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Exercice 1

1.

Avec l'indication généreusement fournie, on obtient immédiatement 2 026 = 2 x 1 013, avec
1 013 premier. En effet, comme cet entier est impair, il ne doit avoir qu’un seul facteur premier,
donc étre de la forme p* avec p premier. Il faudrait alors théoriquement vérifier que 1 013 n’est
pas le carré, ni le cube etc d’un nombre premier, ou simplement vérifier qu’il n’est divisible par
aucun nombre premier inférieur ou égal & 31 (puisque 322 = 1 024 > 1 013). C’est bien le cas
(allez, précisons un peu : 312 = 961 < 1 013 qui n’est donc pas un carré parfait; 103 = 1 000
et 112 =1 331 donc 1 013 n’est pas un cube parfait ; 5* = 625 et 6* = 1 296 donc 1 013 n’est
pas une puissance quatriéme parfaite; ces calculs prouvent déja qu’il ne reste plus comme
candidats potentiels que des puissances plus élevées de 3 ou 5, mais 1 013 n’est divisible ni
par 3 ni par 5).

Concernant 2 025, on constate facilement qu’il est divisible par 3 et 5, ce qui donne l'identité
des deux facteurs premiers recherchés. On calcule de fait 2 025 = 3 x 675 = 32 x 225 =
33 x 75 = 3% x 25 = 3% x 52

. Soit on exploite les décompositions de la premiére question (ils n’ont aucun facteur premier

en commun, donc sont premiers entre eux), soit on constate encore plus simplement que
1x2026—1x 2025 =1 est une relation de Bézout démontrant que 2 026 A 2 025 = 1.

. On a simplement 2 026x — 2 025y = 42 < 2 026(z — xg) — 2 025(y — yo) = 42 — (2 02629 —

2 025yp). Comme on a fait ’hypothése que 2 02629 — 2 025y¢ = 42, on obtient bien I’équation
équivalente (E’) pour le couple (z — zg,y — yo)-
En repartant du constat que 2 026 — 2 025 = 1, on peut brillamment multiplier par 42 pour

obtenir 42 x 2 026 — 42 x 2 025 = 1. Le couple (42,42) est donc une solution particuliére
triviale.

. Si (z,y) est solution de (E’), alors 2 0252 = 2 026y, donc 2 026 divise 2 025x. D’apreés le

théoreme de Gauss, 2 026 étant premier avec 2 025, on a nécessairement 2 026 qui divise x,
donc x = k x 2 026, avec k € Z. De fagon complétement symétrique y = k' x 2 025, avec
k' € Z. En reportant dans I’équation, on doit avoir k£ x 2 025 x 2 026 = &’ x 2 026 x 2 025, donc
k = K'. Réciproquement, tout couple de la forme (2 025k, 2 026k) avec k € Z est trivialement
solution de (E').

. D’apres la question 3, un tel couple est de la forme (42 + z,42 + y) avec (z,y) solution de F’.

Finalement, S = {(2 025k + 42,2 026k + 42) | k € Z}.

Exercice 2

1.

Si M est inversible, on peut simplement multiplier ’équation par M ~! pour obtenir M = I,,,
qui est donc I'unique solution inversible.

2. On constate facilement que Efz = FE;; (dans ce cas, la matrice est diagonale, le calcul est

donc immeédiat), et que, si i # 7, EZ2 ;=0 (la seule ligne non nulle de E; ; est la ligne 4, avec



un 1 en j-éme position qui ne coincidera jamais avec le 1 en i-éme position des colonnes de
cette méme matrice). Il faut donc avoir ¢ = j pour que E; ; soit solution de (£).

3. On a déja vu a la question précédente que Efz = F;; et Ei = 0. On calcule de méme
E;; x E; ; = E; j (le seul produit non nul est celui de la i-éme ligne de E;; qui contient un 1
en i-éme position, et de la j-éme colonne de E; ;, qui contient aussi un 1 en i-éme position),
mais F; j X E; ; = 0 (cette fois-ci, les 1 ne sont pas en position compatible pour étre multipliés
entre eux). En développant bétement, on a donc (Ei,i—l—Eij)Q = Ezi"’Ei,iEi,j"‘Ei,jEi,i"i'Ei%j =
E;; + E; j. La matrice est bien solution de (E).

L fa b\ [(a—-b 0 b b 0 0 0 0 B
4. On écrit par exemple A = ( c d > = < 0 0 )—i—( 0 0 >+( R >+( 0 d—ec > =
(a—b)E11+b(E11+ E12)+c(E21+ E22)+ (d—¢)E22, qui est une combinaison linéaire de
quatre matrices solutions de (F).

a

2
5. En posant comme tout & I’heure A = < c b ), on calcule brutalement A% = ( 0" +bc ab+bd ) .

d ca+de d?+be
Si la matrice A est solution de (E), on a donc en particulier b(a + d) = b et c(a + d) = c.
Distinguons quelques cas :

e sia+d#1, on doit avoir b = ¢ = 0, autrement dit A diagonale. A est alors solution si et
seulement si a? = a et d? = d, donc (a,d) € {0,1}2. On trouve donc quatre solutions dans
cette catégorie : 0, I, E7 1 et Eao. Ces quatre matrices ont bien une trace égale a 0, 1 ou
2.

e si a+d =1, la matrice est de trace 1, ce qui prouve déja que la trace ne peut prendre
que les trois valeurs déja obtenues. Les deux équations b(a + d) = b et ¢(a + d) = ¢ sont
automatiquement vérifiées, il reste les deux autres équations a®+bc = a et d*>+bec = d. On
doit donc avoir be = a—a? = d—d?. Mais comme d = 1—a, d—d?> = 1—a—(1—a)? = a—a?,
donc les deux équations sont équivalentes. Dans le cas trés particulier ota = 0oua =1 (et
doncd =1oud =0),a—a? =0, et 'un des coefficients b et ¢ doit étre nul, 'autre pouvant
prendre n’importe quelle valeur. On trouve donc comme solutions toutes les matrices de

la forme L0 Lo 0 b et 00
0 0/)’\c O0/)7\V01 c 1)
a b

e enfin, sia+d =1et a ¢ {0,1}, on a des solutions de la forme < a-a® 4 > Un
=2 1—a

exemple d’une telle matrice : < —46 _23 >

Parmi toutes ces matrices, il y en a une seule vérifiant Tr(A) = 2, c’est la matrice identité Io.

Il y en d’ailleurs également une seule de trace nulle, c’est la matrice nulle. Toutes les autres
ont une trace égale a 1.

r + y = a
6. (a) Comme d’habitude, je vais résoudre le systéme équivalent ¢ =z — y + 2z = b .En
Yy + z = c
effectuant subtilement ’opération Lo — L +2L3, on trouve immédiatement 4z = b—a+2c¢,
it ! +1b+1 dont on déduit L 1b—|-1 t 5 +1b L
s0it 2 = ——a+-b+—=¢, dont on dé =c—z=-a—-bt=-c,etx =a—y= —b——c.
soit z 10t btge dontondéduit y = c—z = Ja—_btoc etz =a—y = Jat b—gc
3 1 =2
La matrice P est donc inversible et P~ = = 1 -1 2
4
-1 1 2
1 4 00
(b) En s’attendant & obtenir une matrice diagonale, on calcule AP = 1 4 0 8 | =
0 0 4
1 00 1 4 00 1 00
1 0 2 |,puis P AP = 1 0 00 |=1]0 0 0 |.Onnotera classiquement
0 01 0 0 4 0 0 1



D cette belle matrice diagonale, et on remarque D = P™'AP < A = PDP~!. Si A était
inversible, D le serait aussi (comme produit de trois matrices toutes inversibles). Or, ce
n’est clairement pas le cas puisque D contient une ligne compléte de 0. De méme, D? = D
(trivialement) donc A2 = PDP~'PDP~' = PD?P~! = PDP~! = A.

(c) On sait que A? = A, donc A(I3 — A) = 0. Si I3 — A était inversible, on pourrait multiplier
cette égalité par son inverse, ce qui impliquerait A = 0. Comme ce n’est évidemment pas
vrai, la matrice I3 — A ne peut pas étre inversible.

(d) Une fagon de faire le calcul : on constate que (A+1I3) x A = A2+ A = 2A puisque A? = A.

1
On en déduit que (A+13) x (A—2I3) = 2A—2A—2I35 = —2I3, donc (A+13) x <Ig — 2A> =

I3, ce qui prouve que A + I3 est inversible et que (A + I3) ™1 = I3 — §A'

(e) Méme pas besoin de s’embéter ici avec un binéme de Newton, on constate facilement que
(I3 — A)2 = I3 —2A + A? = I3 — A. On en déduit que toutes les puissances (autres que la
puissance nulle) seront égales a I3 — A (récurrence triviale).

7. La matrice diagonale vérifiera elle-méme D? = D (puisque D? = (P~'MP)? = P71 M?P =

P~1MP). Pour une matrice diagonale, c’est équivalent a avoir des coefficients diagonaux
égaux a4 0 ou 1. On en déduit directement que Tr(M) € {0,1,2,3} en fonction de nombre de
coefficients égaux a 1. De méme, dans M,,(R), on aura Tr(M) € {0,1,...,n}.

Exercice 3

1.

Si f est constante égale & k, on doit donc avoir k = k2, soit k € {0,1}. Réciproquement la
fonction nulle et la fonction égale & 1 sont solutions.

. On fixe un valeur de y pour laquelle f(y) # 0 (une telle valeur existe puisqu’on a supposé que

f n’était pas la fonction nulle) et on obtient a ’aide de la condition (C') appliquée & = et —x

les deux équations f(\/22 +y2) = f(z)f(y) et f(/22 +y? = f(—x)f(y). Avec 'hypothese
f(y) # 0, on en déduit f(—x) = f(x), ce qui prouve la parité de la fonction f.

. En appliquant la condition (C') pour = y = 0, on a f(0) = f(0)2, donc f(0) = 1 ou f(0) =

Si on suppose que f(0) = 0, appliquer la condition (C') a un réel x quelconque et & y = 0
donne f(v#2) = 0, donc f(|z|) = 0. Mais f étant paire, on en déduit f(z) = 0 quel que soit
le signe de z, et f est donc la fonction nulle. Comme on a fait I’hypothése que f n’est pas
nulle, la seule possibilité restante est f(0) = 1.

. Procédons par récurrence. Pour n = 0, on a bien f(ug) = f(a) = 0 par hypothése. Supposons

désormais f(u,) = 0 et apphquons la condition (C) avec * = y = upy1. On calcule alors

2
w/2u =/ 2:11 \/ on = Un: et on en déduit que 0 = f(u,11)?, ce qui implique bien

entendu f(unt1) = 0 et prouve I'hérédité de notre récurrence.

Sous I'hypothése f(a) = 0, on a donc construit une suite (u,) vérifiant bien entendu
lim f(u,) = 0 puisque cette suite est identiquement nulle. Or, lim w, = 0 et, par conti-
n—-+o0o n—-+00

nuité de f en 0, on devrait donc avoir lirf f(un) = f(0) = 1, ce qui est une contradiction
n——+0oo

flagrante. La fonction f ne peut donc pas s’annuler sur |0, +oo[, ni d’ailleurs sur | — oo, 0]
puisqu’elle est paire. Elle ne s’annule donc jamais.

2
. Sia > 0, on applique la condition (C) a z = y = % pour obtenir f(a) = f <\%) >0

(c’est exactement le méme calcul qu’a la question précédente, pour n = 0). Comme f ne peut
pas s’annuler, on a donc f(z) > 0 sur |0, +oo[. On conclut & nouveau en invoquant la parité
de f.



6. (a)

(b)
(c)

(d)

On vient de prouver que f était a valeur strictement positives, donc f(y/x) > 0 sur
[0, +00], ce qui prouve que g est bien définie sur cet intervalle. La continuité est triviale
(composition de fonctions continues).

Caleulons g(x)g(y) = In(f(v2))+In(f () = n(f(v2)F(vF)) = W(f(\/V&* + /7°)) =
In(f(v/z+y)) = g(xr +y), en utilisant la condition (C') en cours de calcul.

C’est une récurrence triviale exploitant la question précédente. Pour n = 0, g(0) =
In(f(0)) = In(1) = 0, donc la propriété est vérifice. Et si on la suppose vraie au rang
n, alors g((n+ 1)z) = g(nx + x) = g(nz) + g(x) = ng(z) + g(x) = (n+ 1)g(z).

Supposons & = 2, avec p et ¢ deux entiers strictement positifs. Alors g(qz) = g(p) = pg(1),
q

et par ailleurs g(gz) = qg(x), done qg(x) = pg(1), puis g(z) = Lg(1) = xg(1).
q

Notons a = ¢(1), on sait déja que g(x) = ax pour tout nombre = rationnel positif. Si
est un réel positif non rationnel, il est limite d’une suite (z,) de nombres rationnels, donc

g(x) = lim g(xz,) = lim ax, = az, ce qui prouve que g(z) = ax sur [0,4o00[ tout
n—+ n—+00

entier.

Puisque g(x) = az = In(f(y/z)), on a f(y/z) = e pour tout réel positif, soit en faisant

un minuscule changement de variable f(z) = e®” Par parité de f, cette expression

reste valable sur R™. Réciproquement, toutes ces fonctions sont bien solutions (toutes les
fonctions linéaires sont clairement solutions de ’équation vérifiée par g), et on retrouve en
particulier la fonction constante égale & 1 lorsque a = 0. Il faut par contre ajouter a cet
ensemble la fonction nulle qui n’en fait pas partie.

Exercice 4

1. (a)

- 6y = 2z
-y = 2
équivalentes, et donnent donc 'unique condition x = 3y. Autrement dit, les solutions sont
tous les couples de la forme (3y,y), avec y € R. On prendra comme solution particuliére
non nulle le couple (3,1).

On cherche donc & résoudre le systéme . Les deux équations sont

dr — 6y = =z

-y =
équations sont équivalentes et donnent = 2y. Les solutions sont donc de la forme (2y, y)
avec y € R, et on prendre (2,1) comme solution particuliére.

Il s’agit cette fois de résoudre le systéme { . A nouveau, les deux

On pose donc P = ( 213 ? ) Pour s’amuser un peu, calculons 'inverse en passant par le
11 8

calcul de P? = ( ) On constate que P? = 4P — I3, donc I3 = P(4I3 — P), ce qui

4 3
. : -1 1 =2
prouve que P est inversible et P™* =4[5 — P = < 1 3 >
. 6 2 . 1 20

Un calcul palpitant donne AP = ( 5 1 >, puis D = P~ AP = < 01 >

Aucune méthode n’est imposée, mais on va quand méme reprendre la diagonalisation
qui vient d’étre effectuée. On montre comme d’habitude par récurrence que Vn € N,
A" = PD"P~1. (est trivialement vrai pour n = 0 (on a la matrice identité des deux
cOtés), et sion le suppose au rang n, alors pprtip~t = pprpp~t = pp"P~'PDP~! =
A"A = A"t en exploitant I'hypothése de récurrence et le fait que D = P7'AP &

1 ) s ” 3x2" 2 .
A = PDP~+. 1l ne reste alors plus qu’a calculer PD"™ = , puis A" =

A |
3x2m—2 6—3x2ntl
2" —1 3 —2nt!



2.(a) Si M? = D, alors MD = DM = M3, donc M et D commutent. Or, si M = < (c]; Z ),

un calcul idiot donne MD = ( QCa Zb ) et DM = < 2; 2dc > On en déduit que

MD = DM sib=c=0.Lamatrice M est donc diagonale, avec des coefficients diagonaux

+/2 0

donc les carrés sont égaux respectivement a 2 et 1, donc M = < 0 41 ) (quatre

solutions distinctes).
(b) Si M? = D, alors PM?P~! = A. En posant B = PMP~!, on en déduit que B? =

A. Réciproquement, toute matrice B vérifiant B> = A est issue d’une matrice M =

P~1BP vérifiant M? = D. Il y a donc quatre solutions & I’équation B> = A : B} =

V2 0 4 3vV2—-2 6—6v2 2-3V2 626
P P — , BQ = —Bl = )
(0 1) <\/§—1 3—2\/5) <1—\/§ 2{—3)
V2 0 . 3vV24+2 —6—6v2 —3v2-2 6+6v2

B3:P< 0 -1 >P - < V241 —2-3V2 )’etB”‘:_B?’: < V21 2+43V2 )
(c) Pas besoin de vraiment effectuer les calculs : les matrices solutions sont opposées deux a

deux donc leur somme est nulle. De plus, comme By = —Bj et B% = A, BiBy = —A. De

méme, B3By = —A et B1ByB3By = A2 (notons en passant que le produit ne dépend pas

de lordre des calculs, ce qui n’a rien d’évident a priori).

3. (a) A T'aide de la formule obtenue plus haut pour A", on calcule facilement les coefficients :

n n n
celui en haut & gauche vaut 32(2t)k -2 Ztk, celui en haut a droite vaut 622&1€ —
k=0 k=0 k=0
n

n n
6Z(Qt)k, pour celui en bas & gauche c’est Z(Qt)k - Ztk et pour le dernier en bas a
k=0

k=0 k=0
n n
droite 3 ¥ -2 "(2t)*.
k=0 k=0

(b) En passant a la limite avec la formule donnée dans 1’énoncé, évidemment valable pour 2¢
3e?t — 2e! 6el — 6e?t

aussi bien que pour ¢, on trouve E(t) = Q2 ot 3el_ 2t

10 3e2 — 2 6e — 6e2

e” —¢€

). En particulier, on a

(c) Bon, cette question est vraiment triviale, soyons honnéte, elle n’était 1a que pour donner
les matrices () et R permettant de vérifier la validité des calculs précédents.

(d) Les calculs sont faciles : QR =0, RQ =0, Q?> = Q et R> = R.

(e) A Daide des deux questions précédentes, E(t)E(t) = (e*Q + e'R)(e*'Q + e!'R) =
e2t+2t’Q2 + th-i—t’QR + €t+2t’RQ + ettt R2 — 62(t+t’)Q + ettt R — E(t + t/).

(f) C’est une récurrence facile. On a déja vu plus haut que E(0) = I3 = (E(t))°, ce qui
prouve la formule au rang initial. Si on la suppose vraie au rang n, alors d’apreés la question
précédente E ()"t = E(t)" x E(t) = E(nt) x E(t) = E((n+1)t), ce qui prouve I’hérédité.

(g) Les calculs déja effectués montrent que Iy = E(0) = E(t —t) = E(t) x E(—t), ce qui
prouve que F(t) est inversible et a pour inverse F(—t).

(h) Supposons que E(t) = E(t') pour deux réels distincts ¢ et ¢. Alors E(t —t') = E(t) x
(BE(t)) = E({)x(E(t))"! = L. Or, E(t—t') est une combinaison linéaire des matrices Q
et R, et la seule combinaison de ces deux matrices donnant la matrice I est la combinaison
Q-+R (les coefficients hors de la diagonale montrent qu’on doit avoir le méme facteur devant
Q@ que devant R, et ceux de la diagonale montrent que ces coefficients sont égaux a 1), qui
est atteinte lorsque e2(t=1") — ¢t~ — 1. Autrement dit, il faut avoir t — ¢ = 0, donc t = ¢/,
ce qui prouve que 'application est bien injective.

L’application n’est par contre par surjective, car il existe des tas de matrices qui ne sont pas



00
ne peut pas s’écrire sous la forme a@Q + bR, car le coefficient nul en deuxiéme ligne premiére
colonne imposerait a = b, et on aurait alors aussi un coefficient nul en haut & droite. Cette
matrice ne peut donc pas étre égale a une matrice E(t).

o o . . 0 1
du tout combinaisons linéaires des matrices ) et R. Par exemple, la matrice Z = ( >



