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Exercice 1

1. Avec l’indication généreusement fournie, on obtient immédiatement 2 026 = 2 × 1 013, avec
1 013 premier. En effet, comme cet entier est impair, il ne doit avoir qu’un seul facteur premier,
donc être de la forme pk avec p premier. Il faudrait alors théoriquement vérifier que 1 013 n’est
pas le carré, ni le cube etc d’un nombre premier, ou simplement vérifier qu’il n’est divisible par
aucun nombre premier inférieur ou égal à 31 (puisque 322 = 1 024 > 1 013). C’est bien le cas
(allez, précisons un peu : 312 = 961 < 1 013 qui n’est donc pas un carré parfait ; 103 = 1 000
et 113 = 1 331 donc 1 013 n’est pas un cube parfait ; 54 = 625 et 64 = 1 296 donc 1 013 n’est
pas une puissance quatrième parfaite ; ces calculs prouvent déjà qu’il ne reste plus comme
candidats potentiels que des puissances plus élevées de 3 ou 5, mais 1 013 n’est divisible ni
par 3 ni par 5).

Concernant 2 025, on constate facilement qu’il est divisible par 3 et 5, ce qui donne l’identité
des deux facteurs premiers recherchés. On calcule de fait 2 025 = 3 × 675 = 32 × 225 =
33 × 75 = 34 × 25 = 34 × 52.

2. Soit on exploite les décompositions de la première question (ils n’ont aucun facteur premier
en commun, donc sont premiers entre eux), soit on constate encore plus simplement que
1× 2 026− 1× 2 025 = 1 est une relation de Bézout démontrant que 2 026 ∧ 2 025 = 1.

3. On a simplement 2 026x− 2 025y = 42 ⇔ 2 026(x− x0)− 2 025(y − y0) = 42− (2 026x0 −
2 025y0). Comme on a fait l’hypothèse que 2 026x0−2 025y0 = 42, on obtient bien l’équation
équivalente (E′) pour le couple (x− x0, y − y0).

4. En repartant du constat que 2 026− 2 025 = 1, on peut brillamment multiplier par 42 pour
obtenir 42 × 2 026 − 42 × 2 025 = 1. Le couple (42, 42) est donc une solution particulière
triviale.

5. Si (x, y) est solution de (E′), alors 2 025x = 2 026y, donc 2 026 divise 2 025x. D’après le
théorème de Gauss, 2 026 étant premier avec 2 025, on a nécessairement 2 026 qui divise x,
donc x = k × 2 026, avec k ∈ Z. De façon complètement symétrique y = k′ × 2 025, avec
k′ ∈ Z. En reportant dans l’équation, on doit avoir k×2 025×2 026 = k′×2 026×2 025, donc
k = k′. Réciproquement, tout couple de la forme (2 025k, 2 026k) avec k ∈ Z est trivialement
solution de (E′).

6. D’après la question 3, un tel couple est de la forme (42+x, 42+ y) avec (x, y) solution de E′.
Finalement, S = {(2 025k + 42, 2 026k + 42) | k ∈ Z}.

Exercice 2

1. Si M est inversible, on peut simplement multiplier l’équation par M−1 pour obtenir M = In,
qui est donc l’unique solution inversible.

2. On constate facilement que E2
i,i = Ei,i (dans ce cas, la matrice est diagonale, le calcul est

donc immédiat), et que, si i ̸= j, E2
i,j = 0 (la seule ligne non nulle de Ei,j est la ligne i, avec
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un 1 en j-ème position qui ne coïncidera jamais avec le 1 en i-ème position des colonnes de
cette même matrice). Il faut donc avoir i = j pour que Ei,j soit solution de (E).

3. On a déjà vu à la question précédente que E2
i,i = Ei,i et E2

ij
= 0. On calcule de même

Ei,i ×Ei,j = Ei,j (le seul produit non nul est celui de la i-ème ligne de Ei,i qui contient un 1
en i-ème position, et de la j-ème colonne de Ei,j , qui contient aussi un 1 en i-ème position),
mais Ei,j×Ei,i = 0 (cette fois-ci, les 1 ne sont pas en position compatible pour être multipliés
entre eux). En développant bêtement, on a donc (Ei,i+Eij )

2 = E2
i,i+Ei,iEi,j+Ei,jEi,i+E2

i,j =
Ei,i + Ei,j . La matrice est bien solution de (E).

4. On écrit par exemple A =

(
a b
c d

)
=

(
a− b 0
0 0

)
+

(
b b
0 0

)
+

(
0 0
c c

)
+

(
0 0
0 d− c

)
=

(a− b)E1,1 + b(E1,1 +E1,2) + c(E2,1 +E2,2) + (d− c)E2,2, qui est une combinaison linéaire de
quatre matrices solutions de (E).

5. En posant comme tout à l’heure A =

(
a b
c d

)
, on calcule brutalement A2 =

(
a2 + bc ab+ bd
ca+ dc d2 + bc

)
.

Si la matrice A est solution de (E), on a donc en particulier b(a + d) = b et c(a + d) = c.
Distinguons quelques cas :

• si a+ d ̸= 1, on doit avoir b = c = 0, autrement dit A diagonale. A est alors solution si et
seulement si a2 = a et d2 = d, donc (a, d) ∈ {0, 1}2. On trouve donc quatre solutions dans
cette catégorie : 0, I2, E1,1 et E2,2. Ces quatre matrices ont bien une trace égale à 0, 1 ou
2.

• si a + d = 1, la matrice est de trace 1, ce qui prouve déjà que la trace ne peut prendre
que les trois valeurs déjà obtenues. Les deux équations b(a + d) = b et c(a + d) = c sont
automatiquement vérifiées, il reste les deux autres équations a2+bc = a et d2+bc = d. On
doit donc avoir bc = a−a2 = d−d2. Mais comme d = 1−a, d−d2 = 1−a−(1−a)2 = a−a2,
donc les deux équations sont équivalentes. Dans le cas très particulier où a = 0 ou a = 1 (et
donc d = 1 ou d = 0), a−a2 = 0, et l’un des coefficients b et c doit être nul, l’autre pouvant
prendre n’importe quelle valeur. On trouve donc comme solutions toutes les matrices de

la forme
(

1 b
0 0

)
,
(

1 0
c 0

)
,
(

0 b
0 1

)
et

(
0 0
c 1

)
.

• enfin, si a + d = 1 et a /∈ {0, 1}, on a des solutions de la forme
(

a b
a−a2

b 1− a

)
. Un

exemple d’une telle matrice :
(

4 2
−6 −3

)
.

Parmi toutes ces matrices, il y en a une seule vérifiant Tr(A) = 2, c’est la matrice identité I2.
Il y en d’ailleurs également une seule de trace nulle, c’est la matrice nulle. Toutes les autres
ont une trace égale à 1.

6. (a) Comme d’habitude, je vais résoudre le système équivalent


x + y = a
x − y + 2z = b

y + z = c
. En

effectuant subtilement l’opération L2−L1+2L3, on trouve immédiatement 4z = b−a+2c,

soit z = −1

4
a+

1

4
b+

1

2
c, dont on déduit y = c−z =

1

4
a−1

4
b+

1

2
c, et x = a−y =

3

4
a+

1

4
b−1

2
c.

La matrice P est donc inversible et P−1 =
1

4

 3 1 −2
1 −1 2
−1 1 2


(b) En s’attendant à obtenir une matrice diagonale, on calcule AP =

1

4

 4 0 0
4 0 8
0 0 4

 = 1 0 0
1 0 2
0 0 1

, puis P−1AP =
1

4

 4 0 0
0 0 0
0 0 4

 =

 1 0 0
0 0 0
0 0 1

. On notera classiquement
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D cette belle matrice diagonale, et on remarque D = P−1AP ⇔ A = PDP−1. Si A était
inversible, D le serait aussi (comme produit de trois matrices toutes inversibles). Or, ce
n’est clairement pas le cas puisque D contient une ligne complète de 0. De même, D2 = D
(trivialement) donc A2 = PDP−1PDP−1 = PD2P−1 = PDP−1 = A.

(c) On sait que A2 = A, donc A(I3−A) = 0. Si I3−A était inversible, on pourrait multiplier
cette égalité par son inverse, ce qui impliquerait A = 0. Comme ce n’est évidemment pas
vrai, la matrice I3 −A ne peut pas être inversible.

(d) Une façon de faire le calcul : on constate que (A+I3)×A = A2+A = 2A puisque A2 = A.

On en déduit que (A+I3)×(A−2I3) = 2A−2A−2I3 = −2I3, donc (A+I3)×
(
I3 −

1

2
A

)
=

I3, ce qui prouve que A+ I3 est inversible et que (A+ I3)
−1 = I3 −

1

2
A.

(e) Même pas besoin de s’embêter ici avec un binôme de Newton, on constate facilement que
(I3 −A)2 = I3 − 2A+A2 = I3 −A. On en déduit que toutes les puissances (autres que la
puissance nulle) seront égales à I3 −A (récurrence triviale).

7. La matrice diagonale vérifiera elle-même D2 = D (puisque D2 = (P−1MP )2 = P−1M2P =
P−1MP ). Pour une matrice diagonale, c’est équivalent à avoir des coefficients diagonaux
égaux à 0 ou 1. On en déduit directement que Tr(M) ∈ {0, 1, 2, 3} en fonction de nombre de
coefficients égaux à 1. De même, dans Mn(R), on aura Tr(M) ∈ {0, 1, . . . , n}.

Exercice 3

1. Si f est constante égale à k, on doit donc avoir k = k2, soit k ∈ {0, 1}. Réciproquement la
fonction nulle et la fonction égale à 1 sont solutions.

2. On fixe un valeur de y pour laquelle f(y) ̸= 0 (une telle valeur existe puisqu’on a supposé que
f n’était pas la fonction nulle) et on obtient à l’aide de la condition (C) appliquée à x et −x
les deux équations f(

√
x2 + y2) = f(x)f(y) et f(

√
x2 + y2 = f(−x)f(y). Avec l’hypothèse

f(y) ̸= 0, on en déduit f(−x) = f(x), ce qui prouve la parité de la fonction f .

3. En appliquant la condition (C) pour x = y = 0, on a f(0) = f(0)2, donc f(0) = 1 ou f(0) = 0.
Si on suppose que f(0) = 0, appliquer la condition (C) a un réel x quelconque et à y = 0
donne f(

√
x2) = 0, donc f(|x|) = 0. Mais f étant paire, on en déduit f(x) = 0 quel que soit

le signe de x, et f est donc la fonction nulle. Comme on a fait l’hypothèse que f n’est pas
nulle, la seule possibilité restante est f(0) = 1.

4. Procédons par récurrence. Pour n = 0, on a bien f(u0) = f(a) = 0 par hypothèse. Supposons
désormais f(un) = 0 et appliquons la condition (C) avec x = y = un+1. On calcule alors√

2u2n+1 =

√
2a2

2n+1
=

√
a2

2n
= un, et on en déduit que 0 = f(un+1)

2, ce qui implique bien

entendu f(un+1) = 0 et prouve l’hérédité de notre récurrence.

Sous l’hypothèse f(a) = 0, on a donc construit une suite (un) vérifiant bien entendu
lim

n→+∞
f(un) = 0 puisque cette suite est identiquement nulle. Or, lim

n→+∞
un = 0 et, par conti-

nuité de f en 0, on devrait donc avoir lim
n→+∞

f(un) = f(0) = 1, ce qui est une contradiction

flagrante. La fonction f ne peut donc pas s’annuler sur ]0,+∞[, ni d’ailleurs sur ] − ∞, 0[
puisqu’elle est paire. Elle ne s’annule donc jamais.

5. Si a > 0, on applique la condition (C) à x = y =
a√
2

pour obtenir f(a) = f

(
a√
2

)2

⩾ 0

(c’est exactement le même calcul qu’à la question précédente, pour n = 0). Comme f ne peut
pas s’annuler, on a donc f(x) > 0 sur ]0,+∞[. On conclut à nouveau en invoquant la parité
de f .
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6. (a) On vient de prouver que f était à valeur strictement positives, donc f(
√
x) > 0 sur

[0,+∞[, ce qui prouve que g est bien définie sur cet intervalle. La continuité est triviale
(composition de fonctions continues).

(b) Calculons g(x)g(y) = ln(f(
√
x))+ln(f(

√
y)) = ln(f(

√
x)f(

√
y)) = ln(f(

√√
x
2
+
√
y2)) =

ln(f(
√
x+ y)) = g(x+ y), en utilisant la condition (C) en cours de calcul.

(c) C’est une récurrence triviale exploitant la question précédente. Pour n = 0, g(0) =
ln(f(0)) = ln(1) = 0, donc la propriété est vérifiée. Et si on la suppose vraie au rang
n, alors g((n+ 1)x) = g(nx+ x) = g(nx) + g(x) = ng(x) + g(x) = (n+ 1)g(x).

(d) Supposons x =
p

q
, avec p et q deux entiers strictement positifs. Alors g(qx) = g(p) = pg(1),

et par ailleurs g(qx) = qg(x), donc qg(x) = pg(1), puis g(x) =
p

q
g(1) = xg(1).

(e) Notons a = g(1), on sait déjà que g(x) = ax pour tout nombre x rationnel positif. Si x
est un réel positif non rationnel, il est limite d’une suite (xn) de nombres rationnels, donc
g(x) = lim

n→+∞
g(xn) = lim

n→+∞
axn = ax, ce qui prouve que g(x) = ax sur [0,+∞[ tout

entier.
(f) Puisque g(x) = ax = ln(f(

√
x)), on a f(

√
x) = eax pour tout réel positif, soit en faisant

un minuscule changement de variable f(x) = eax
2 . Par parité de f , cette expression

reste valable sur R−. Réciproquement, toutes ces fonctions sont bien solutions (toutes les
fonctions linéaires sont clairement solutions de l’équation vérifiée par g), et on retrouve en
particulier la fonction constante égale à 1 lorsque a = 0. Il faut par contre ajouter à cet
ensemble la fonction nulle qui n’en fait pas partie.

Exercice 4

1. (a) On cherche donc à résoudre le système
{

4x − 6y = 2x
x − y = 2y

. Les deux équations sont

équivalentes, et donnent donc l’unique condition x = 3y. Autrement dit, les solutions sont
tous les couples de la forme (3y, y), avec y ∈ R. On prendra comme solution particulière
non nulle le couple (3, 1).

(b) Il s’agit cette fois de résoudre le système
{

4x − 6y = x
x − y = y

. À nouveau, les deux

équations sont équivalentes et donnent x = 2y. Les solutions sont donc de la forme (2y, y)
avec y ∈ R, et on prendre (2, 1) comme solution particulière.

(c) On pose donc P =

(
3 2
1 1

)
. Pour s’amuser un peu, calculons l’inverse en passant par le

calcul de P 2 =

(
11 8
4 3

)
. On constate que P 2 = 4P − I3, donc I3 = P (4I3 − P ), ce qui

prouve que P est inversible et P−1 = 4I3 − P =

(
1 −2
−1 3

)
.

(d) Un calcul palpitant donne AP =

(
6 2
2 1

)
, puis D = P−1AP =

(
2 0
0 1

)
.

(e) Aucune méthode n’est imposée, mais on va quand même reprendre la diagonalisation
qui vient d’être effectuée. On montre comme d’habitude par récurrence que ∀n ∈ N,
An = PDnP−1. C’est trivialement vrai pour n = 0 (on a la matrice identité des deux
côtés), et si on le suppose au rang n, alors PDn+1P−1 = PDnDP−1 = PDnP−1PDP−1 =
AnA = An+1 en exploitant l’hypothèse de récurrence et le fait que D = P−1AP ⇔

A = PDP−1. Il ne reste alors plus qu’à calculer PDn =

(
3× 2n 2
2n 1

)
, puis An =(

3× 2n − 2 6− 3× 2n+1

2n − 1 3− 2n+1

)
.
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2. (a) Si M2 = D, alors MD = DM = M3, donc M et D commutent. Or, si M =

(
a b
c d

)
,

un calcul idiot donne MD =

(
2a 2b
c d

)
et DM =

(
2a 2c
b d

)
. On en déduit que

MD = DM si b = c = 0. La matrice M est donc diagonale, avec des coefficients diagonaux

donc les carrés sont égaux respectivement à 2 et 1, donc M =

(
±
√
2 0

0 ±1

)
(quatre

solutions distinctes).
(b) Si M2 = D, alors PM2P−1 = A. En posant B = PMP−1, on en déduit que B2 =

A. Réciproquement, toute matrice B vérifiant B2 = A est issue d’une matrice M =
P−1BP vérifiant M2 = D. Il y a donc quatre solutions à l’équation B2 = A : B1 =

P

( √
2 0
0 1

)
P−1 =

(
3
√
2− 2 6− 6

√
2√

2− 1 3− 2
√
2

)
, B2 = −B1 =

(
2− 3

√
2 6

√
2− 6

1−
√
2 2

√
2− 3

)
,

B3 = P

( √
2 0
0 −1

)
P−1 =

(
3
√
2 + 2 −6− 6

√
2√

2 + 1 −2− 3
√
2

)
, et B4 = −B3 =

(
−3

√
2− 2 6 + 6

√
2

−
√
2− 1 2 + 3

√
2

)
.

(c) Pas besoin de vraiment effectuer les calculs : les matrices solutions sont opposées deux à
deux donc leur somme est nulle. De plus, comme B2 = −B1 et B2

1 = A, B1B2 = −A. De
même, B3B4 = −A et B1B2B3B4 = A2 (notons en passant que le produit ne dépend pas
de l’ordre des calculs, ce qui n’a rien d’évident a priori).

3. (a) À l’aide de la formule obtenue plus haut pour An, on calcule facilement les coefficients :

celui en haut à gauche vaut 3

n∑
k=0

(2t)k − 2

n∑
k=0

tk, celui en haut à droite vaut 6

n∑
k=0

tk −

6
n∑

k=0

(2t)k, pour celui en bas à gauche c’est
n∑

k=0

(2t)k −
n∑

k=0

tk et pour le dernier en bas à

droite 3
n∑

k=0

tk − 2
n∑

k=0

(2t)k.

(b) En passant à la limite avec la formule donnée dans l’énoncé, évidemment valable pour 2t

aussi bien que pour t, on trouve E(t) =

(
3e2t − 2et 6et − 6e2t

e2t − et 3et − 2e2t

)
. En particulier, on a

E(0) =

(
1 0
0 1

)
= I2, et E(1) =

(
3e2 − 2e 6e− 6e2

e2 − e 3e− 2e2

)
.

(c) Bon, cette question est vraiment triviale, soyons honnête, elle n’était là que pour donner
les matrices Q et R permettant de vérifier la validité des calculs précédents.

(d) Les calculs sont faciles : QR = 0, RQ = 0, Q2 = Q et R2 = R.
(e) À l’aide des deux questions précédentes, E(t)E(t′) = (e2tQ + etR)(e2t

′
Q + et

′
R) =

e2t+2t′Q2 + e2t+t′QR+ et+2t′RQ+ et+t′R2 = e2(t+t′)Q+ et+t′R = E(t+ t′).
(f) C’est une récurrence facile. On a déjà vu plus haut que E(0) = I3 = (E(t))0, ce qui

prouve la formule au rang initial. Si on la suppose vraie au rang n, alors d’après la question
précédente E(t)n+1 = E(t)n×E(t) = E(nt)×E(t) = E((n+1)t), ce qui prouve l’hérédité.

(g) Les calculs déjà effectués montrent que I2 = E(0) = E(t − t) = E(t) × E(−t), ce qui
prouve que E(t) est inversible et a pour inverse E(−t).

(h) Supposons que E(t) = E(t′) pour deux réels distincts t et t′. Alors E(t − t′) = E(t) ×
(E(t′))−1 = E(t)×(E(t))−1 = I2. Or, E(t−t′) est une combinaison linéaire des matrices Q
et R, et la seule combinaison de ces deux matrices donnant la matrice I2 est la combinaison
Q+R (les coefficients hors de la diagonale montrent qu’on doit avoir le même facteur devant
Q que devant R, et ceux de la diagonale montrent que ces coefficients sont égaux à 1), qui
est atteinte lorsque e2(t−t′) = et−t′ = 1. Autrement dit, il faut avoir t− t′ = 0, donc t = t′,
ce qui prouve que l’application est bien injective.

L’application n’est par contre par surjective, car il existe des tas de matrices qui ne sont pas
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du tout combinaisons linéaires des matrices Q et R. Par exemple, la matrice Z =

(
0 1
0 0

)
ne peut pas s’écrire sous la forme aQ+bR, car le coefficient nul en deuxième ligne première
colonne imposerait a = b, et on aurait alors aussi un coefficient nul en haut à droite. Cette
matrice ne peut donc pas être égale à une matrice E(t).
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