Chapitre 12 : Arithmétique
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Les nombres sont le plus haut degré de la connaissance.
Le nombre est la connaissance méme.

PLATON.

L’arithmétique, c’est étre capable de compter jusqu’a 20 sans enlever ses chaussures.

Walt DISNEY.

Ce court chapitre sera consacré aux bases d’'un domaine pourtant important des mathématiques,
celui de ’étude des nombres entiers. On se contentera ici d’étudier les entiers sous I'angle de arith-
métique (en gros les propriétés liées a la divisibilité), mais il existe en fait un autre pan de cette
étude (ce qu’on appelle aujourd’hui théorie des nombres) qui fait intervenir des outils beaucoup plus
analytiques. Ce chapitre est pratiquement indépendant de tout ce qu’on a fait jusqu’ici cette année,
mais sera d'une importance capitale pour comprendre une bonne partie du chapitre ultérieur que
nous consacrerons aux polynémes, sur lesquels on retrouve une arithmétique trés proche de celle des
nombres entiers.

Objectifs du chapitre :

e comprendre les notions de pged et ppcm et les propriétés qui leur sont reliées.
e savoir exploiter les congruences et la décomposition en facteurs premiers pour résoudre des
problémes d’arithmétique.

1 Nombres premiers.

Définition 1. Soient n et p deux entiers relatifs, n est divisible par p (ou p divise n) §'il existe un
troisiéme entier k tel que n = kp. On le note p | n. On dit également que n est un multiple de p.

Remarque 1. La relation de divisibilité est une relation d’ordre sur N mais pas sur Z, ou elle n’est
pas antisymétrique. En effet, deux entiers relatifs qui se divisent I'un 'autre sont soit égaux soit
OpPpOsés.

Définition 2. Deux entiers p et n tels que p divise n et n divise p sont appelés entiers associés.



Proposition 1. Si d est un diviseur commun des entiers n et p, alors d divise toute
combinaison linéaire de n et p : d | un + vp, quels que soient (u,v) € Z2.

Si p divise n, alors, Yk € N, p¥ divise n*. Plus généralement, si a | n et b | p, alors ab | np.

Démonstration. Tout est essentiellement trivial. Si d est un diviseur commun de n et p, alors p = dk
et n = dl, avec k et [ deux entiers. On en déduit immédiatement que un—+vp = udl+vdk = d(un+vk)
est un multiple de d. De méme, si n = gp, alors n* = ¢*p¥ est un multiple de p*. La derniére propriété
se montre de méme en multpliant les deux relations de divisibilité. ]

Théoréme 1. Division euclidienne.

Soit n € Z et p € N*, alors il existe un unique couple (g,7) € Z? tel que n = pq + r, avec
0 < r < p. L’entier q est appelé quotient de la division euclidienne de n par p, et 'entier
r reste de cette méme division.

Démonstration. Commengons par prouver l'existence du couple (g, ), en supposant n > 0 (sinon, ce
n’est pas beaucoup plus compliqué). Il existe certainement un entier a a partir duquel ap > n (cette
propriété présentée ici comme une évidence s’exprime de la fagon suivante en langage mathématique
pédant : « R est archimédien » ). Notons alors ¢ = max{a € N | ap < n}, et r = n—pq. Par définition,
pq < n, donc r > 0. De plus, par maximalité de ¢, on doit avoir (¢ + 1)p > n, soit pg+p—n > 0, ou
encore p > n — pq = r. Enfin, par définition de r, n = pq+ r, 'existence du couple est donc prouvée.

Démontrons désormais I'unicité par 'absurde (c’est trés classique pour démontrer des résultats d’uni-
cité) en supposant qu’il y a deux couples convenables (g, 7) et (¢/,7). On a alors pg+r = pqg' +r' = n,
donc p(q — ¢') = ' — r. En particulier ' — r divise p, alors que —p < r’ — r < p. Ce n’est possible
que si 7’ —r =0, soit ' = r, ce qui implique p(¢’ — q) =0, donc ¢ = ¢'. Les deux couples sont alors
identiques. ]

Définition 3. Un entier naturel n est premier s’il n’est divisible que par 1 et par lui-méme.

Remarque 2. Par convention, le nombre 1 n’est pas considéré comme un nombre premier.

Remarque 3. 1l n’existe pas de méthode extrémement simple pour savoir si un entier donné est
premier ou non (& part tester sa divisibilité par tous les entiers ne dépassant pas sa racine carrée, ce
qui est en pratique trop long pour des entiers trés grands). Pour faire la liste des nombres premiers
inférieurs a un entier donné, le plus simple est encore d’utiliser le crible d’Eratosthéne : on place
dans un tableau tous les entiers inférieurs a n (& partir de 2), et & chaque étape on entoure le plus
petit entier disponible (qui sera nécessairement premier), et on raye tous ses multiples.
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Les nombres restants : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89 et 97 sont tous premiers. Il y a donc 25 nombres premiers inférieurs ou égaux & 100. On
peut démontrer plus généralement (mais c’est trés compliqué) que le nombre de nombres premiers

inférieurs & n devient proche de , plus précisément qu’il est équivalent & cette expression (c’est-

n
In(n)
a-dire que le quotient des deux tend vers 1, résultat connu sous le nom de théoréme des nombres
premiers), lorsque n tend vers +oo (ou, de fagon équivalente, que le n-éme nombre premier vaut « a

peu prés » nln(n)).

Théoréme 2. Il existe une infinité de nombres premiers.

Démonstration. Faisons un raisonnement par 'absurde : il existerait donc une liste finie py, po, ...,
k

pr. de nombres premiers. Notons alors p = H p; + 1. Cet entier n’est stirement pas divisible par p;
i=1

(puisque Uentier qui le précéde 'est et que p; > 2), ni par aucun des p;. Soit il est lui-méme premier

(mais distinct des autres, ce qui est absurde), soit son plus petit diviseur non trivial (différent de 1)

est un entier premier (sinon on pourrait trouver un diviseur encore plus petit), qui n’est lui-méme

aucun des p;. Dans tous les cas, on aboutit & une contradiction. ]

Définition 4. Deux entiers a et b sont congrus modulo n §’il existe un entier k € Z tel que
b= a+ kn. On le note b = a[n].

Remarque 4. On a déja croisé ces notations et définitions dans le chapitre de trigonométrie. Rappelons
(les démonstrations sont évidentes) que la congruence modulo n est une relation d’équivalence sur Z,
et que les congruences sont compatibles avec la somme (si a = b[n| et ¢ = d[n], alors a4 ¢ = b+ d[n])
et avec le produit (si a = b[n] et ¢ = d[n], alors ac = bd[n], en particulier on aura également a* = b*[n]
pour tout entier naturel k). De plus, on peut « multiplier une congruence par un entier » : si a = b[n],
alors pa = pb[pn].

Exemple : On souhaite prouver que 80?27 + 82892 est un nombre divisible par 3. Cela revient

simplement & dire que ce nombre immonde est congru & 0 modulo 3. Or, 80 = —1[3] et 82 = 0[3],
donc 80%27 + 82892 = (—1)*27 4 1892[3] = —1 + 1[3] = 0[3], ce qui prouve le résultat.
Exercice : Calculer le reste de la division de 2424243 par 7.



Il est bien entendu hors de question d’effectuer entiérement cette division euclidienne, il faut trouver
une astuce. Le plus simple est d’exploiter les congruences de puissances : 23 = 8 = 1[7], donc, pour
tout entier k, 23 = 1¥[7] = 1[7]. Comme 424243 est de la forme 3k +1 (ou, si on préfére, il est congru
a4 1 modulo 3), on en déduit que 2424243 = 21[7] = 2[7]. De fagon équivalente, on peut constater que
les puissances de 2 ont des congruences modulo 7 qui sont périodiques de période 3 et valent donc
alternativement 2, 4 et 1. Il suffit donc de connaitre le reste modulo 3 de ’exposant n pour connaitre
celui modulo 7 de 2". C’est d’ailleurs vrai pour n’importe quel calcul de congruence de puissance,
dés qu’on trouve un entier k pour lequel a* = 1[b], le calcul de a™[b] se déduit de celui de n[k].

2 PGCD, PPCM.

Définition 5. Soient n et p deux entiers non nuls. Le plus grand commun diviseur (ou pged)
de n et p est, comme son nom l'indique, le plus grand entier divisant simultanément n et p. On le
note parfois n A p. Le plus petit commun multiple (ou ppcm) de n et p est le plus petit entier
naturel que divisent n et p. On le note n V p.

Algorithme d’Euclide de calcul du PGCD : l'algorithme d’Euclide est basé sur le principe trés
simple suivant : si a = b[n], alors a A n = b A n. En effet, tout diviseur commun de a et de n divise
également tout entier de la forme a + kn, donc divise b (et réciproquement). On peut donc calculer
le pged de deux entiers naturels (si les entiers sont relatifs, leur pged sera identique a celui de leurs
valeurs absolues) a ’aide de I’algorithme suivant :

eonposerg=aetr; =25

e tant que rp # 0, on définit par récurrence r; comme étant le reste de la division euclidienne
de 7p_o par rp_q.

e quand r; = 0 I’avant-dernier reste calculé r;_1 est le pged des entiers a et b.

L’algorithme termine nécessairement puisque la suite (73) est constituée d’entiers naturel et décroit
strictement. Le fait que le pged corresponde a I'avant-dernier reste est simplement une conséquence
du fait que, si rp =0, rp_1 | 7k—2, donc rg_o Arg_1 = 1.

Exemple : On souhaite calculer le pged des entiers a = 1 386 et b = 942. On effectue donc les
divisions euclidiennes successives suivantes :

1 386 =1 x 942 4 444, donc on pose ro = 444.

942 = 2 x 444 + 54, donc on pose r3 = 54.

444 = 8 x 54 + 12, donc on pose r4 = 12.

54 = 4 x 12 4+ 6, donc on pose r; = 6.

enfin, 12 = 2 x 6, on arréte la et on conclut : 1 386 A 942 = 6.

Programmation en Python : pour la premiére fois de I’année, un peu d’informatique fait irruption
dans notre cours de maths. Je vais méme donner deux versions de ’algorithme d’Euclide en Python,
la premiére classique et la deuxiéme récursive.

def euclide(a,b) :
r,s=a,b
while s>0 :
r,s=s,r%s
return r

def eucliderec(a,b) :
if b==0":
return a
return eucliderec(b,a%b)

Définition 6. Deux entiers n et p sont premiers entre eux si leur pged est égal a 1.



Théoréme 3. Théoréme de Bézout.

Deux entiers n et p sont premiers entre eux si et seulement s’il existe un couple d’entiers
(a,b) € Z2 tels que an + bp = 1. Plus généralement, il existe toujours un couple d’entiers
relatifs tels que an + bp = n A p.

Démonstration. On peut en fait prouver I'existence du couple (a, b), et méme en donner un algorithme
de calcul explicite, en adaptant un peu ’algorithme d’Euclide. En plus des variables r; définies plus
haut, on ajoute deux autres suites (ug) et (vg) initialisées de la fagon suivante : ug = 1, u; = 0,
vo = 0 et v1 = 1. De plus, ces deux suites vérifient la méme relation de récurrence que la suite (ry) :
Up = Up_9 — Q_1Uk_1 €t Vg = Vp_o — qr_1kvi_1, ol qx_1 est le quotient de la division euclidienne
de rp_o par ri_1. Prouvons par récurrence double qu’on aura toujours rp = nuyg + pvg. Au rang 0,
cest bien lecas : mx 1+ px0=mn=1rg. De méme, n Xx 0 +p x 1 = p = uy. Si la relation est
vérifiée aux rang k —2 et k — 1, alors 1, = 15— — qkrp—1 = (NUk—2 + pg—2) — qx(Nug—1 + pvK—1) =
n(ug—2 — qrug—1) + p(Vg—2 — qxVE—1) = nuy + Puk, ce qui prouve 'héréditeé. d

Exemple : Reprenons I'exemple détaillé plus haut du calcul de pged de 1 386 et de 942, et effectuons
le calcul des termes des deux suites (ux) et (vg) :

e g1 =1 (cf divisions euclidiennes plus haut), donc ug = ug —u; =1 et vg =v9 —v1 = —1, on
a bien 1 386 — 942 = 444 = rs.

e ¢» =2, doncug = ug—2us = —2et vy =v1—2v9 = 3,0n abien —2x1 386+3x942 = 54 = rs.

e g3 =8, donc uy = uo — 8uz = 17 et v4 = vo — 8vg = —25, on a bien 17 x 1 386 — 25 x 942 =

12 = rq4.
e g4 =4, donc us = ug—4ug = —70 et v5 = v3—4v4 = 103, on a bien —70 x 1 386+ 103 x 942 =
6= rs.

Remarque 5. On peut ajouter les propriétés classiques suivantes concernant le pged : tout diviseur
commun & n et p divise nécessairement leur pged. De plus, si k € Z, (ka) A (kb) = |k| x (a Ab). Cette
derniére propriété est vérifiée également par le ppcm, et tout multiple commun de n et de p est un
multiple de leur ppcm.

Théoréme 4. Théoréme de Gauss.
Sin et p sont deux entiers premiers entre eux, et n | pk, alors n | k.

Démonstration. D’aprés le théoréme de Bézout, il existe un couple d’entiers (a, b) tel que an—+bp = 1.
On en déduit k = ank-+bpk. Comme n divise de fagon évidente ank et que n divise bpk par hypothése,
alors n divise k. ]

Définition 7. Si nq, no, ..., n; sont des entiers relatifs, leur pged est le plus grand entier naturel
divisant simultanément tous les entiers n;, pour i variant entre 1 et k. On définit de méme le ppcm
des entiers ny, ..., ng.

Remarque 6. On vérifie trés facilement que le pged et le ppem sont des opérations associatives. On
peut ainsi calculer des pged et ppem d’ensembles quelconques d’entiers a ’aide de calculs successifs

de pged et ppem de deux entiers. De plus, les propriétés énoncées pour deux entiers restent valables
k
pour une famille finie d’entiers. Ainsi, il existe toujours une famille (aq, asg, . . ., ax) telle que Z a;n; =
i=1
pged(ni, ..., ng) (relation de Bézout pour une famille d’entiers).



Définition 8. Des entiers ni, no, ..., ni sont premiers entre eux dans leur ensemble si leur
pged est égal a 1.

Remarque 7. Attention, cette notion ne signifie pas que ces entiers sont premiers entre eux deux a
deux! Par exemple, 42, 100 et 75 ne sont pas du tout premiers entre eux deux a deux : 42 A 100 = 2,
42 N75 = 3 et 100 A 75 = 25. Pourtant, ils sont premiers entre eux dans leur ensemble puisque
(42 N100) AT5 =2 A T5 = 1.

3 Décomposition en facteurs premiers.

Définition 9. Si p est un entier premier, la valuation p-adique d’un entier n est définie par
vp(n) = max{k € N | p* divise n}.

Ainsi, n a pour valuation p-adique 0 s’il n’est pas divisible par p. Plus cette valuation est élevée, plus
n est divisible par des puissances élevées de p. Par exemple, v3(60) = 2 (car 60 est divisible par 2 et
par 4 mais pas par 8), v3(60) = 1 et v5(60) = 1. Toutes les autres valuations p-adiques de 60 sont
égales a 0.

Proposition 2. La valuation p-adique est additive : pour tous entiers n et m, v,(nm) =
vp(n) + vp(m).

Démonstration. En effet, si on note a et b les valuations p-adiques de n et de m, on peut par définition
écrire n = p® X q, avec ¢ Ap = 1 (puisque ¢ n’est pas divisible par p qui est un entier premier), et de
méme m = p® x ¢, avec ¢’ Ap = 1. On en déduit que nm = p®*ttqq’, qui est évidemment divisible par
pa+b mais pas par pa+b+1 car q¢' est premier avec p (si p divisait ¢/, en temps que nombre premier,
il diviserait soit ¢ soit ¢'). Finalement v,(nm) = a + b. O

Théoréme 5. Décomposition en facteurs premiers.

i=k

Tout nombre entier n > 1 peut se décomposer de facon unique sous la forme n = H pit =
i=1

Pt XX ppk ot pp < pg < --- < py, sont des nombres premiers distincts, et (o, ..., a5) €

(N*)*. De plus, a; = vy, (n).

Démonstration. L’existence se prouve par une récurrence forte trés simple : la décomposition existe de
fagon évidente pour n = 1 (dans ce cas trés particulier, le produit est vide). Si on la suppose existante
pour tout entier naturel inférieur ou égal & n, on a deux possibilités pour I'entier suivant n + 1 : soit
il est premier et il n’y a rien & décomposer, soit il ne ’est pas et on peut ’écrire comme produit de
deux entiers strictement inférieurs & n 4+ 1 auxquels on applique ’hypothése de récurrence avant de
faire leur produit. Quant a l'unicité, elle découle tout simplement de la proposition précédente : si

i=k
n = H p?i, alors on a nécessairement vy, (n) = «;, ce qui impose une décomposition unique. ]
=1



Proposition 3. Soient n et m deux entiers relatifs non nuls, alors m | n si et seulement
si vp(m) < vp(n) pour tout entier premier p.

De plus’ n /\ m = H pmin(vp(n)vvp(m)) et n \/ m = H pmax(vp(n)vvp(m))

p premier p premier

Démonstration. C’est assez évident : si m divise n, alors n = km, donc v,(n) = v,(m)+v,(k) = vp(m)

pour tout nombre premier p. Et la réciproque est vraiment claire : p*»("™) divisera toujours pU (™,

donc par produit m divisera n. Démontrons le second résultat uniquement pour le pged (c’est trés

similaire pour le ppcm). Notons donc d = H pmin(p(n).vp(M)) - Paprés la premiere partie de la
p premier

propriété, d est un diviseur commun de n et de m puisque ses valuations p-adiques sont par définition

a la fois inférieures a celles de n et a celles de m. Peut-on trouver un diviseur commun plus grand ?
Si c¢’était le cas, un tel entier aurait une décomposition en facteurs premiers avec au moins une
valuation p-adique strictement supérieure a celle de d. Mais alors cet entier ne pourrait pas diviser
I’entier parmi n et m qui a la méme valuation p-adique que d, ce qui est absurde. O

Remarque 8. Une conséquence évidente de la deuxiéme partie de la proposition précédente est le
résultat classique (n Am) x (nVm)=n xm.

Exemple : La décomposition du nombre 384 est 27 x 3 (il suffit de diviser par 2 jusqu’a ce que ce
ne soit plus possible, de recommencer avec 3, etc), et celle de 660 est 22 x 3 x 5 x 11. On calcule

34 x 660
donc 384 A 660 = 22 x 3 = 12, et 384V 660 = 27 x 3 x 5 x 11 = % — 21 120. Alternativement,
384 x 660
on peut écrire 384 V 660 = 572 = 384 x 55 = 21 120.

Théoréme 6. Petit théoréme de Fermat.

Si p est un entier premier, pour tout entier relatif n, on a n? = nlp|.

Si de plus n Ap = 1, alors n?~1 = 1[p)].

Démonstration. Commencgons par démontrer le résultat classique suivant :si 1 < k < p—1, alors

-1
est divisible par p. En effet, la formule sans nom permet d’affirmer que k x (g) =pXx (g 1>, donc

kx <Z> est divisible par p. Or k est premier avec p, donc Zl; est divisible par p. On constate ensuite

P

a l'aide d’une formule du bindéme assez brutale qu’on peut toujours écrire (n + 1)P = Z (i) nk =
k=

14+nP[p]. Autrement dit, les congruences modulo p des nombres n? forment une suite arith(I)nétique de
raison 1. Comme 0P = 0[p], cette suite a simplement un terme général égal & n. Enfin, si n est premier
avec p, on écrit simplement n? —n = 0[p], donc n” —n est divisible par p. Mais n? —n = n(nP~! — 1),
avec n premier avec p. Le théoréme de Gauss assure donc que nP~! —1 est divisible par p, ¢’est-a-dire
que nP~1 = 1[p]. O



