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Exercice 1 (*)
Déterminer tous les couples d’entiers premiers entre eux dont le produit est égal à 150.

Exercice 2 (*)
Montrer que, ∀n ∈ Z, le nombre n4 − 20n2 +4 est toujours un nombre composé (un nombre entier qui

n’est pas premier).

Exercice 3 (*)
Trouver un nombre n de la forme 3p × 5q (avec bien sûr p et q entiers naturels) donc le produit des

diviseurs est égal à 4542.

Exercice 4 (**)
Montrer que l’équation x3+y3+z3 = 94 n’a aucune solution (x, y, z) ∈ Z (on pourra raisonner modulo

9).

Exercice 5 (*)
Démontrer le critère classique de divisibilité d’un entier par 9.

Exercice 6 (*)
Montrer que, si n et p sont deux entiers, n2 + p2 est divisible par 7 si et seulement si n et p sont

divisibles par 7.

Exercice 7 (**)
Pour tout entier naturel n, on pose un = 34n+2 + 52n+1.

1. Montrer par une récurrence simple que un est toujours divisible par 14.
2. En utilisant vos connaissances sur les suites récurrentes linéaires d’ordre 2, déterminer deux entiers

a et b tels que, ∀n ∈ N, un+2 = aun+1 + bun.
3. Redémontrer le résultat de la première question à l’aide de celui de la question précédente et d’une

récurrence double.

Exercice 8 (**)
1. Soit n ∈ Z, montrer que le reste de la division de n2 par 8 ne peut être égal qu’à 0, 1 ou 4.
2. Soit n ∈ N tel que n ≡ 7[8], montrer que n ne peut pas s’écrire comme la somme de trois carrés

de nombres entiers (un théorème célèbre affirme que tout entier naturel peut être écrit comme la
somme des carrés d’au maximum quatre entiers).

Exercice 9 (**)
1. Déterminer tous les entiers n ∈ Z tels que n2 + 7 | n3 + 5 (il n’y en a pas beaucoup).

2. Déterminer tous les entiers n ∈ N tels que
√

11n− 5

n+ 4
∈ N (il n’en y a vraiment pas beaucoup).
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Exercice 10 (**)
Soit n un entier non premier tel que n ⩾ 6. Montrer que n | (n− 2)!.

Exercice 11 (**)
Le nombre entier 15 peut s’écrire de quatre façons comme somme d’entiers naturels consécutifs : 15

(oui, il n’y en a qu’un seul donc ce n’est pas vraiment une somme, mais ça compte quand meme), 7 + 8,
4+5+6 et 1+2+3+4+5. De combien de façons pourrait-on écrire 1050 comme somme d’entiers naturels
consécutifs ?

Exercice 12 (**)
On considère l’équation x2+y2 = 7z2, dont on cherche à déterminer les solutions entières (x, y, z) ∈ Z3.

1. Expliquer pourquoi on peut se restreindre à chercher les solutions (x, y, z) ∈ N3.
2. On suppose que (x0, y0, z0) est une solution non triviale du problème (autrement dit, (x0, y0, z0) ̸=

(0, 0, 0)).
(a) Montrer qu’on peut en déduire une solution (x1, y1, z1) ∈ N3 vérifiant de plus pgcd(x1, y1, z1) =

1.
(b) Déterminer l’ensemble des carrés de tous les entiers modulo 7, ainsi que les opposés de ces carrés

(on pourra présenter les résultats sous forme de tableau).
(c) En raisonnant modulo 7, en déduire que x1 et y1 sont tous les deux divisibles par 7.
(d) En déduire une absurdité et conclure.

3. Montrer que l’équation x2 + y2 = 5z2 admet par contre une infinité de solutions non triviales. En
existe-t-il pour lesquelles x = 42 ? Ou pour lesquelles z = 42 ? Mêmes questions pour l’équation
x2 + y2 = 13z2.

Exercice 13 (**)
Montrer que l’équation x3 + x2 + 2x+ 1 = 0 ne peut pas admettre de solution dans Q.

Exercice 14 (**)
On fixe un entier naturel p ⩾ 2 et on pose, pout tout entier naturel n, an = pn − 1.

1. Soient b et c deux entiers naturels, q et r le quotient et le reste de la division euclidienne de b par
c. Montrer que ab ∧ ac = ac ∧ ar.

2. En déduire qu’on a toujours ab ∧ ac = ab∧c.

Exercice 15 (***)
On note, pour tout entier naturel n, Fn = 22

n

+ 1 (non, non, ce F n’a ici rien à voir avec Fibonacci,
il s’agit d’un F comme Fermat, ces nombres étant effectivement connus comme « nombres de Fermat ».
Ledit Fermat a conjecturé qu’il étaient tous premiers, mais il s’est planté dans les grands largeurs, puisque
qu’aucun nombre de Fermat n’est premier pour des valeurs de n comprises entre 5 et 32. Ensuite, eh bien
on n’en sait rien).

1. Donner les valeurs de Fn lorsque n ⩽ 4, et vérifier que ce sont des nombres premiers (vous avez le
droit d’écrire un programme Python pour F4).

2. Vérifier la relation de récurrence Fn+1 = 2 + (Fn − 2)Fn.
3. En déduire une expression de Fn en fonction de tous les Fk, pour k variant de 1 à n− 1.
4. Montrer que, si n ̸= p, Fn ∧ Fp = Fn∧p.

Exercice 16 (**)
Déterminer le nombre de diviseurs de 10! (sans les écrire tous).
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Exercice 17 (***)
Résoudre dans Z les équations suivantes :

1. xy = 2x+ 3y.
2. x2 + y2 − 2x+ 4y − 5 = 0.
3. x2 = 9y2 − 39y + 40.

4.
1

x
+

1

y
+

1

z
= 1.

5. 9x2 − y2 = 32.
6. 15x2 − 7y2 = 9 (on pourra raisonner modulo 3).
7. y3 = x2 + x

Exercice 18 (**)

1. Montrer que, pour tout entier premier p et tout entier naturel n, vp(n!) =
+∞∑
k=1

⌊
n

pk

⌋
(cette somme

n’est pas une vraie somme infinie).
2. Par combien de zéros se termine l’écriture décimale de l’entier 100! ?

Exercice 19 (***)
On considère la suite de Fibonacci définie par F0 = 0, F1 = 1 et ∀n ∈ N, Fn+2 = Fn+1 + Fn.

1. Montrer que ∀n ⩾ 1, Fn+1Fn−1 − F 2
n = (−1)n.

2. Montrer que Fn et Fn+1 sont premiers entre eux.
3. Montrer que ∀n ∈ N, ∀p ∈ N∗, Fn+p = FnFp−1 + Fn+1Fp. En déduire que le pgcd de Fn et de Fp

est le même que celui de Fn et Fn+p.
4. Montrer que, ∀(n,m) ⩾ 2, Fn ∧ Fm = Fn∧m.
5. Montrer que, si n ⩾ 5 et Fn est premier, alors n est premier. La réciproque est-elle vraie ?
6. Vérifier que F8 est le premier terme de la suite divisible par 7, puis montrer que Fn est divisible

par 7 si et seulement si n est un multiple de 8.

Exercice 20 (**)
Pour tout entier naturel non nul n, on note S(n) la somme de ses diviseurs.

1. Calculer S(n) pour n = 32, n = 28 et n = 60.
2. Que vaut S(n) lorsque n est premier ?
3. Que vaut S(n) lorsque n = pk, où p est un entier premier, et k un entier supérieur ou égal à 2 ?

4. Montrer que, si la décomposition en facteurs premiers de n s’écrit n =

k∏
i=1

pαi
i (avec des pi premiers

et des αi tous non nuls), alors S(n) =

k∏
i=1

pαi+1
i − 1

pi − 1
.

5. Montrer que, si m et n sont premiers entre eux, alors S(mn) = S(m)S(n).

Exercice 21 (***)
1. Montrer que tout nombre premier autre que 2 est congru à 1 ou 3 modulo 4.
2. Montrer qu’il existe une infinité de nombres premiers congrus à 3 modulo 4 (en raisonnant par

l’absurde, on posera n égal au produit de tous les nombres premiers congrus à 3 modulo 4 puis on
posera m = 4n− 1).

3. Montrer de même qu’il existe une infinité de nombres premiers congrus à 5 modulo 6.
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Exercice 22 (**)
Soient a et b deux entiers naturels non nuls.

1. Montrer que (a+ b) ∧ (a ∨ b) = a ∧ b.
2. Trouver tous les couples (a, b) vérifiant a+ b = 144 et a ∨ b = 420.

Exercice 23 (***)
Un entier naturel non nul n est dit parfait si la somme de ses diviseurs (notée S(n) pour tout l’exercice)

est égale à 2n.

1. Vérifier que 6 et 28 sont des nombres parfaits.
2. Soit p un entier tel que 2p − 1 soit premier. Montrer que p est alors premier.
3. Montrer alors que n = 2p−1(2p − 1) est parfait.
4. En déduire la valeur d’un nombre parfait plus grand que 28.
5. On suppose désormais que n est un entier parfait pair, et on pose n = 2a × b, avec b impair, et

a ⩾ 1.
(a) Montrer que S(n) = (2a+1 − 1)S(b). En déduire que S(b) = 2a+1c, avec c ∈ N.
(b) Montrer qu’on a nécessairement c = 1, et que b est un nombre premier.
(c) En déduire que n est forcément de la forme 2p−1(2p − 1), avec 2p − 1 premier.

Problème (***)

On note G = {a+ bi | (a, b) ∈ Z2} l’ensemble des entiers de Gauss dans C.

1. Montrer que (G,+,×) est un sous-anneau de C.
2. Montrer que G est un anneau intègre.

3. Pour x et y entiers de Gauss (avec y non nul), on note a et b les parties réelle et imaginaire de
x

y
.

(a) Montrer que a et b sont des nombres rationnels.

(b) Montrer qu’il existe un couple (p, q) d’entiers relatifs tels que |a− p| ⩽ 1

2
et |b− q| ⩽ 1

2
.

(c) Montrer qu’il existe un entier de Gauss z tel que |x− yz| < |y|.
(d) Montrer que z n’est pas forcément unique.

4. Si x et y sont deux entiers de Gauss, on dira que x divise y si y = zx, avec z un entier de Gauss.
(a) Montrer que, si x divise y, alors |x|2 divise |y|2 (au sens de la divisibilité dans N).
(b) Montrer que l’ensemble des diviseurs d’un entier de Gauss est toujours fini.
(c) Proposer un algorithme permettant de déterminer un diviseur commun de plus grand module

pour deux entiers de Gauss.
(d) Déterminer un diviseur commun de plus grand module de 7 + 11i et de 1 + 8i.

5. Déterminer l’ensemble des diviseurs de 1 dans G, qu’on appellera unités de G. On notera U
l’ensemble des unités de G.

6. Montrer que U est un groupe multiplicatif.
7. Montrer que tout couple d’entiers de Gauss non nuls possède exactement quatre diviseurs communs

de plus grand module.
8. Un entier de Gauss est élémentaire si ses seuls diviseurs sont les unités et les produits de ces

unités par lui-même.
(a) Donner un exemple d’entier de Gauss élémentaire (autre que les unités).
(b) Montrer qu’il existe une infinité d’entiers de Gauss élémentaires.

9. Deux entiers de Gauss sont étrangers si leurs seuls diviseurs communs sont les éléments de U .
(a) Montrer que, si x et y sont étrangers, il existe un couple (u, v) d’entiers de Gauss tels que

ux+ vy = 1.
(b) Montrer que, si x, y et z sont deux entiers de Gauss tels que x divise yz et x et y sont étrangers

alors x divise z.
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