donc G

I’est aussi.

. Pour z et y entiers de Gauss (avec y non nul), on note a et b les parties réelle et imaginaire

de 2
Yy

12



(a)

(b)

id id)(e — 1 d de —
Calculons explicitement C+Z, = (c+id)(e —if) = ce +df ¢ cfz'. Les nombres
e+if e? + f2 e2+ f2 ez + f?

ce +df de — cf ) )
a4 = —5——5 et b = ———75 sont certaiement rationnels.

e’ + f e+ f
L’existence ne pose aucun probléme (1'unicité par contre serait fausse pour cette « division
euclidienne » ), elle serait méme vraie pour tout nombre réel. Si on pose n = |a], on aura

n<a<n+1 avec (n+1—a)+ (a—mn)=1. On a donc une somme de deux nombres

1
positifs qui est égale & 1, au moins 'un des deux est inférieur ou égal a 37 ce qui prouve

1 1
quel<a—-n<-ould<n+1—-a< 3 et donne une valeur de p convenable. C’est
exactement pareil pour q.
Avec les notations de la question précédente, on peut écrire |(a + ib) — (p + iq)| =

1 1 1
Vie—p)2+(b-9)? < "Z+Z < E < 1. En notant z = p + iq, z est donc un en-

x
tier de Gauss vérifiant |— — z| < 1. Il suffit de multiplier cette majoration par |y| et

d’appliquer les régles de calcul usuelles sur les modules pour en déduire |z — yz| < |y|.
Prenons par exemple z = 1 et y = 1 — 4. On a donc |y| = v/2. On peut poser z = 0 :
|z —0y| = |z| =1 < |y|, mais on peut aussi poser z = i par exemple : |[z—iy| = [1—i—1| =
1 < |y|. 'y en fait ici quatre valeurs de z convenables : 0, 1, i et i + 1.

Les propriétés de multiplicativité des modules impliquent que, dans ce cas, |y|? = |zz|? =
|z|%|2|%. Le module de z étant un entier naturel (comme pour tout entier de Gauss, il est
de la forme a® + b2 avec (a,b) € Z2, |x|? est bien un diviseur de |y|?.

D’apreés la question précédente, la norme des diviseurs potentiels de y sera majorée par
ly|. en particulier, si x = a + b divise y, alors |a| < |y| et [b] < |y|. On a donc un nombre
fini de valeurs possibles pour a et b, et par conséquent un nombre fini de couples (a,b)
pouvant correspondre & un entier de Gauss divisant y.

11 suffit tout simplement d’appliquer tel quel I’algorithme d’Euclide (si on a des choix a faire
lors de certaines divisions euclidiennes qui n’ont pas un couple quotient/reste unique, on
choisit n’importe quel couple convenable). Par construction, si on part de deux entiers de
Gauss z et y, et qu’on construit une suite r,, telle que ro =z, 11 =y et rp_1 = qrp +7rnt1,
les entiers de Gauss divisant r,, et 7,41 seront les mémes que ceux divisant r,, et r,,41(donc
leur diviseur commun de plus grand module aura le méme module), donc avant dernier
reste obtenu avant d’avoir r, = 0 sera un diviseur commun de plus grand module possible
pour a et b. On est bien siir certain d’avoir r,, = 0 au bout d’un nombre fini d’étapes,
puisque la division euclidienne assure la stricte décroissance des carrés des modules des
entiers de Gauss r,, qui forment donc une suite strictement décroissante d’entiers positifs,
qui finira par atteindre 0.

On pose donc rg = 7+ 11i et r;y = 1 + 8i. Pour effectuer leur division euclidienne, on

calcule tout simplement leur quotient puis on cherche I'entier de Gauss le plus proche du

ot ot sorvina do cnogiong < TF 1 _ (T —=8) 95—d5 19 9
resulta ul servira de quotient . = = = — — —1.
» 4 4 1+8i 1+64 65 13 13

On va donc prendre comme quotient ¢ = 1 — 4, et calculer ro = rg —qry =7+ 110 — (1 —
i)(1+8i)=7+11i — 1 —8i+1i— 8= —2+ 4i (qui a bien un carré de module largement
1+8  (148i)(—2—4i) 30—20i —§—i On peut
—24 4 4416 20 2

par exemple prendre ¢ = 1 — ¢ ('autre choix possible étant ¢ = 2 — i), ce qui donnera
rg =1+8—(1—1)(—2—4i) =1+8i+2+4i—2i—4 = —1+ 2i. Pas besoin de se fatiguer
beaucoup pour se rendre compte que ry = 2rg, donc le prochain reste sera nul, et notre
diviseur de plus grand module est 73 = —1+2i, qui a pour module /5. On peut vérifier que

c’est bien un diviseur commun : 74117 = (=14 24)(3 —57) et (1+8i) = (—1424)(3 —21).

inférieur a 65). On continue :

5. Si un entier de Gauss divise 1, d’aprés la question 4.a, le carré de son module divise |12 = 1,
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donc son mudole est égal & 1. Il n’y a que quatre entiers de Gauss de module 1 : 1, —1, 7 et
—i. Les quatre sont des diviseurs de 1 puisque (—1) x (—1) =i x (—i) = 1. Il y a donc quatre
unités dans G.

6. C’est assez évident, il contient 1, est stable par produit (puisque le module du produit de
deux entiers de Gauss de module 1 sera nécessairement un entier de Gauss de module 1) et
par passage a l'inverse, c’est bien un sous-groupe multiplicatif de C*.

7. Soit donc d un diviseur de plus grand module de z et de y, alors les nombres —d, id et —id
sont aussi des entiers de Gauss divisant = et y et ont le méme module que d, ce qui nous fait
(au moins) quatre diviseurs de plus grand module possible pour z et y. Réciproquement, si d’
est un diviseur de plus grand module de x et y autre que d, on a nécessairement d qui divise
d' (et réciproquement), donc d' = zd, avec z un entier de Gauss qui par construction devra
étre de module 1 puisque |d| = |d'|. 1l s’agit donc nécessairement d’une unité de G, ce qui
prouve que d’ est I'un des quatre nombres d, —d, id ou —id.

8. (a) Attention, un nombre premier au sens classique du terme ne sera pas toujours un entier
de Gauss élémentaire. Par exemple, 2 est un nombre premier mais 2 = (1 +14)(1 —¢) n’est
pas un entier de Gauss élémentaire. Par contre, 1 + 4 et 1 — ¢ sont élémentaires (ils ont
un carré de module égal & 2, donc leurs diviseurs doident avoir un carré de module égal a
1 ou 2, autrement dit ce sont soit des unités, soit des multiples de 1+ ¢ ou 1 — 4 par des
unités).

(b) On peut faire exactement la méme démonstration que pour les nombres premiers : si la liste
n
est finie, notons p1, ps, . . ., pn, tous les entiers de Gauss élémentaires, et posons n = H pi+1
i=1
(histoire de faire intervenir un peu plus les complexes), alors n n’est divisible par aucun
des nombres p; (si p; divisait n, comme il divise n—1, il diviserait également i et serait donc
une unité de G). Soit n lui-méme est un entier de Gauss élémentaire (et notre hypothése
était fausse), soit il admet des diviseurs élémentaires (tout entier de Gauss admet des
diviseurs élémentaires, s’il n’est pas lui-méme élémentaire, on I’écrit sous la forme yz, et
si ni y ni z ne sont élémentaires, on recommence, le carré du module diminue strictement
a chaque étape donc on tombera nécessairement sur un entier de Gauss élémentaire au
bout d’un moment) qui n’appartiennent pas non plus a la liste des p;, et on aboutit a la
méme contradiction.

9. (a) C’est exactement la méme démonstration que pour le théoréme de Bézout sur les entiers.

(b) C’est exactement la méme démonstration que pour le théoréme de Gauss sur les entiers.
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