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Toute littérature dérive du péché.

Charles Baudelaire

Les constantes et ex sont dans le métro.

Un opérateur différentiel terroriste monte dans la rame,

menaçant de dériver tout le monde.

Alors que les constantes paniquent, ex se moque de lui :

« Vas-y, dérive, je crains rien ».

L’opérateur répond alors : « Tremble, misérable exponentielle, je suis
d

dy
» !

Pour ce dernier chapitre d’analyse du premier semestre, après celui sur la continuité, nouveau
retour sur une notion fondamentale avec laquelle vous avez beaucoup travaillé au lycée. Le principe
sera d’ailleurs le même que dans le chapitre 10, reprendre une notion bien connue et la revoir en
profondeur avec des définitions et démonstrations rigoureuses. Rien de très nouveau donc, si ce n’est
que la section des théorèmes classiques va s’enrichir notamment de l’inégalité des accroissements
finis, fondamentale pour l’étude des suites récurrentes que nous aborderons en fin de chapitre.

Objectifs du chapitre :

• ne plus hésiter une seconde avant de calculer une dérivée classique (notamment à l’aide de la
formule de la dérivée d’une composée).

• maîtriser l’application de l’IAF à l’étude des suites récurrentes.
• savoir exploiter la notion de convexité pour démontrer des inégalités.

1 Définitions et formulaire.

1.1 Aspect géométrique.

L’idée cachée derrière le calcul de dérivée, que vous utilisez déjà depuis plusieurs années pour étudier
les variations de fonctions, est en gros la suivante : les seules fonctions dont le sens de variation est
réellement facile à déterminer sont les fonctions affines, pour lesquelles il est simplement donné par
le signe du coefficient directeur de la droite représentant la fonction affine. Pour des fonctions plus
complexes, on va donc chercher à se ramener au cas d’une droite en cherchant, pour chaque point
de la courbe, la droite « la plus proche » de la courbe autour de ce point. C’est ainsi qu’est née la
notion de tangente, à laquelle celle de dérivée est intimement liée. Plus précisément :
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Définition 1. Soit f une fonction définie sur un intervalle I et a ∈ I, le taux d’accroissement de

f en a est la fonction définie par τa,f (h) =
f(a+ h)− f(a)

h
.

Remarque 1. Le taux d’accroissement n’est pas défini en 0. Pour h 6= 0, τa,f (h) représente le coefficient
directeur de la droite passant par les points d’abscisse a et a+ h de la courbe représentative de f (il
s’agit techniquement d’une corde de cette courbe représentative).
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Sur ce schéma, on a pris a =
1

2
(ce qui correspond au point rouge de la courbe) et tracé plusieurs

droites reliant ce point avec d’autres points situés sur la courbe. Ainsi, pour h = −1

2
ou h = 1 (la

droite correspondante est la même dans ces deux cas), on aurait τa,f (h) = −3

4

Définition 2. Une fonction f est dérivable en a si son taux d’accroissement en a admet une limite
finie quand h tend vers 0. On appelle alors nombre dérivé de f en a cette limite et on la note

f ′(a) = lim
h→0

f(a+ h)− f(a)

h
.

Remarque 2. En reprenant l’interprétation géométrique précédente, la droite tracée se rapproche
quand h tend vers 0 de la tangente à la courbe représentative de f au point de la courbe d’abscisse
a. Le nombre dérivé de f en a est donc le coefficient directeur de cette tangente.

Remarque 3. Pour des raisons pratiques, on aura parfois besoin pour certains calculs d’une définition

légèrement différente du nombre dérivé : f ′(a) = lim
x→a

f(x)− f(a)

x− a
, qui est équivalente à la précédénte

(en posant h = x− a, on se ramène en effet à notre première définition).

Exemples :

• Considérons la fonction carré définie par f(x) = x2 et calculons à l’aide de cette définition
la dérivée (ou plutôt pour l’instant le nombre dérivé au point d’abscisse a) de f . Le taux

d’accroissement de la fonction carré en a vaut τa,f (h) =
(a+ h)2 − a2

h
=

a2 + 2ha+ h2 − 1

h
=
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2a + h. Ce taux d’accroissement a une limite égale à 2a quand h tend vers 0, donc f est
dérivable en a et f ′(a) = 2a (ce qui correspond bien à la formule que vous connaissez).

• Considérons à présent la fonction racine carrée définie par g(a) =
√
a, le taux d’accroissement

de g en a vaut τa,g(h) =

√
a+ h−√

a

h
=

(
√
a+ h−√

a)(
√
a+ h+

√
a)

h(
√
a+ h+

√
a)

=
a+ h− a

h(
√
a+ h+

√
a)

=

1√
a+ h+

√
a
. Si a 6= 0, ce taux d’accroissement a pour limite

1

2
√
a
, ce qui correspond une

nouvelle fois à une formule bien connue. Par contre, lim
h→0

τ0(h) = +∞, ce qui prouve que la

fonction racine carrée n’est pas dérivable en 0. On a tout de même une interprétation gra-
phique intéressante dans ce cas : la courbe représentative de la fonction racine carrée admet
en son point d’abscisse 0 une tangente verticale.

Définition 3. La fonction f est dérivable à gauche en a si son taux d’accroissement admet une

limite quand h tend vers 0−. On note alors f ′

g(a) = lim
h→0−

f(a+ h)− f(a)

h
. De même, f est dérivable

à droite en a si τa(h) admet une limite en 0+ et on note f ′

d(a) = lim
h→0+

f(a+ h)− f(a)

h
.

Remarque 4. La fonction f est dérivable en a si et seulement si elle y est dérivable à gauche et à
droite et que f ′

d(a) = f ′

g(a).

Définition 4. Dans le cas où f ′

g(a) 6= f ′

d(a) (ou si une seule des deux limites existe) on dit que la
courbe de f admet une (ou deux) demi-tangente à droite ou à gauche en a. Si τa(h) admet une
limite infinie en 0+ ou en 0−, on dit que la courbe de f admet une demi-tangente verticale au point
d’abscisse a.

Exemple : Considérons f(x) = |x| et a = 0. On a donc τ0,f (h) =
|h|
h

. Si h > 0, τ0(h) =
h

h
= 1,

donc f ′

d(0) = 1 ; mais si h < 0, τ0(h) =
−h

h
= −1, donc f ′

g(h) = −1. La fonction valeur absolue n’est

donc pas dérivable en 0, mais y admet à gauche une demi-tangente d’équation y = −x, et à droite
une demi-tangente d’équation y = x (qui sont d’ailleurs confondues avec la courbe).

Définition 5. Une fonction f est dérivable sur un intervalle I si elle est dérivable en tout point
de I. On appelle alors fonction dérivée de f la fonction f : x 7→ f ′(x).

Proposition 1. Soit f une fonction dérivable en a, alors l’équation de la tangente à la
courbe représentative de f en a est y = f ′(a)(x− a) + f(a).

Proposition 2. Si une fonction f est dérivable en a, alors f est continue en a.

Remarque 5. La réciproque est fausse ! Par exemple la fonction valeur absolue est continue sur R

mais pas dérivable en 0.

Démonstration. Si f est dérivable en a, on sait que lim
h→0

f(a+ h)− f(a)

h
= f ′(a). Autrement dit,

f(a+ h)− f(a)

h
=
0
f ′(a) + ε(h), avec lim

h→0
ε(h) = 0. En multipliant tout par h, on obtient f(a+ h) =

f(a) + hf ′(a) + hε(h). Comme lim
h→0

f(a) + hf ′(a) + ε(h) = f(a), on a donc lim
h→0

f(a+ h) = f(a), ce

qui prouve que f est continue en a.

3



Définition 6. On appelle développement limité à l’ordre 1 de f en a l’égalité f(a + h) =
f(a) + hf ′(a) + hε(h), avec lim

h→0
ε(h) = 0.

Remarque 6. Cette égalité signifie simplement que, lorsque h est proche de 0, f(a + h) peut être
approché par la fonction affine h 7→ f(a) + f ′(a)h (qui n’est autre que la tangente à la courbe en
son point d’abscisse a), et que l’erreur commise quand on effectue cette approximation est en ordre
de grandeur plus petite que la valeur approchée calculée (le terme hε(h) tend plus vite vers 0 que
le terme f ′(a)h qui le précède). On verra plus tard que cela prouve que cette approximation est la
meilleure possible par une fonction affine. On peut généraliser cette notion en approchant la fonction
f par un polynome de degré 2, 3 ou plus (mais il faut alors que f soit deux, trois fois dérivable,
etc). On parle alors de développement limité à l’ordre 2, 3 ou n, le principe étant par exemple pour
l’ordre 2 d’avoir un développement du type f(a+ h) = f(a) + f ′(a)h+ kh2 + h2ε(h), avec k ∈ R et

lim
h→0

ε(h) = 0, de façon à avoir la meilleure approximation possible. Il faut pour cela choisir k =
f ′′(a)

2
,

nous reverrons en détail ces calculs une fois que nous posséderons un outil (la formule de Taylor)
permettant de mieux les comprendre.

1.2 Opérations.

Proposition 3. Soient f et g deux fonctions dérivables en a. Alors f + g est dérivable en
a et (f + g)′(a) = f ′(a) + g′(a).

Démonstration. En effet, le taux d’accroissement de f + g en a vaut

τa,f+g(h) =
f(a+ h) + g(a + h)− f(a)− g(a)

h
=

f(a+ h)− f(a)

h
+
g(a + h)− g(a)

h
. Autrement dit,

c’est la somme des taux d’accroissements de f et de g en a. Sa limite existe donc et est égale à la
somme des limites de ces taux d’accroissement, c’est-à-dire que lim

h→0
τa,f+g(h) = f ′(a)+ g′(a), d’où la

formule.

Proposition 4. Soit f une fonction dérivable en a et λ ∈ R, alors λf est dérivable en a

et (λf)′(a) = λf ′(a).

Démonstration. C’est un calcul encore plus trivial que le précédent : τa,λf (h) = λτa,f (h), d’où la
formule.

Proposition 5. Soient f et g deux fonctions dérivables en a, alors fg est dérivable en a

et (fg)′(a) = f ′(a)g(a) + f(a)g′(a).

Démonstration. Calculons le taux d’accroissement de la fonction fg en a :

τa,fg(h) =
f(a+ h)g(a + h)− f(a)g(a)

h
=

f(a+ h)g(a + h)− f(a)g(a+ h) + f(a)g(a+ h)− f(a)g(a)

h
=

g(a + h)
f(a+ h)− f(a)

h
+ f(a)

g(a+ h)− g(a)

h
. Le premier terme a pour limite g(a)f ′(a) quand h

tend vers 0 (la fonction g étant dérivable en a, elle y est continue, donc g(a+h) tend vers g(a) quand
h tend vers 0), et le second a pour limite f(a)g′(a) puisqu’on reconnait le taux d’accroissement de
g. On obtient donc bien la formule attendue.
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Proposition 6. Soit g une fonction dérivable en a, et ne s’annulant pas en a, alors
1

g
est

dérivable en a et

(

1

g

)

′

(a) = − g′(a)

g(a)2
. Si f est une autre fonction dérivable en a, alors

f

g

est dérivable en a et

(

f

g

)

′

(a) =
f ′(a)g(a) − f(a)g′(a)

g(a)2
.

Démonstration. Le taux d’accroissement de
1

g
en a vaut τa, 1

g

(a) =

1
g(a+h) − 1

g(a)

h
. Il n’est défini que

si g(a+ h) 6= 0, mais on admettra que, si g(a) 6= 0 (c’est une des hypothèses de la proposition) et g

est continue, alors g ne s’annule pas au voisinage de a (c’est une conséquence de la définition de la
limite, il faut trafiquer un peu avec les ε et les η pour faire les choses tout à fait rigoureusement). On

peut alors réduire au même dénominateur : τa, 1
g

(h) =
1

g(a+ h)g(a)

g(a) − g(a+ h)

h
. On reconnait à

droite l’opposé du taux d’accroissement de g, qui tend donc vers −g′(a), et le dénominateur à gauche
tend vers g(a)2 car g est dérivable donc continue en a.
La deuxième formule s’obtient en appliquant simplement la formule de dérivation d’un produit à f

et
1

g
:

(

f

g

)

′

(a) = f ′(a)× 1

g(a)
− f(a)× g′(a)

g(a)2
=

f ′(a)g(a) − f(a)g′(a)

g(a)2
.

Proposition 7. Soient f et g deux fonctions dérivables respectivement en a et en f(a),
alors la composée g ◦ f est dérivable en a et (g ◦ f)′(a) = f ′(a).(g′(f(a)).

Démonstration. L’idée est de séparer le taux d’accroissement de g◦f pour faire apparaitre ceux de g et

de f . Notons pour cela b = f(a), et k le réel f(a+h)−f(a), alors τa,g◦f (h) =
g ◦ f(a+ h)− g ◦ f(a)

h
=

g(f(a+ h))− g(f(a))

k
× f(a+ h)− f(a)

h
. Le deuxième quotient est le taux d’accroissement de f en

a, il converge donc vers f ′(a). Mais le premier quotient est en fait aussi un taux d’accroissement :

en effet, par définition, f(a + h) = f(a) + k, donc il est égal
g(b+ k)− g(b)

k
, donc à un taux

d’accroissement de la fonction g en b = f(a). De plus, la variable k tend bien vers 0 quand h tend
vers 0 par continuité de la fonction f en a. On peut donc conclure que ce quotient a pour limite
g′(b) = g′(f(a)) quand h tend vers 0, ce qui achève la démonstration de la formule.
Il y a en fait un (gros) problème, c’est que ce premier dénominateur risque très fort de s’annuler
(quand f(a+ h) = f(a)) et (contrairement à ce qui se passait pour l’inverse) cela peut se produire
une infinité de fois au voisinage de a. Pour corriger cette imprécision, une autre façon de prouver
cette propriété est de passer par les développements limités à l’ordre 1. On sait que f(a+h) = f(a)+
hf ′(a) +hε(h), et que g(b+ k) = g(b) + kg′(b)+ kη(k) (avec lim

k→0
η(k) = 0, on a modifié les notations

pour ne pas engendrer de confusion). On veut désormais calculer g◦f(a+h) = g(f(a)+hf ′(a)+hε(h)).
En posant b = f(a) et k = hf ′(a) + hε(h) (qui tend bien vers 0 quand h tend vers 0), on a donc
g◦f(a+h) = g(f(a))+(hf ′(a)+hε(h))g′(f(a))+η(hf ′(a)+hε(h)) = g◦f(a)+hf ′(a)g′◦f(a)+hα(h),
avec lim

h→0
α(h) = 0 (tout les termes restants sont des produits de h par des choses qui tendent vers 0).

Comme on sait par ailleurs que g ◦f(a+h) = g ◦f(a)+h(g ◦f)′(a)+hα(h), une simple identification
donne (g ◦ f)′(a) = f ′(a)g′ ◦ f(a). Pour être totalement honnête, cette dernière identification repose
sur l’unicité du développement limité à l’ordre 1, unicité que nous n’avons pas vraiment évoquée
dans ce cours, et donc encore moins démontrée.
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Proposition 8. Soit f une fonction dérivable et bijective sur un intervalle I, à valeurs
dans J . Alors f−1 est dérivable en tout point b ∈ J tel que f ′(f−1(b)) 6= 0, et dans ce cas

(f−1)′(b) =
1

f ′(f−1(b))
.

Remarque 7. Les images des valeurs où la dérivée de f s’annule, qui sont donc les points où la
fonction réciproque n’est pas dérivable, correspondent en fait à des endroits où la courbe de f−1

admet des tangentes verticales (ce qui se comprend graphiquement puisqu’une tangente horizontale
pour f devient après symétrie par rapport à la droite d’équation y = x une tangente verticale pour
f−1).

Démonstration. Soient donc b ∈ J et a = f−1(b). La taux d’accroissement de f−1 en b est défini par

τb,f−1(h) =
f−1(b+ h)− f−1(b)

h
=

f−1(b+ h)− a

h
. La fonction f étant bijective de I sur J , b + h

admet un unique antécédent, qu’on va noter c, dans l’intervalle I. On a donc f(c) = b + h et par

ailleurs f(a) = b, donc h = f(c) − b = f(c) − f(a), ce qui permet d’écrire τb,f−1(h) =
c− a

f(c)− f(a)
.

Pour mettre ce quotient sous une forme plus habituelle (on devrait déjà reconnaitre ici un inverse

de taux d’accroissement), on pose k = c − a, et on a τb,f−1(h) =
k

f(a+ k)− f(a)
, avec k qui tend

vers 0 quand h tend vers 0 par continuité de la fonction f−1 (quand h tend vers 0, c = f−1(b + h)
tend vers f−1(b), donc vers a). On reconnait donc la limite quand h tend vers 0 de l’inverse du taux

d’accroissement de f en a. Si f ′(a) 6= 0, on a donc lim
h→0

τb,f−1(h) =
1

f ′(a)
=

1

f ′(f−1(b))
. Si f ′(a) = 0,

la limite de τb,f−1(h) est infinie, on a donc une tangente verticale.

Terminons ce paragraphe en rappelant les (rares) cas de fonctions usuelles qui ne sont pas dérivables
sur tout leur ensemble de définition (on ne rappellera pas les formules pour les dérivées de fonctions
usuelles, qui ont déjà été revues en début d’année), et qui, à l’exception du cas de la valeur absolue,
découlent tous du dernier résultat énoncé sur la dérivabilité d’une réciproque :

• la fonction valeur absolue n’est pas dérivable en 0.
• la fonction racine carrée n’est pas dérivable en 0 (réciproque de la fonction carré dont la

dérivée s’annule en 0).
• les fonctions arccos et arcsin ne sont pas dérivables en −1 et en 1 (réciproques des fonctions

cos et sin dont les dérivées s’annulent respectivement en 0 et en π pour le cosinus, et en ±π

2
pour le sinus).

Définition 7. Rappel : Une fonction définie sur un intervalle I y est :

• de classe Dn si elle est n fois dérivable sur I

• de classe Cn si de plus sa dérivée n-ème f (n) est continue sur I

• de classe C∞ si elle dérivable n fois sur I pour tout entier naturel n

Théorème 1. Toutes les fonctions usuelles sont de classe C∞ sur tous les intervalles où
elles sont dérivables.
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Théorème 2. Le caractère Cn (ou C∞) est stable par toutes les opérations usuelles : une
somme, produit, quotient (si le dénominateur ne s’annule pas), composée de fonctions Cn

(ou C∞) sera également Cn (ou C∞).

Proposition 9. Formule de Leibniz.

Si f et g sont deux fonctions de classe Dn sur I, alors (fg)(n) =

n
∑

k=0

(

n

k

)

f (k)g(n−k).

Démonstration. Ce résultat nous rappelle étrangement la formule du binôme de Newton. Il se dé-
montre exactement de la même façon (on ne le fera donc pas).

Exemple : Appliquée pour n = 4, la formule donne par exemple (fg)(4) = f (4)g+4f ′′′g′ +6f ′′g′′ +
4f ′g′′′ + fg(4). On fait bien attention au fait que la notation f (0) désigne la fonction f elle-même et
pas une fonction constante égale à 1.

2 Théorème des accroissements finis et applications.

2.1 Énoncés.

Le théorème des accroissements finis, même s’il énonce un résultat qui n’a rien de spectaculaire
(et même rien de très utile en tant que tel), est un outil absolument fondamental en analyse puisque
c’est notamment grâce à lui qu’on démontre le lien entre signe de la dérivée et sens de variation d’une
fonction qui est à la base de tous les tableaux de variations que vous avez dressés depuis la moyenne
section de maternelle. Avant de l’énoncer, on a besoin de quelques résultats préliminaires, dont le
premier est lui-même un cas particulier d’information habituellement présente dans un tableau de
variations.

Proposition 10. Soit f une fonction dérivable sur un intervalle borné ]a, b[ et x ∈]a, b[.
Si x est un point en lequel f atteint un extremum local, alors f ′(x) = 0.

Démonstration. Supposons par exemple qu’il s’agisse d’un maximum (l’autre cas est très similaire).

Le taux d’accroissement de f en x est défini par τx,f(h) =
f(x+ h)− f(x)

h
. Or, au voisinage de x,

on aura f(x+ h) 6 f(x) puisque f(x) est un maximum local. On en déduit que ∀h < 0 (et tel que
x+ h appartienne au voisinage en question), τx,f(h) > 0, donc f ′(x) = lim

h→0−
τx,f(h) > 0 (le point x

étant situé dans un intervalle ouvert, on peut toujours calculer cette limite à gauche, tout comme la
limite à droite qui va suivre). Mais de même ∀h > 0, τx,f(h) 6 0, donc f ′(x) = lim

h→0+
τx,f(h) 6 0.

Finalement, on a nécessairement f ′(x) = 0.

Théorème 3. Théorème de Rolle.
Soit f une fonction continue sur un segment [a, b] et dérivable sur ]a, b[, telle que f(a) =
f(b), alors ∃c ∈]a, b[, f ′(c) = 0.
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Démonstration. Commençons par éliminer le cas où la fonction f est constante sur [a, b] puisque
dans ce cas la dérivée de f est nulle, donc le théorème est manifestement vérifié.
La fonction f étant dérivable, elle est continue sur [a, b], donc y atteint un maximum M et un
minimum m d’après le théorème du maximum. Si on suppose f non constante, l’un des deux, par
exemple M (dans l’autre cas, la démonstration est similaire), est distinct de f(a) (et de f(b) qui lui
est égal), donc atteint en un réel c ∈]a, b[. D’après la propriété précédente, f ′(c) = 0.

Remarque 8. On peut proposer une interprétation cinématique de ce résultat : si un objet se déplace
sur un axe (déplacement à une dimension) et qu’il revient au bout d’un certain temps à son point
de départ, il y aura forcément eu un instant lors de son déplacement où sa vitesse instantanée aura
été nulle (ce qui est effectivement indispensable pour qu’il puisse faire demi-tour).

Théorème 4. Théorème des accroissements finis.
Soit f une fonction continue sur un segment [a, b] et dérivable sur ]a, b[, alors ∃c ∈]a, b[,
f ′(c) =

f(b)− f(a)

b− a
.

Remarque 9. Autrement dit, il existe un point où la tangente est parallèle à la corde passant par les
points de la courbe de coordonnées (a, f(a)) et (b, f(b)). Là encore, on peut fournir une interprétation
cinématique de notre résultat : toujours en supposant un mouvement unidimensionnel, mais en
supprimant l’hypothèse de retour au point de départ, il y aura un instant pendant le déplacement où
la vitesse instantanée du mobile aura coïncidé avec sa vitesse moyenne sur l’ensemble du déplacement.
Le théorème fonctionne d’ailleurs aussi si le mouvement n’est pas unidimensionnel, quitte à prendre
en compte la norme de la vitesse : si on parcourt 24 kilomètres en deux heures lors d’un jogging, on
aura eu à un moment donné une vitesse instantanée de 12 km.h−1.
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Démonstration. Le principe est de se ramener au théorème précédent. Définissons une deuxième

fonction g par g(x) =
f(b)− f(a)

b− a
x− f(x) (ce qui correspond, à une constante près, à l’écart entre

la courbe représentative de f et la droite passant par les points (a, f(a)) et (b, f(b))). Cette fonction

est dérivable sur ]a, b[ puisque f l’est et vérifie g(b) − g(a) =
f(b)− f(a)

b− a
b− f(b)− f(b)− f(a)

b− a
a+

f(a) =
f(b)− f(a)

b− a
(b − a) − f(b) + f(a) = 0, c’est-à-dire que g(b) = g(a). On peut donc lui

appliquer le théorème de Rolle : ∃c ∈]a, b[, g′(c) = 0. Or, g′(x) =
f(b)− f(a)

b− a
− f ′(x), donc on a

f ′(c) =
f(b)− f(a)

b− a
, ce qu’on cherchait à prouver.

Théorème 5. Soit f une fonction dérivable sur un intervalle I, alors f est croissante sur
I si et seulement si f ′ est positive sur I. De même, f est décroissante sur I si et seulement
si f ′ est négative sur I.

Démonstration. Supposons f croissante sur I, et soit a ∈ I, considérons le taux d’accroissement de

f en a : τa,f (h) =
f(a+ h)− f(a)

h
. Ce taux d’accroissement est toujours positif, puisque numérateur

et dénominateur sont de même signe (par croissance de f , f(a+h)−f(a) < 0 si h < 0, et f(a+h)−
f(a) > 0 si h > 0). En passant à la limite, on en déduit f ′(a) > 0. Comme cette inégalité est vraie
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pour tout a, la dérivée f ′ est bien positive sur l’intervalle I. Le sens réciproque est bien entendu le
plus important : si f ′(x) > 0 sur tout l’intervalle I, en choisissant un élément y > x, le théorème des

accroissements finis assure l’existence d’un réel x tel que
f(y)− f(x)

y − x
= f ′(c). Comme f ′(c) > 0 et

y − x > 0, on a donc f(y) − f(x) > 0, ce qui prouve que f est croissante sur I. La preuve dans le
cas de la décroissance est identique aux signes près.

Remarque 10. Ces théorèmes seront bien entendus utilisés sans être cités lors de l’étude des variations
de fonctions, comme vous en avez déjà l’habitude. Mais vous avez désormais une preuve complète de
ces résultats très classiques.

Théorème 6. Théorème du prolongement de la dérivée.

Soit f une fonction continue sur un segment [a, b] et dérivable sur ]a, b]. Si la dérivée f ′ de
la fonction f admet une limite finie l quand x tend vers a, alors f est dérivable en a et
f ′(a) = l.

Démonstration. Considérons le taux d’accroissement de f en a : τa,f (h) =
f(a+ h)− f(a)

h
(ici,

h sera nécessairement positif pusique f n’est définie qu’à droite de a). D’après le théorème des
accroissements finis, on peut écrire τa,f (h) = f ′(ch), où ch est une constante (dépendant de h)
appartenant à l’intervalle ]a, a+h[. Si on fait tendre h vers 0, d’après le théorème des gendarmes, ch
aura pour limite a. Alors, les hypothèses du théorème nous permettent d’affirmer que lim

h→0
f ′(ch) = l,

ce qui prouve bien que la fonction f est dérivable en a, puisque son taux d’accroissement y tend vers
l.

Exemple : Ce théorème sera souvent appliqué dans le cas où on prolonge une fonction par continuité,
pour déterminer si le prolongement effectué est dérivable ou non. Il évite de revenir au calcul du
taux d’accroissement (qui est toutefois rarement plus complexe, les deux options sont en pratique
équivalentes). Considérons la fonction f : x 7→ x2 ln(x). Cette fonction est définie et de classe C∞

sur R+∗ et peut se prolonger par continuité en 0 en une fonction g vérifiant g(0) = 0 (par croissance
comparée). Par ailleurs, f ′(x) = 2x ln(x) + x a certainement aussi une limite nulle en 0 (toujours de
la croissance comparée ici). Le théorème de prolongement de la dérivée permet alors d’affirmer que
la fonction prolongée g est dérivable en 0, et que g′(0) = 0. Cette information est essentielle pour
tracer une allure précise de la courbe au voisinage de 0.

Remarque 11. On pourra également utiliser la variante suivante du théorème de prolongement de la
dérivée : sous les mêmes hypothèses, si la dérivée f ′ admet en a une limite infinie, alors f n’est pas
dérivable en a mais sa courbe y admet une (demi)-tangente verticale.

Proposition 11. Inégalité des accroissements finis (IAF).

Soit fune fonction dérivable sur un intervalle I :

• s’il existe deux réels m et M tels que, ∀x ∈ I, m 6 f ′(x) 6 M , alors ∀(x, y) ∈ I2

tels que x < y, on aura m(y − x) 6 f(y)− f(x) 6 M(y − x).
• s’il existe un réel M tel que ∀x ∈ I, |f ′(x)| 6 M , alors ∀(x, y) ∈ I2, on aura

|f(y)− f(x)| 6 M |y − x|.
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Remarque 12. On peut énoncer autrement l’IAF dans sa seconde version : si |f ′| est majorée par K

sur un intervalle I, alors f est K-Lipschitzienne sur I.

La première version de l’IAF est plus précise que la deuxième, mais en pratique c’est surtout la
deuxième qu’on utilisera, notamment quand on l’appliquera à l’étude des suites récurrentes.

Démonstration. C’est vraiment une application directe du théorème des accroissements finis. Dé-

montrons la première version : il existe un réel c ∈]x, y[ tel que
f(y)− f(x)

y − x
= f ′(c). Les hypothèses

imposent que m 6 f ′(c) 6 M , il suffit donc de multiplier l’encadrement par y − x (qui est par
hypothèse positif) pour obtenir le résultat souhaité.

Remarque 13. Ces inégalités ont une interprétation cinématique assez évidente : si on reprend
l’exemple du coureur qui fait son jogging, s’il a couru deux heures avec une vitesse instantanée
maximale de 15 kilomètres par heure, il aura parcouru au maximum 30 kilomètres lors de ses deux
heures de jogging.

2.2 Application à l’étude de suites récurrentes.

Définition 8. Une suite récurrente est une suite définie par une relation de récurrence du type
un+1 = f(un), où la fonction f est une fonction continue.

Comme pour l’étude des suites implicites dans le chapitre précédent, le but de ce paragraphe est
de présenter les méthodes principales d’étude des suites récurrentes sur un exemple simple, sans
réellement énoncer de résultats à retenir. Il faut par contre vraiment connaitre les étapes principales
de la méthode, notamment en ce qui concerne l’application de l’IAF : les récurrences sont toujours
les mêmes et apparaissent au même endroit, on doit donc savoir à quel moment y recourir. Tout de
même, un seul résultat théorique :

Théorème 7. Si une suite (un) vérifiant la relation de récurrence un+1 = f(un) converge,
alors sa limite l est un point fixe de la fonction f , c’est-à-dire une solution de l’équation
f(x) = x.

Remarque 14. Il est bien entendu tout à fait possible qu’une telle suite ne converge pas, les points fixes
de f représentent donc simplement les limites potentielles d’une suite récurrente faisant intervenir
la fonction f .

Démonstration. Il s’agit simplement de passer à la limite dans la relation de récurrence. Comme un+1

tend vers l et f(un) vers f(l), l’égalité f(l) = l en découle immédiatement. Notons l’importance de
la continuité de la fonction f pour ce calcul.

Ajoutons un tout petit peu de vocabulaire avant d’étudier notre exemple :

Définition 9. Un intervalle I est stable par la fonction f si f(I) ⊂ I.

Ainsi, une suite récurrente un pour laquelle u0 ∈ I aura tous ses termes dans l’intervalle I si
l’intervalle est stable (c’est une récurrence triviale, mais qu’il faut citer à chaque fois sur une copie).

Exemple : Considérons la suite définie par u0 = 1 et ∀n ∈ N, un+1 = 1+
1

un
. On posera donc pour

notre étude f(x) = 1 +
1

x
.
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Étude de la fonction f et détermination des points fixes.

On commence toujours une étude de suite récurrente par l’étude de la fonction f , en lui adjoignant
celle du signe de f(x)−x (qui donnera en passant la valeur des points fixes éventuels de la fonction).

Ici, f est dérivable sur R
∗, de dérivée f ′(x) = − 1

x2
. Elle est donc décroissante sur ] −∞, 0[ et sur

]0,+∞[, avec des limites égales à 1 en ±∞ et infinies à gauche et à droite de 0 (on ne détaille pas,

tout ça est très facile). Par ailleurs, f(x) − x = 1 +
1

x
− x =

x+ 1− x2

x
. Le numérateur a pour

discriminant ∆ = 5, et s’annule en x1 =
−1−

√
5

−2
=

1 +
√
5

2
, et en x2 =

1−
√
5

2
, qui sont donc les

deux points fixes de f . On va ajouter dans le tableau de variations le signe de f(x)− x :

x −∞ x2 0 x1 +∞

f(x)

1
❍
❍
❍❥
x2

❍
❍
❍❥−∞

+∞
❍
❍
❍❥
x1

❍
❍
❍❥

1

f(x)− x + 0 − + 0 −

Tant qu’on y est, une représentation graphique ne peut pas faire de mal, et permet de visualiser
aisément les principales propriétés de la suite, à condition d’indiquer sur le graphique la droite
d’équation y = x. On peut même visualiser les premiers termes de la suite grâce à la construction
géométrique simple suivante : on part de l’abscisse u0 puis on « monte » jusqu’au point de la courbe
d’abscisse u0 (et donc d’ordonnée u1 puisque par définition f(u0) = u1). On trace ensuite à partir de
ce point une horizontale jusqu’à atteindre la droite d’équation y = x (qu’on coupera donc au point
de coordonnées (u1, u1)) et on « redescend » jusqu’à l’axe des abscisses pour se retrouver à l’abscisses
u1. Il ne reste plus qu’à itérer pour les termes suivants.

0 1 2 3−1−2

0

1

2

3

−1

−2

x
2

x
1

u
1

u
0

u
2

u
3

Ici, on constate que la suite ne semble pas monotone, mais semble par contre converger vers x1.
Si on veut être plus précis, la sous-suite (u2n) des termes d’indices pairs semble croissante, et la
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sous-suite (u2n+1) des termes d’indices impairs semble décroissante, avec adjacence des deux suites
vers leur limite commune x1. On pourrait en fait prouver beaucoup plus généralement que la suite
récurrente est monotone lorsque la fonction f est croissante (sur l’intervalle stable où vont se situer
tous les termes de la suite), et qu’on aura toujours la situation de notre exemple (convergence « en
escargot ») si f est décroissante. Le tout bien sûr à condition que la suite converge.

Détermination d’un intervalle stable.

L’observation du tableau de variations, éventuellement assortie du calcul de quelques valeurs, permet
de trouver facilement des intervalles stables. Ici, l’intervalle le plus naturel serait l’intervalle [1, 2] (qui

est effectivement stable), mais on va plutôt prendre I =

[

3

2
, 2

]

(pour des raisons qu’on expliquera

ensuite). Bien sûr, u0 n’appartient pas à cet intervalle mais ce n’est pas très gênant. Vérifions donc que

I est stable par f : f

(

3

2

)

=
5

3
< 2, f(2) =

3

2
et f est décroissante sur I, donc f

([

3

2
, 2

])

=

[

3

2
,
5

3

]

et notre intervalle est bien stable. On démontre alors facilement par récurrence que, ∀n > 1, un ∈ I :
c’est vrai pour u1 = 2, et si on le suppose vrai pour un, alors un+1 = f(un) ∈ I par stabilité de
l’intervalle.

Utilisation de l’IAF.

Il est important de bien vérifier toutes les hypothèses de l’IAF avant de l’appliquer. Sur notre

intervalle I, on peut majorer la valeur absolue de la dérivée |f ′(x)| =
1

x2
par

4

9
. On peut alors

appliquer l’IAF en prenant y = un et x = x1 (on choisira toujours le terme général de la suite et le
point fixe qui sera la limite pour appliquer l’IAF dans ce genre de cas), qui sont bien tous les deux

dans l’intervalle I. On obtient, puisque |f ′| est majorée par
4

9
, |f(un) − f(x1)| 6

4

9
|un − x1|, soit

|un+1 − x1| 6
4

9
|un − x1|. Ce résultat permet déjà de comprendre intuitivement pourquoi la suite va

forcément converger vers x1 : à chaque nouvelle étape, la distance entre la suite et la limite va être

diminuée (multipliée par un coefficient inférieur à
4

9
), ce qui revient à dire qu’on se rapproche en

permanence de x1. On remarque que, pour que ce raisonnement puisse fonctionner, il est nécessaire
que le majorant obtenu pour |f ′| soit strictement inférieur à 1, ce qui n’aurait pas été le cas sur
l’intervalle [1, 2]. En fait, on peut plus généralement constater que, si l est un point fixe de la
fonction f vérifiant |f ′(l)| < 1, la suite va souvent converger vers l (on parle de point fixe attractif

dans ce cas), alors que si |f ′(l)| > 1, la suite ne pourra presque jamais converger vers l, sauf si elle
est stationnaire (on parle dans ce cas de point fixe répulsif). Ce vocabulaire n’est pas à connaitre.

Une fois appliquée l’IAF, les dernières étapes sont toujours les mêmes : on prouve par récurrence une
inégalité majorant la distance entre un et sa limite directement en fonction de n. Ici on va prouver

que ∀n ∈ N
∗, |un−x1| 6

(

4

9

)n−1

. En effet, au rang 1, |u1−x1| 6 1 puisque x1 ∈ [1, 2]. En supposant

ensuite la propriété vraie au rang n, on peut écrire |un+1−x1| 6
4

9
|un−x1| 6

4

9
×
(

4

9

)n−1

=

(

4

9

)n

en appliquant successivement l’IAF puis l’hypothèse de récurrence. On conclut enfin à l’aide du

théorème des gendarmes : comme lim
n→+∞

(

4

9

)n

= 0, et comme 0 6 |un − x1| 6
(

4

9

)n−1

, on aura

lim
n→+∞

|un − x1| = 0, c’est-à-dire que lim
n→+∞

un = x1 =
1 +

√
5

2
. Si on le souhaite, on peut même

exploiter la majoration obtenue pour étudier la vitesse de convergence de la suite. Sur notre exemple,
si on veut déterminer une valeur pour laquelle |un − x1| 6 10−2 (autrement dit, un sera une valeur
approchée de sa limite avec une précision de deux décimales), une condition suffisante (mais pas
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du tout nécessaire, ne mettez surtout pas d’équivalence dans ce cas !) est

(

4

9

)n−1

6 10−2, soit

(n−1) ln

(

4

9

)

6 −2 ln(10), donc n > 1+
ln(10)

ln(3) − ln(2)
(on fait bien sûr attention au changement de

sens de l’inégalité quand on divise par ln(4)− ln(9) qui est négatif). Plus concrètement (on effectue
l’application numérique à la calculatrice) on peut choisir n = 7 (en pratique, la valeur approchée est
sûrement meilleure que prévue car la majoration utilisée est loin d’être optimale).

3 Généralisation aux suites et fonctions complexes.

3.1 Limites de suites complexes.

Définition 10. Une suite complexe (zn) converge vers une limite l ∈ C si
∀ε > 0, ∃n0 ∈ N, ∀n > n0, |zn − l| 6 ε.

Remarque 15. Il s’agit rigoureusement de la même définition que pour les suites réelles, mais bien
sur, la distance est ici mesurée par un module et plus par une valeur absolue. Si on représente les
termes de la suite dans le plan complexe, cela revient à imposer qu’ils vont tous se retrouver dans
un disque de rayon ε autour de l, quitte à attendre suffisamment longtemps.
Notons enfin que la notion de limite infinie (et surtout égale à +∞ ou à −∞) n’a pas grand sens
pour une suite complexe. On se contentera donc d’étudier une éventuellement limite infinie de |zn|,
ce qui ramène évidemment le calcul à une suite réelle.

Proposition 12. La suite (zn) converge si et seulement si les deux suites réelles (Re (zn))
et (Im (zn)) convergent. Dans ce cas, lim

n→+∞

zn = lim
n→+∞

Re (zn) + i× lim
n→+∞

Im (zn).

Autrement dit, on ramènera toujours l’étude de la convergence des suites complexes à celle de (deux)
suites réelles. Il arrivera plus rarement qu’on étudie les suites réelles formées par le module et l’ar-
gument de zn pour aboutir au même genre de conclusion.

Parmi les résultats classiques vus dans le chapitre d’étude des suites réelles, tous ceux qui font
intervenir des inégalités (convergence monotone, théorème des gendarmes, suites adjacentes) sont
bien entendu inapplicables aux suites complexes (mais on peut bien sûr les appliquer à la partie
réelle ou à la partie imaginaire de la suite), ce qui laisse en pratique très peu d’outils d’étude directe
de ces suites.

3.2 Fonctions complexes.

Il n’est question ici que de fonctions f : I → C, où I ⊂ R. Les fonctions dont la variable est
elle-même complexe sont l’objet de tout un pan de l’analyse, appelé analyse complexe, utilisant des
méthodes très différentes de celles étudiées dans ce chapitre (et pas du tout à votre programme).

Définition 11. La fonction f admet pour limite l ∈ C quand x tend vers a ∈ I si ∀ε > 0, ∃η > 0,
|x− a| < η ⇒ |f(x)− l| < ε.

Remarque 16. C’est encore une fois la même définition que pour une fonction réelle. On aurait les
mêmes difficultés à définir des limites infinies que pour les suites réelles.

Proposition 13. La fonction f admet une limite l en a si et seulement si Re (f) et Im (f)
admettent des limites respectives l1 et l2 quand x tend vers a, et on a alors l = l1 + il2.
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Définition 12. La fonction f est continue en a si lim
x→a

f(x) = f(a).

La fonction f est dérivable en a si son taux d’accroissement τa,f (h) =
f(a+ h)− f(a)

h
admet une

limite finie l lorsque x tend vers a. On note alors f ′(a) = l.

Les autres notions (continuité sur un intervalle, prolongement par continuité) sont identiques au cas
des fonctions réelles.

On peut définir des notions de dérivée à gauche ou à droite comme dans le cas réel. Par contre,
l’interprétation géométrique de la dérivée en termes de tangente est plus compliquée (cf l’exemple
qui suit la propriété). Pire, la notion de variations pour une fonction complexe n’existant pas, le
calcul même de la dérivée perd une grande partie de son intérêt !

Proposition 14. La fonction f est dérivable en a si et seulement si Re (f) et Im (f) sont
dérivables en a, et on a alors f ′(a) = Re (f)′(a) + iIm (f)′(a).

Exemple : Si on pose f(t) = eit (fonction définie sur R), on peut écrire f(t) = cos(t)+ i sin(t), donc,
en dérivant séparément les parties réelle et imaginaire, f ′(t) = − sin(t)+ i cos(t) = ei(t+

π

2
) = ieit. On

remarque que la dérivée de cette exponentielle complexe se calcule comme celles des exponentielles
réelles. Si on souhaite comprendre géométriquement la notion de dérivée pour cette fonction, on peut
représenter la trajectoire correspondant à cette fonction dans le plan complexe sous forme de courbe
paramétrée (on place tous les points d’affixe f(t) lorsque t varie, sans faire varier la variable t sur
un axe du repère). Ici, on obtient une trajectoire circulaire (on parcourt le cercle trigonométrique).
La valeur (complexe) de f ′(t) correspond en fait à l’affixe du vecteur tangent à cette trajectoire au
point de paramètre t (ici, cette affixe a toujours un module 1, ce qui prouve que la trajectoire est
parcourue à vitesse uniforme). Un petit schéma ci-dessous, avec les points et les vecteurs tangents

correspondant à t1 =
π

3
(en rouge), t2 = π (en violet) et t3 =

11π

6
(en orange) :

0 1−1

0

1

−1
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Tout le formulaire de calcul de dérivées (y compris la formule de Leibniz) reste valable pour des
fonctions complexes. Il est toutefois moins utile que pour les fonctions réelles, car il existe beaucoup
moins de fonction usuelles sur C.

Parmi les théorèmes énoncés plus haut dans ce chapitre, par contre, presque plus rien d’intéressant
pour le cas complexe : pas de théorème des accroissements finis, pas de théorème de Rolle. Par
exemple, en reprenant f(t) = eit, la dérivée f ′(t) = ieit ne s’annule jamais, alors que f(0) = f(2π) = 1
(c’est logique dans la mesure où, lors d’un déplacement en deux dimensions, on peut très bien revenir
à son point de départ sans jamais avoir eu une vitesse nulle). Par contre, assez curieusement, l’IAF,
du moins sous sa forme « valeur absolue » (qui sera ici remplacée par un module) reste vraie.

4 Convexité.

La notion de convexité/concavité d’une courbe, que vous avez déjà abordée l’an dernier, permet de
compléter celle de croissance/décroissance pour visualiser l’allure générale de la courbe représentative
d’une fonction. Elle permet également de démontrer énormément d’inégalités liées à la position
des courbes représentatives de certaines fonctions par rapport à des droites remarquables (cordes,
tangentes). C’est surtout cet aspect qui sera développé dans cette partie de cours, même si le lien
avec le signe de f ′′ quand la fonction est deux fois dérivable sera bien sûr démontré.

Définition 13. Soit f une fonction définie sur un intervalle I, alors f est convexe sur I si, ∀(x, y) ∈
I2, ∀t ∈ [0, 1], f(tx+ (1− t)y) 6 tf(x) + (1− t)f(y). Symétriquement, f est concave sur I si, avec
les mêmes quantifications, f(tx+ (1− t)y) > tf(x) + (1− t)f(y).

Cette définition signifie simplement la chose suivante : la courbe représentative d’une fonction convexe
(respectivement concave) est située en-dessous (respectivement au-dessus) de chacune de ses cordes.
En effet, avec les quantifications données dans notre définition, tx + (1 − t)y parcourt toutes les
valeurs de l’intervalle [x, y] (en supposant par exemple x 6 y), et tf(x) + (1 − t)f(y) correspond
à l’ordonnée du point d’abscisse tx + (1 − t)y sur la corde reliant les deux points de coordonnées
(x, f(x)) et (y, f(y)). Un petit dessin sera certainement plus clair :

0 1 2 3−1−2−3

0

1

2

−1

−2

−3

−4

x ytx+(1−t)y

tf(x)+(1−t)f(y)

f(tx+(1−t)y)
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Plus généralement, une courbe de fonction convexe est située sous ses sécantes (droite coupant la
courbe en deux points, le segment reliant les deux points est alors une corde de la courbe) entre les
deux points d’intersection, et au-dessus à gauche du premier point d’intersection et à droite du second.
C’est le contraire pour une fonction concave. En effet, notons x et y les abscisses des deux points
d’intersection, et supposons x < y 6 z. Dans le cas où f est convexe, on veut prouver que f(z) >
f(y)− f(x)

y − x
(z− y)+ f(y) (le membre de droite de cette inégalité est une équation de la sécante : en

effet il s’agit d’une équation de droite en la variable z, dont le coefficient directeur coïncide avec celui
de la sécante, et qui prend la valeur f(y) lorsque z = y, donc qui passe par le point de coordonnées
(y, f(y))), soit en mettant tout au même dénominateur (y − x)f(z) + (z − y)f(x) > (z − x)f(x),

ou encore f(y) 6

(

1− y − x

z − x

)

f(x) +
y − x

z − x
f(z). Cette dernière inégalité n’est rien d’autre qu’une

inégalité de convexité, avec
y − x

z − x
∈ [0, 1] et

(

1− y − x

z − x

)

x +
y − x

z − x
z =

(z − y)x+ (y − x)z

z − x
= y.

On traiterait le cas z 6 x < y de la même façon.

Remarque 17. Il existe des fonctions convexes qui ne sont même pas continues (sans parler d’être
deux fois dérivables), comme la classique fonction « smiley » représentée ci-dessous :

0 1 2 3 4

0

1

2

3

4
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Théorème 8. Inégalité de Jensen.

Soit f une fonction convexe sur un intervalle I et (x1, x2, . . . , xn) ∈ In, alors pour tout

n-uplet de réels (t1, t2, . . . , tn) ∈ [0, 1]n tels que
n
∑

k=1

tk = 1, on aura

f

(

n
∑

k=1

tkxk

)

6

n
∑

k=1

tkf(xk)

Démonstration. On va procéder par récurrence sur n. Si n = 1, il n’y a rien à prouver. Si n = 2,
il s’agit tout simplement de la définition de la convexité (puisque t1 + t2 = 1, on a t2 = 1 − t1) !
Supposons maintenant la formule vérifiée pour n réels et ajoutons-en un n + 1-ème xn+1, ainsi que
son coefficient tn+1, toujours bien entendu en respectant la condition sur la somme. Si tn+1 = 0, il n’y
rien à prouver puisqu’on est ramenés à l’hypothèse de récurrence. Sinon, on va poser t′n = tn + tn+1

et x′n =
tn

t′n
xn +

tn+1

t′n
xn+1. On peut appliquer l’hypothèse de récurrence aux réels (x1, . . . , xn−1, x

′

n)

et aux réels (t1, . . . , tn−1, t
′

n) (dont la somme est bien égale à 1 par définition de t′n) pour obtenir

f

(

n+1
∑

k=1

tkxk

)

= f(t1x1 + · · · + tn−1xn−1 + t′nx
′

n) 6 t1f(x1) + · · · + tn−1f(xn−1) + t′nf(x
′

n). Or,

t′nf(x
′

n) = t′nf

(

tn

t′n
xn +

tn+1

t′n
xn+1

)

6 tnf(xn)+ tn+1f(xn+1) (par inégalité « simple » de convexité),

il n’y a plus qu’à remplacer dans l’inégalité précédente pour obtenir l’hérédité voulue.

Théorème 9. Caractérisation de la convexité par croissance des pentes des sécantes.

Une fonction f est convexe sur l’intervalle I si et seulement si, pour tout réel a ∈ I, le taux

d’accroissement τ : x 7→ f(x)− f(a)

x− a
est une fonction croissante sur I\{a}.

Démonstration. Supposons donc f convexe sur I, et fixons a ∈ I. Soient x et y deux valeurs ap-
partenant à I et distinctes de a telles que x < y. Si y > a, alors y est situé à l’extérieur du

segment [a, x] (ou [x, a] selon la position de x), donc f(y) >
f(x)− f(a)

x− a
(y − a) + f(a) (la courbe

est au-dessus de sa sécante, cf remarque effectuée plus haut). Cela revient exactement à dire que
f(y)− f(a)

y − a
>

f(x)− f(a)

x− a
(on divise par un nombre qui est positif par hypothèse). Si y < a, y

est situé à l’intérieur du segment [a, x], donc l’inégalité est dans l’autre sens (courbe en-dessous de
ses cordes), mais revient dans le même sens après division par y − a qui est négatif, pour la même
conclusion. On a bien prouvé la croissance du taux d’accroissement en a pour une fonction convexe.

Supposons réciproquement les taux d’accroissements croissants. Si (x, y) ∈ I2 avec x < y et t ∈
]0, 1[, on pose a = tx + (1 − t)y, ce qui implique x < a < y. L’hypothèse faite permet d’affirmer

que
f(x)− f(a)

x− a
6

f(y)− f(a)

y − a
, donc (y − a)(f(x) − f(a)) > (x − a)(f(y) − f(a)) (on multiplie

par un nombre positif et par un nombre négatif, d’où le changement de sens de l’inégalité). Après

développement et division par y−x, on a donc f(a) 6
y − a

y − x
f(x)+

a− x

y − x
f(y), c’est-à-dire exactement

f(tx+ (1− t)y) 6 tf(x) + (1− t)f(y), ce qui est la définition même de la convexité !
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Théorème 10. Caractérisation de la convexité des fonctions dérivables.

Soit f une fonction dérivable sur un intervalle I, alors on a équivalence entre les trois
énoncés suivants (quatre si la fonction est supposée deux fois dérivable) :

• f est convexe sur I

• f ′ est croissante sur I (ou, dans le cas où f est deux fois dérivable, f ′′ est positive
sur I)

• la courbe représentative de f sur l’intervalle I est située au-dessus de toutes ses
tangentes.

Démonstration. Si f ′ est convexe, la croissance de f ′ découle de la caractérisation précédente sur la

croissance des taux d’accroissement : si x < y, alors f ′(x) 6 τx,f (y−x) =
f(y)− f(x)

y − x
= τy,f (x−y) 6

f ′(y). Cela prouve que la première propriété implique la deuxième.

La tangente à Cf en son point d’abscisse a a pour équation y = f ′(a)(x − a) + f(a). Posons donc
g(x) = f(x)− f ′(a)(x− a)− f(a), la fonction g est dérivable sur I et g′(x) = f ′(x)− f ′(a). Si f ′ est
supposée croissante, la fonction g est décroissante à gauche de a et croissante à droite de a. Comme
g(a) = 0, cela suffit à prouver que g est toujours positive, donc notre deuxième propriété implique
la troisième.

Supposons enfin la courbe située au-dessus de ses tangentes, et prouvons que f est convexe : on a
par hypothèse f(x) > f ′(a)(x − a) + f(a), donc tf(x) + (1 − t)f(y) > tf ′(a)(x − a) + tf(a) + (1 −
t)f ′(a)(y − a) + (1− t)f(a) = f ′(a)(tx + (1− t)y − a) + f(a). Il suffit de prendre a = tx+ (1 − t)y
pour retrouver la définition de la convexité.

Ci-dessous, une illustration de la position relative d’une courbe de fonction convexe (en bleu) et de
ses cordes d’une part (segments violets) et tangentes d’autres part (droites vertes en pointillés) :

0 1 2 3−1−2−3

0

1

2

−1

−2

−3

−4
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Exemples : en pratique, on privilégiera bien sûr ces caractérisations faciles à démontrer pour prouver
la convexité d’une fonction. Mais les autres caractérisations et définitions seront particulièrement in-
téressantes à exploiter pour obtenir des inégalités classiques, souvent connues sous le nom d’inégalités
de convexité. Quelques exemples à connaître avec les fonctions usuelles :

• ∀x ∈ R, ex > x + 1 (la fonction exponentielle est convexe, donc au-dessus de sa tangente en
0).

• ∀x ∈]0,+∞[, ln(x) 6 x− 1 (la fonction ln est concave, donc en-dessous de sa tangente en 1).

• ∀x ∈
[

0,
π

2

]

,
2x

π
6 sin(x) 6 x (la fonction sin est concave sur cet intervalle, donc en-dessous

de sa tangente en 0 et au-dessus de la corde reliant les deux points aux extrémités du segment).
Une illustration de cet encadrement ci-dessous :

0 1

0

1

Définition 14. Soit f une fonction définie sur un intervalle I et a ∈ I, a est l’abscisse d’un point

d’inflexion de la courbe représentative de f si f change de concavité en a (convexe à gauche de a

et concave à droite, ou le contraire).

Remarque 18. Si f est deux fois dérivable, on aura un point d’inflexion en a si f ′′ change de signe en
a (et donc f ′′(a) = 0). La tangente à la courbe représentative de f en un point d’inflexion traverse
localement cette courbe (la position relative de la courbe et de la tangente change au passage en a).
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