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Les nombres sont le plus haut degré de la connaissance.
Le nombre est la connaissance même.

Platon.

L’arithmétique, c’est être capable de compter jusqu’à 20 sans enlever ses chaussures.

Walt Disney.

Ce court chapitre sera consacré aux bases d’un domaine pourtant important des mathématiques,
celui de l’étude des nombres entiers. On se contentera ici d’étudier les entiers sous l’angle de l’arith-
métique (en gros les propriétés liées à la divisibilité), mais il existe en fait un autre pan de cette
étude (ce qu’on appelle aujourd’hui théorie des nombres) qui fait intervenir des outils beaucoup plus
analytiques. Ce chapitre est pratiquement indépendant de tout ce qu’on a fait jusqu’ici cette année,
mais sera d’une importance capitale pour comprendre une bonne partie du chapitre ultérieur que
nous consacrerons aux polynômes, sur lesquels on retrouve une arithmétique très proche de celle des
nombres entiers.

Objectifs du chapitre :

• comprendre les notions de pgcd et ppcm et les propriétés qui leur sont reliées.
• savoir exploiter les congruences et la décomposition en facteurs premiers pour résoudre des

problèmes d’arithmétique.

1 Nombres premiers.

Définition 1. Soient n et p deux entiers relatifs, n est divisible par p (ou p divise n) s’il existe un
troisième entier k tel que n = kp. On le note p | n. On dit également que n est un multiple de p.

Remarque 1. La relation de divisibilité est une relation d’ordre sur N mais pas sur Z, où elle n’est
pas antisymétrique. En effet, deux entiers relatifs qui se divisent l’un l’autre sont soit égaux soit
opposés.

Définition 2. Deux entiers p et n tels que p divise n et n divise p sont appelés entiers associés.
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Proposition 1. Si d est un diviseur commun des entiers n et p, alors d divise toute
combinaison linéaire de n et p : d | un+ vp, quels que soient (u, v) ∈ Z2.

Si p divise n, alors, ∀k ∈ N, pk divise nk. Plus généralement, si a | n et b | p, alors ab | np.

Démonstration. Tout est essentiellement trivial. Si d est un diviseur commun de n et p, alors p = dk
et n = dl, avec k et l deux entiers. On en déduit immédiatement que un+vp = udl+vdk = d(un+vk)
est un multiple de d. De même, si n = qp, alors nk = qkpk est un multiple de pk. La dernière propriété
se montre de même en multpliant les deux relations de divisibilité.

Théorème 1. Division euclidienne.
Soit n ∈ Z et p ∈ N∗, alors il existe un unique couple (q, r) ∈ Z2 tel que n = pq + r, avec
0 ⩽ r < p. L’entier q est appelé quotient de la division euclidienne de n par p, et l’entier
r reste de cette même division.

Démonstration. Commençons par prouver l’existence du couple (q, r), en supposant n > 0 (sinon, ce
n’est pas beaucoup plus compliqué). Il existe certainement un entier a à partir duquel ap > n (cette
propriété présentée ici comme une évidence s’exprime de la façon suivante en langage mathématique
pédant : « R est archimédien »). Notons alors q = max{a ∈ N | ap ⩽ n}, et r = n−pq. Par définition,
pq ⩽ n, donc r ⩾ 0. De plus, par maximalité de q, on doit avoir (q+1)p > n, soit pq+ p−n > 0, ou
encore p > n− pq = r. Enfin, par définition de r, n = pq+ r, l’existence du couple est donc prouvée.

Démontrons désormais l’unicité par l’absurde (c’est très classique pour démontrer des résultats d’uni-
cité) en supposant qu’il y a deux couples convenables (q, r) et (q′, r′). On a alors pq+r = pq′+r′ = n,
donc p(q − q′) = r′ − r. En particulier r′ − r divise p, alors que −p < r′ − r < p. Ce n’est possible
que si r′ − r = 0, soit r′ = r, ce qui implique p(q′ − q) = 0, donc q = q′. Les deux couples sont alors
identiques.

Définition 3. Un entier naturel n est premier s’il n’est divisible que par 1 et par lui-même.

Remarque 2. Par convention, le nombre 1 n’est pas considéré comme un nombre premier.

Remarque 3. Il n’existe pas de méthode extrêmement simple pour savoir si un entier donné est
premier ou non (à part tester sa divisibilité par tous les entiers ne dépassant pas sa racine carrée, ce
qui est en pratique trop long pour des entiers très grands). Pour faire la liste des nombres premiers
inférieurs à un entier donné, le plus simple est encore d’utiliser le crible d’Eratosthène : on place
dans un tableau tous les entiers inférieurs à n (à partir de 2), et à chaque étape on entoure le plus
petit entier disponible (qui sera nécessairement premier), et on raye tous ses multiples.
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Les nombres restants : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89 et 97 sont tous premiers. Il y a donc 25 nombres premiers inférieurs ou égaux à 100. On
peut démontrer plus généralement (mais c’est très compliqué) que le nombre de nombres premiers
inférieurs à n devient proche de

n

ln(n)
, plus précisément qu’il est équivalent à cette expression (c’est-

à-dire que le quotient des deux tend vers 1, résultat connu sous le nom de théorème des nombres
premiers), lorsque n tend vers +∞ (ou, de façon équivalente, que le n-ème nombre premier vaut « à
peu près » n ln(n)).

Théorème 2. Il existe une infinité de nombres premiers.

Démonstration. Faisons un raisonnement par l’absurde : il existerait donc une liste finie p1, p2, . . .,

pk de nombres premiers. Notons alors p =

k∏
i=1

pi + 1. Cet entier n’est sûrement pas divisible par p1

(puisque l’entier qui le précède l’est et que p1 ⩾ 2), ni par aucun des pi. Soit il est lui-même premier
(mais distinct des autres, ce qui est absurde), soit son plus petit diviseur non trivial (différent de 1)
est un entier premier (sinon on pourrait trouver un diviseur encore plus petit), qui n’est lui-même
aucun des pi. Dans tous les cas, on aboutit à une contradiction.

Définition 4. Deux entiers a et b sont congrus modulo n s’il existe un entier k ∈ Z tel que
b = a+ kn. On le note b ≡ a[n].

Remarque 4. On a déjà croisé ces notations et définitions dans le chapitre de trigonométrie. Rappelons
(les démonstrations sont évidentes) que la congruence modulo n est une relation d’équivalence sur Z,
et que les congruences sont compatibles avec la somme (si a ≡ b[n] et c ≡ d[n], alors a+ c ≡ b+d[n])
et avec le produit (si a ≡ b[n] et c ≡ d[n], alors ac ≡ bd[n], en particulier on aura également ak ≡ bk[n]
pour tout entier naturel k). De plus, on peut « multiplier une congruence par un entier » : si a ≡ b[n],
alors pa ≡ pb[pn].

Exemple : On souhaite prouver que 80427 + 82892 est un nombre divisible par 3. Cela revient
simplement à dire que ce nombre immonde est congru à 0 modulo 3. Or, 80 ≡ −1[3] et 82 ≡ 0[3],
donc 80427 + 82892 ≡ (−1)427 + 1892[3] ≡ −1 + 1[3] ≡ 0[3], ce qui prouve le résultat.

Exercice : Calculer le reste de la division de 2424243 par 7.
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Il est bien entendu hors de question d’effectuer entièrement cette division euclidienne, il faut trouver
une astuce. Le plus simple est d’exploiter les congruences de puissances : 23 = 8 ≡ 1[7], donc, pour
tout entier k, 23k ≡ 1k[7] ≡ 1[7]. Comme 424243 est de la forme 3k+1 (ou, si on préfère, il est congru
à 1 modulo 3), on en déduit que 2424243 ≡ 21[7] ≡ 2[7]. De façon équivalente, on peut constater que
les puissances de 2 ont des congruences modulo 7 qui sont périodiques de période 3 et valent donc
alternativement 2, 4 et 1. Il suffit donc de connaitre le reste modulo 3 de l’exposant n pour connaitre
celui modulo 7 de 2n. C’est d’ailleurs vrai pour n’importe quel calcul de congruence de puissance,
dès qu’on trouve un entier k pour lequel ak ≡ 1[b], le calcul de an[b] se déduit de celui de n[k].

2 PGCD, PPCM.

Définition 5. Soient n et p deux entiers non nuls. Le plus grand commun diviseur (ou pgcd)
de n et p est, comme son nom l’indique, le plus grand entier divisant simultanément n et p. On le
note parfois n ∧ p. Le plus petit commun multiple (ou ppcm) de n et p est le plus petit entier
naturel que divisent n et p. On le note n ∨ p.

Algorithme d’Euclide de calcul du PGCD : l’algorithme d’Euclide est basé sur le principe très
simple suivant : si a ≡ b[n], alors a ∧ n = b ∧ n. En effet, tout diviseur commun de a et de n divise
également tout entier de la forme a+ kn, donc divise b (et réciproquement). On peut donc calculer
le pgcd de deux entiers naturels (si les entiers sont relatifs, leur pgcd sera identique à celui de leurs
valeurs absolues) à l’aide de l’algorithme suivant :

• on pose r0 = a et r1 = b
• tant que rk ̸= 0, on définit par récurrence rk comme étant le reste de la division euclidienne

de rk−2 par rk−1.
• quand rk = 0 l’avant-dernier reste calculé rk−1 est le pgcd des entiers a et b.

L’algorithme termine nécessairement puisque la suite (rk) est constituée d’entiers naturel et décroit
strictement. Le fait que le pgcd corresponde à l’avant-dernier reste est simplement une conséquence
du fait que, si rk = 0, rk−1 | rk−2, donc rk−2 ∧ rk−1 = rk−1.

Exemple : On souhaite calculer le pgcd des entiers a = 1 386 et b = 942. On effectue donc les
divisions euclidiennes successives suivantes :

• 1 386 = 1× 942 + 444, donc on pose r2 = 444.
• 942 = 2× 444 + 54, donc on pose r3 = 54.
• 444 = 8× 54 + 12, donc on pose r4 = 12.
• 54 = 4× 12 + 6, donc on pose r5 = 6.
• enfin, 12 = 2× 6, on arrête là et on conclut : 1 386 ∧ 942 = 6.

Programmation en Python : pour la première fois de l’année, un peu d’informatique fait irruption
dans notre cours de maths. Je vais même donner deux versions de l’algorithme d’Euclide en Python,
la première classique et la deuxième récursive.

def euclide(a,b) :
r,s=a,b
while s>0 :

r,s=s,r%s
return r

def eucliderec(a,b) :
if b==0 :

return a
return eucliderec(b,a%b)

Définition 6. Deux entiers n et p sont premiers entre eux si leur pgcd est égal à 1.
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Théorème 3. Théorème de Bézout.
Deux entiers n et p sont premiers entre eux si et seulement s’il existe un couple d’entiers
(a, b) ∈ Z2 tels que an + bp = 1. Plus généralement, il existe toujours un couple d’entiers
relatifs tels que an+ bp = n ∧ p.

Démonstration. On peut en fait prouver l’existence du couple (a, b), et même en donner un algorithme
de calcul explicite, en adaptant un peu l’algorithme d’Euclide. En plus des variables rk définies plus
haut, on ajoute deux autres suites (uk) et (vk) initialisées de la façon suivante : u0 = 1, u1 = 0,
v0 = 0 et v1 = 1. De plus, ces deux suites vérifient la même relation de récurrence que la suite (rk) :
uk = uk−2 − qk−1uk−1 et vk = vk−2 − qk−1kvk−1, où qk−1 est le quotient de la division euclidienne
de rk−2 par rk−1. Prouvons par récurrence double qu’on aura toujours rk = nuk + pvk. Au rang 0,
c’est bien le cas : n × 1 + p × 0 = n = r0. De même, n × 0 + p × 1 = p = u1. Si la relation est
vérifiée aux rang k − 2 et k − 1, alors rk = rk−2 − qkrk−1 = (nuk−2 + pvk−2)− qk(nuk−1 + pvk−1) =
n(uk−2 − qkuk−1) + p(vk−2 − qkvk−1) = nuk + pvk, ce qui prouve l’hérédité.

Exemple : Reprenons l’exemple détaillé plus haut du calcul de pgcd de 1 386 et de 942, et effectuons
le calcul des termes des deux suites (uk) et (vk) :

• q1 = 1 (cf divisions euclidiennes plus haut), donc u2 = u0 − u1 = 1 et v2 = v0 − v1 = −1, on
a bien 1 386− 942 = 444 = r2.

• q2 = 2, donc u3 = u1−2u2 = −2 et v3 = v1−2v2 = 3, on a bien −2×1 386+3×942 = 54 = r3.
• q3 = 8, donc u4 = u2 − 8u3 = 17 et v4 = v2 − 8v3 = −25, on a bien 17× 1 386− 25× 942 =

12 = r4.
• q4 = 4, donc u5 = u3−4u4 = −70 et v5 = v3−4v4 = 103, on a bien −70×1 386+103×942 =
6 = r5.

Remarque 5. On peut ajouter les propriétés classiques suivantes concernant le pgcd : tout diviseur
commun à n et p divise nécessairement leur pgcd. De plus, si k ∈ Z, (ka)∧ (kb) = |k|× (a∧ b). Cette
dernière propriété est vérifiée également par le ppcm, et tout multiple commun de n et de p est un
multiple de leur ppcm.

Théorème 4. Théorème de Gauss.
Si n et p sont deux entiers premiers entre eux, et n | pk, alors n | k.

Démonstration. D’après le théorème de Bézout, il existe un couple d’entiers (a, b) tel que an+bp = 1.
On en déduit k = ank+bpk. Comme n divise de façon évidente ank et que n divise bpk par hypothèse,
alors n divise k.

Définition 7. Si n1, n2, . . ., nk sont des entiers relatifs, leur pgcd est le plus grand entier naturel
divisant simultanément tous les entiers ni, pour i variant entre 1 et k. On définit de même le ppcm
des entiers n1, . . ., nk.

Remarque 6. On vérifie très facilement que le pgcd et le ppcm sont des opérations associatives. On
peut ainsi calculer des pgcd et ppcm d’ensembles quelconques d’entiers à l’aide de calculs successifs
de pgcd et ppcm de deux entiers. De plus, les propriétés énoncées pour deux entiers restent valables

pour une famille finie d’entiers. Ainsi, il existe toujours une famille (a1, a2, . . . , ak) telle que
k∑

i=1

aini =

pgcd(n1, . . . , nk) (relation de Bézout pour une famille d’entiers).
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Définition 8. Des entiers n1, n2, . . ., nk sont premiers entre eux dans leur ensemble si leur
pgcd est égal à 1.

Remarque 7. Attention, cette notion ne signifie pas que ces entiers sont premiers entre eux deux à
deux ! Par exemple, 42, 100 et 75 ne sont pas du tout premiers entre eux deux à deux : 42∧100 = 2,
42 ∧ 75 = 3 et 100 ∧ 75 = 25. Pourtant, ils sont premiers entre eux dans leur ensemble puisque
(42 ∧ 100) ∧ 75 = 2 ∧ 75 = 1.

3 Décomposition en facteurs premiers.

Définition 9. Si p est un entier premier, la valuation p-adique d’un entier n est définie par
vp(n) = max{k ∈ N | pk divise n}.

Ainsi, n a pour valuation p-adique 0 s’il n’est pas divisible par p. Plus cette valuation est élevée, plus
n est divisible par des puissances élevées de p. Par exemple, v2(60) = 2 (car 60 est divisible par 2 et
par 4 mais pas par 8), v3(60) = 1 et v5(60) = 1. Toutes les autres valuations p-adiques de 60 sont
égales à 0.

Proposition 2. La valuation p-adique est additive : pour tous entiers n et m, vp(nm) =
vp(n) + vp(m).

Démonstration. En effet, si on note a et b les valuations p-adiques de n et de m, on peut par définition
écrire n = pa × q, avec q ∧ p = 1 (puisque q n’est pas divisible par p qui est un entier premier), et de
même m = pb× q′, avec q′∧p = 1. On en déduit que nm = pa+bqq′, qui est évidemment divisible par
pa+b mais pas par pa+b+1 car qq′ est premier avec p (si p divisait qq′, en temps que nombre premier,
il diviserait soit q soit q′). Finalement vp(nm) = a+ b.

Théorème 5. Décomposition en facteurs premiers.

Tout nombre entier n ⩾ 1 peut se décomposer de façon unique sous la forme n =
i=k∏
i=1

pαi
i =

pα1
1 ×· · ·×pαk

k , où p1 < p2 < · · · < pk sont des nombres premiers distincts, et (α1, . . . , αk) ∈
(N∗)k. De plus, αi = vpi(n).

Démonstration. L’existence se prouve par une récurrence forte très simple : la décomposition existe de
façon évidente pour n = 1 (dans ce cas très particulier, le produit est vide). Si on la suppose existante
pour tout entier naturel inférieur ou égal à n, on a deux possibilités pour l’entier suivant n+1 : soit
il est premier et il n’y a rien à décomposer, soit il ne l’est pas et on peut l’écrire comme produit de
deux entiers strictement inférieurs à n+ 1 auxquels on applique l’hypothèse de récurrence avant de
faire leur produit. Quant à l’unicité, elle découle tout simplement de la proposition précédente : si

n =

i=k∏
i=1

pαi
i , alors on a nécessairement vpi(n) = αi, ce qui impose une décomposition unique.
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Proposition 3. Soient n et m deux entiers relatifs non nuls, alors m | n si et seulement
si vp(m) ⩽ vp(n) pour tout entier premier p.

De plus, n ∧m =
∏

p premier

pmin(vp(n),vp(m)) et n ∨m =
∏

p premier

pmax(vp(n),vp(m))

Démonstration. C’est assez évident : si m divise n, alors n = km, donc vp(n) = vp(m)+vp(k) ⩾ vp(m)
pour tout nombre premier p. Et la réciproque est vraiment claire : pvp(m) divisera toujours pvp(n),
donc par produit m divisera n. Démontrons le second résultat uniquement pour le pgcd (c’est très
similaire pour le ppcm). Notons donc d =

∏
p premier

pmin(vp(n),vp(m)), d’après la première partie de la

propriété, d est un diviseur commun de n et de m puisque ses valuations p-adiques sont par définition
à la fois inférieures à celles de n et à celles de m. Peut-on trouver un diviseur commun plus grand ?
Si c’était le cas, un tel entier aurait une décomposition en facteurs premiers avec au moins une
valuation p-adique strictement supérieure à celle de d. Mais alors cet entier ne pourrait pas diviser
l’entier parmi n et m qui a la même valuation p-adique que d, ce qui est absurde.

Remarque 8. Une conséquence évidente de la deuxième partie de la proposition précédente est le
résultat classique (n ∧m)× (n ∨m) = n×m.

Exemple : La décomposition du nombre 384 est 27 × 3 (il suffit de diviser par 2 jusqu’à ce que ce
ne soit plus possible, de recommencer avec 3, etc), et celle de 660 est 22 × 3 × 5 × 11. On calcule

donc 384∧ 660 = 22× 3 = 12, et 384∨ 660 = 27 × 3× 5× 11 =
34× 660

12
= 21 120. Alternativement,

on peut écrire 384 ∨ 660 =
384× 660

12
= 384× 55 = 21 120.

Théorème 6. Petit théorème de Fermat.

Si p est un entier premier, pour tout entier relatif n, on a np ≡ n[p].

Si de plus n ∧ p = 1, alors np−1 ≡ 1[p].

Démonstration. Commençons par démontrer le résultat classique suivant : si 1 ⩽ k ⩽ p−1, alors
(
p

k

)
est divisible par p. En effet, la formule sans nom permet d’affirmer que k×

(
p

k

)
= p×

(
p− 1

k − 1

)
, donc

k×
(
p

k

)
est divisible par p. Or k est premier avec p, donc

(
p

k

)
est divisible par p. On constate ensuite

à l’aide d’une formule du binôme assez brutale qu’on peut toujours écrire (n + 1)p =

p∑
k=0

(
p

k

)
nk ≡

1+np[p]. Autrement dit, les congruences modulo p des nombres np forment une suite arithmétique de
raison 1. Comme 0p ≡ 0[p], cette suite a simplement un terme général égal à n. Enfin, si n est premier
avec p, on écrit simplement np−n ≡ 0[p], donc np−n est divisible par p. Mais np−n = n(np−1−1),
avec n premier avec p. Le théorème de Gauss assure donc que np−1−1 est divisible par p, c’est-à-dire
que np−1 ≡ 1[p].
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