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Exercice 1

1. La conjugaison complexe s correspond à une symétrie par rapport à l’axe réel. L’application r

est une rotation d’angle
π

2
autour de l’origine du repère. L’application r2 est donc une rotation

d’angle π et r3 une rotation d’angle
3π

2
autour de ce même point. Les trois applications s ◦ r,

s ◦ r2 et s ◦ r3 sont des réflexions (symétries par rapport à des droites) en tant que composées
d’une symétrie et d’une rotation (ce sont nécessairement des isométries indirectes) : s ◦ r est
une symétrie par rapport à la droite d’équation y = −x, s ◦ r2 est une symétrie par rapport
à l’axe imaginaire (on a r2(z) = i(iz) = −z, donc s ◦ r2(z) = −z) et s ◦ r3 est une symétrie
par rapport à la droite d’équation y = x.

2. Toutes ces applications étant des isométries complexes, elles sont trivialement bijectives. Les
quatre réflexions (s, s ◦ r, s ◦ r2 et s ◦ r3) sont leur propre réciproque. La réciproque de r est
r3 (puisque r ◦ r3 est une rotation d’angle 2π, donc égale à l’identité), et r2 est également sa
propre réciproque.

3. On l’a déjà dit à la question précédente : r4 = id. Les trois composées r ◦ s, r2 ◦ s et r3 ◦ s
sont à nouveau nécessairement des réflexions. Plus précisément, puisque r◦s est une réflexion,
r ◦ s = (r ◦ s)−1 = s−1 ◦ r−1 = s ◦ r3 (réflexion par rapport à la droite d’équation y = x). De
même, r2 ◦ s = s−1 ◦ (r2)−1 = s ◦ r2, et r3 ◦ s = s−1 ◦ (r3)−1 = s ◦ r (réflexion par rapport à
la droite d’équation y = −x). Tous les élements de G sont de la forme sa ◦ rb, avec a ∈ {0, 1}
et b ∈ {0, 1, 2, 3}. Si on compose deux tels éléments, on calcule donc sa ◦ rb ◦ sc ◦ sd. Les
calculs précédents montrent que rb ◦ sc = sc ◦ rb′ (avec toujours b′ ∈ {0, 1, 2, 3}, ce qui donne
une composée égale à sa+b ◦ rb

′+d. En utilisant le fait que s2 = r4 = id, on peut toujours
simplifier les expressions pour obtenir une « puissance » de s égale à 0 ou 1, et une puissance
de r inférieure ou égale à 3, donc un élément de G, qui est bien stable par composée.

4. L’ensemble G est non vide, il est stable par composition et par passage à la réciproque, c’est
donc un sous-groupe de l’ensemble de toutes les applications bijectives sur C, muni de la
composition. Il n’est pas abélien puisque par exemple s ◦ r et r ◦ s ne sont pas égales.

5. Un sous-groupe à deux éléments dans un groupe est nécessairement constitué de l’élément
neutre (ici id) et d’un élément égal à sa propre réciproque. On a donc pas moins de cinq
sous-groupes à deux éléments pour le groupe G : {id, r2}, {id, s}, {id, s ◦ r}, {id, s ◦ r2},
{id, s ◦ r3}.

6. Le sous-ensemble H1 est manifestement non vide, stable par composition (ce qui sera de
toute façon vérifié dans la table de Cayley qu’on va faire ci-dessous), et stable par passage à
la réciproque d’après les calculs effectués plus haut. C’est donc un sous-groupe de G. La table
demandée :
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◦ id r r2 r3

id id r r2 r3

r r r2 r3 id

r2 r2 r3 id r

r3 r3 id r r2

7. Encore un ensemble non vide et stable par réciproque (tous les éléments de H2 sont leur
propre réciproque), dont la stabilité par composition va découler du tableau ci-dessous :

◦ id r2 s s ◦ r2

id id r2 s s ◦ r2
r2 r2 id s ◦ r2 s

s s s ◦ r2 id r2

s ◦ r2 s ◦ r2 s r2 id

8. Supposons qu’il existe un isomorphisme f entre H1 et H2. Puisque tous les élements de H2

sont égaux à leur propre récirpoque, on devrait donc avoir (f(r))2 = id. Or, si f est un
morphisme, cela revient à dire que f(r2) = id, ce qui contredit l’injectivité de f (on aurait
au moins deux éléments dans le noyau). Il n’est donc pas possible de créer un isomorphisme
entre les deux sous-groupes.

9. Cette application f serait en fait un morphisme sur l’ensemble de toutes les isomtries de C.
En effet, la composée de deux isométries directes est directes, ce qui est cohérent avec le fait
que, si f et g sont deux isométries directes, φ(g ◦ f) = 1 = 1 × 1 = φ(g) × φ(f). Si f et g
sont toutes deux indirectes, g ◦ f sera directe, c’est à nouveau cohérent car φ(g ◦ f) = 1 =
(−1)× (−1) = φ(g)×φ(f). Enfin, si l’une des deux isométries est directe et l’autre indirecte,
on obtiendra une composée indirecte, et −1 = (−1)× 1 = 1× (−1).

10. Le noyau de φ est tout simplement constitué de toutes les isométries directes de G, donc
ker(φ) = H1. Le morphisme φ n’est évidemment pas un isomoprhisme puisqu’il n’est pas
injectif (noyau non réduit à l’élément neutre).

Exercice 2

1. Puisque le coefficient dominant du polynôme est égal à 1, on a simplement z1 + z2 = 2a et
z1z2 = b.

2. (a) On cherche donc à résoudre l’équation du second degré z2 − (2 + 8i)z − 6 + 8i = 0. Son
discriminant vaut ∆ = (2 + 8i)2 − 4(8i − 6) = 4 + 32i − 64 − 32i + 24 = −36. Pas
besoin de calculs compliqués pour obtenir une racine carrée de ce discriminant réel, δ = 6i

conviendra fort bien. Les solutions de l’équation sont donc z1 =
2 + 8i− 6i

2
= 1 + i et

z2 =
2 + 8i+ 6i

2
= 1 + 7i.

(b) Les points sont symétriques si et seulement si ils ont même partie imaginaire et des parties
réelles opposées, autrement dit si z2 = −z1. Dans ce cas, z1 + z2 = 2a est donc imaginaire
pur. De plus, on doit avoir z1z2 = −z1z1 = −|z1|2 = b, ce qui est manifestement impossible
puisque b n’est pas réel négatif. La question était en fait posée de façon très surprenante,
puisque la symétrie est impossible (en fait, cette question aurait du apparaître à un moment
où la valeur de b n’était pas imposée égale à −6 + 8i).
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(c) C’est tout aussi impossible qu’à la question précédente puisqu’on doit cette fois-ci avoir
z2 = z1, ce qui impose à nouveau que b soit un nombre réel (positif cette fois).

(d) Pour que le triangle soit isocèle rectangle en A, le point M2 doit être l’image de M1 par une
rotation d’angle ±π

2
autour du point a. Autrement dit, on doit avoir z2 − 2a = i(z1 − 2a)

ou z2 − 2a = −i(z2 − 2a). Or, z2 = 2a − z1, donc le premier cas peut s’écrire −z1 =

iz1 − 2ia, soit z1(i+1) = 2ia, donc z1 =
2i

1 + i
a =

2i(1− i)

2
a = (i+1)a. Dans l’autre cas,

−z1 = −iz1 + 2ia, donc z1 =
2i

i− 1
a =

2i(i+ 1)

−2
a = (1 − i)a. Cela correpond bien aux

deux relations données dans l’énoncé.
(e) Si z1 = (1 + i)a, alors z2 = 2a− z1 = (1− i)a, et inversement. En fait, les deux cas n’en

constituent qu’un seul, avec permutation du rôle de z1 et de z2. Dans cet unique cas, donc,
b = z1z2 = a2(1 + i)(1− i) = 2a2. Avec la valeur de b choisie dans l’énoncé, cela implique

a2 =
b

2
= −3+4i. En posant a = α+iβ, on obtient les conditions α2−β2 = −3 et 2αβ = 4,

auxquelles on ajoute l’équation aux modules α2 + β2 = |a|2 = | − 3 + 4i| =
√
9 + 16 = 5.

En additionnant et soustrayant comme d’habitude les deux équations faisant intervenir les
carrés, on trouve 2α2 = 2, donc α = ±1 et 2β2 = 8 donc β = ±2. Puisque α et β sont de
même signe, les deux valeurs possibles de a sont a = 1+2i et a = −1−2i. Vérifions ce qui
se passe dans ces deux cas : l’équation (E) du premier cas s’écrit z2−(2+4i)z−6+8i = 0.
Elle admet pour discriminant ∆ = (2+4i)2−4(8i−6) = 4+16i−16−32i+24 = 12−16i =
−4(−3+ 4i) = −4a2. Une racine carrée de ce discriminant est δ = 2ia, et les deux racines

de l’équation sont donc z1 =
2a− 2ia

2
= a(1 − i) et z2 =

2a+ 2ia

2
= a(1 + i), ce qui

prouve que notre triangle est bien rectangle isocèle en A. Le deuxième cas est identique
(le discriminant est le même) à permutation des racines près.

3. (a) On sait bien entendu que les racines de l’équation sont conjuguées si a et b sont réels et
si le discriminant ∆ est réel négatif, donc si (−2a)2 − 4b ⩽ 0, soit a2 ⩽ b (ça fonctionne
même dans le cas où ∆ = 0, puisque deux nombres réels identiques sont effectivement
conjugués). Réciproquement, supposons que z2 = z1, alors 2a = z1 + z2 = 2Re(z1), donc
a = Re(z1) est réel, et b = z1z2 = |z1|2 est aussi réel, et même réel positif. De plus, on sait
bien que |Re(z1)| ⩽ |z1|, donc |a| ⩽

√
b, ce qui implique bien a2 − b ⩽ 0. La réciproque

est donc démontrée, la condition est nécessaire et suffisante.
(b) On va noter simplement r = r1 = r2, et on suppose donc que z1 = reiα et z2 = reiβ .

On calcule alors b = z1z2 = r2ei(α+β) (commençons par le plus facile), et 2a = z1 +

z2 = r(eiα + eiβ). Par une factorisation par l’angle moitié, a =
r

2
ei

α+β
2 (ei

α−β
2 + ei

β−α
2 ) =

r1 cos

(
α− β

2

)
ei

α+β
2 . On en déduit que a2 = r21 cos

2

(
α− β

2

)
ei(α+β), puis que

a2

b
=

cos2
(
α− β

2

)
. Ce nombre est clairement réel, tout aussi clairement positif, et inférieur ou

égal à 1 puisqu’un cosinus ne peut pas être plus grand que 1. On a par ailleurs supposé au
tout début de l’exercice que 2a n’était pas nul, donc ce quotient non plus, ce qui prouve
bien qu’il appartient à ]0, 1].

(c) Le discriminant de l’équation (E) vaut ∆ = 4a2 − 4b = 4a2
(
1− b

a2

)
. Avec l’hypothèse

faite, à savoir que
a2

b
∈]0, 1], son inverse

b

a2
est un réel supérieur ou égal à 1, ce qui
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prouve que 1− b

a2
est un réel négatif. Une racine carrée de ce nombre est donc i

√
b

a2
− 1,

et comme 4a2 est par ailleurs manifestement le carré de 2a, on peut poser δ = 2ai

√
b

a2
− 1

pour obtenir un nombre complexe (rappelons que a n’a aucune raison d’être réel) vérifiant

δ2 = ∆. Les racines de (E) sont alors (à échange près) z1 = a + ia

√
b

a2
− 1 et z2 =

a− ia

√
b

a2
− 1. Après factorisation par a (indispensable car a n’est toujours pas réel), on

calcule donc |z1| = |a|×
√

1 +
b

a2
− 1 = |a|

√
b

a2
. De même, |z2| = |a|

√
b

a2
, donc on a bien

|z1| = |z2|.
(d) On suppose donc cette fois que z1 = r1e

iα et z2 = r2e
iα. On calcule alors 2a = (r1+r2)e

iα,

donc a2 =
(r1 + r2)

2

4
e2iα. Par ailleurs, β = r1r2e

2iα, donc
a2

b
=

(r1 + r2)
2

4r1r2
. Ce nombre est

un quotient de réels strictement positifs (r1 et r2 sont des modules) donc il est lui-même réel
positif. De plus, (r1+r2)

2−4r1r2 = r21+2r1r2+r22−4r1r2 = r21+r22−2r1r2 = (r1−r2)
2 ⩾ 0,

ce qui prouve que (r1 + r2)
2 ⩾ 4r1r2 et donc que leur quotient est un réel supérieur ou

égal à 1.

(e) Le calcul de disriminant effectué plus haut reste toujours valable : ∆ = 4a2
(
1− b

a2

)
.

Mais cette fois, on a supposé a2 ⩾ b, donc 1− b

a2
⩾ 0, et on peut donc poser δ = 2a

√
1− b

a2

(avec toujours a complexe bien entendu). Très similairement au calcul précédent, on en

déduit que z1 = a + a

√
1− b

a2
et z2 = a − a

√
1− b

a2
. Il ne reste plus qu’à factoriser

par a pour calculer les arguments : α = arg(z1) = arg(a) + arg

(√
1− b

a2

)
= arg(a)

puisque le deuxième argument est celui d’un réel positif, donc nul (on travaille modulo
2π sans le dire, comme d’habitude quand on calcule des arguments). De même, β =

arg(a) + arg

(√
1− b

a2

)
= arg(a) puisque 1 −

√
1− b

a2
est lui aussi un réel positif (la

racine carrée étant celle d’un nombre inférieur à 1, elle est elle-même inférieure ou égale à
1). On a bien prouvé que α = β.

(f) Avec les deux démonstrations qu’on vient d’effectuer, si
a2

b
= 1, on aura à la fois r1 = r2 et

α = β, donc z1 = z2. C’est normal, puisque l’équation (E) s’écrit alors z2 − 2az + a2 = 0,
soit (za)

2 = 0, et admet donc une racine double.

Exercice 3

A. Démonstration du théorème de Cesàro dans le cas monotone.

1. La suite (un) étant croissante et convergeant vers l, elle est nécessairement majorée par l (en
effet, s’il existe un indice n0 pour lequel un0 > l, on aura pour tous les entiers supérieurs à n0

la minoration un ⩾ un0 > l, ce qui amène une contradiction en passant à la limite). On peut
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alors majorer vn :
1

n+ 1

n∑
k=0

uk ⩽
1

n+ 1

n∑
k=0

l ⩽
(n+ 1)l

n+ 1
= l.

2. On va classiquement calculer vn+1−vn =
1

n+ 2

n+1∑
k=0

uk−
1

n+ 1

n∑
k=0

uk =

(
1

n+ 2
− 1

n+ 1

) n∑
k=0

uk+

1

n+ 2
un+1 en isolant le dernier terme de la première somme. Or,

1

n+ 2
− 1

n+ 1
=

n+ 1− n− 2

(n+ 1)(n+ 2)
=

− 1

(n+ 1)(n+ 2)
, et on peut écrire le terme isolé

un+1

n+ 2
sous la forme

1

(n+ 1)(n+ 2)

n∑
k=0

un+1.

On en déduit alors que vn+1 − vn =
1

(n+ 1)(n+ 2)

n∑
k=0

un+1 − uk ⩾ 0 par croissance de la

suite (un) (tous les termes de la somme sont positifs). On a bien prouvé la croissance de
la suite auxiliaire (vn), et comme (vn) est croissante et majorée par l (première question de
l’exercice), elle converge effectivement vers une limite l′ ⩽ l.

3. Par définition, 2v2n+1 =
2

2n+ 2

2n+1∑
k=0

uk =
1

n+ 1

2n+1∑
k=0

uk, donc 2v2n+1 − vn =
1

n+ 1

2n+1∑
k=0

uk −

1

n+ 2

n∑
k=0

uk =
1

n+ 1

2n+1∑
k=n+1

uk. Par croissance de la suite (un), chaque terme de la somme est

supérieur ou égal à un, donc 2v2n+1 − vn ⩾
1

n+ 1

2n+1∑
k=n+1

un = un (il y a bien n + 1 termes

dans la somme).
4. Si on passage à la limite dans l’inégalité prouvée à la question précédente (la sous-suite

(v2n+1) de la suite (vn) converge vers la même limite que cette dernière), on obtient l’inégalité
2l′ − l′ ⩾ l, donc l′ ⩾ l. On savait déjà que l′ ⩽ l, la conclusion s’impose donc : l′ = l.
On a donc prouvé que, si une suite est croissante et convergente, la suite des moyennes de
ses premiers termes converge vers la même limite. Ce résultat est en fait vrai pour une suite
convergente quelconque (sans hypothèse de monotonie), c’est ce résultat plus général qui
constitue le théorème de Cesàro.

B. Une application du théorème de Cesàro.

1. C’est une récurrence complètement triviale : a0 > 0 par hypothèse, et supposer an > 0

implique clairement
an√
1 + an

> 0 (le dénominateur étant lui-même bien défini et strictement

positif).

2. Puisque la suite est à termes positifs, on peut étudier sa monotonie en calculant
an+1

an
=

1√
1 + an

< 1 (le dénominateur étant strictement supérieur à 1). On en déduit la décroissance

stricte de la suite (an) et sa convergence, puisqu’elle est minorée par 0. En notant l sa limite,

un passage à la limite dans la relation de récurrence donne l =
l√
1 + l

, donc l = 0 ou
√
1 + l = 1, ce qui ne laisse finalement que la possibilité l = 0. La suite (an) a donc une limite

nulle.

3. La fonction f est dérivable sur ]0,+∞[, et f ′(x) =

x
2
√
x+1

−
√
x+ 1 + 1

x2
=

x− 2(x+ 1) + 2
√
1 + x

2x2
√
1 + x
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=
−x− 2 + 2

√
1 + x

2x2
√
1 + x

. Cette dérivée est du signe de son numérateur. Or, puisque tout est po-

sitif, 2
√
1 + x ⩽ x + 2 ⇔ 4(1 + x) ⩽ x2 + 4x + 4 ⇔ x2 ⩾ 0, inégalité qui est toujours

vérifiée. Ceci prouve que notre humérateur de f ′ est toujours négatif, et donc que f est bien
décroissante sur ]0,+∞[.

4. (a) En effet,
√
1 + an
an

− 1

an
= f(an). La suite (an) étant décroissante, on a pour tout entier

nature n : 0 < an+1 ⩽ an, ce qui implique par décroissance de la fonction f que bn+1 ⩾ bn,
donc que la suite (bn) est croissante.

(b) Pas besoin de théorème compliqué, un simple produit par une quantité conjuguée suffit

à conclure : bn =

√
1 + an − 1

an
=

1 + an − 1

an(
√
1 + an + 1)

=
1

1 +
√
1 + an

. On sait déjà que

a
n→+∞n

= 0, on en déduit directement que lim
n→+∞

bn =
1

1 +
√
1
=

1

2
.

5. (a) Par définition, cn =
1

n

n−1∑
k=0

1

an+1
− 1

an
. Il s’agit d’une somme télescopique : cn =

1

n

(
1

an
− 1

a0

)
.

(b) À un décalage d’indice près, la suite (cn) correspond à la suite des moyennes des termes
de la suite (bn) (on fait simplement une moyenne sur n termes et pas sur n + 1). Elle

converge donc, d’après le théorème de Cesàro, vers la même limite que cn : lim
n→+∞

cn =
1

2
.

Or, on vient de prouver que
1

nan
= cn +

1

na0
, donc lim

n→+∞

1

nan
=

1

2
(le deuxième terme

ayant clairement une limite nulle), puis lim
n→+∞

nan = 2.

C. Une conséquence de l’application.

1. C’est à nouveau une récurrence triviale, qu’on ne va même pas se donner la peine de faire
semblant de rédiger.

2. Comme un+1 − un =
√
un ⩾ 0, la suite est croissante. Si elle était majorée, elle convergerait

vers une limite l ⩾ u0 > 0. Or, en passant à la limite dans la relation de récurrence, on devrait
avoir l = l+

√
l, donc l = 0. C’est manifestement impossible, ce qui prouve que (un) n’est pas

majorée et donc que lim
n→+∞

un = +∞.

3. Si on pose intelligemment an =
1

√
un

, alors a0 > 0, et surtout an+1 =
1√

un +
√
un

=

1
√
un

√
1 + 1√

un
=

an√
1 + an

. La partie B prouve alors que lim
n→+∞

nan = 0, donc que lim
n→+∞

n
√
un

=

2. En passant au carré et à l’inverse, on trouve alors lim
n→+∞

un
n2

=
1

4
(ce qui est d’ailleurs une

autre façon de prouver que (un) a une limite infinie).
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