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Exercice 1

1. La conjugaison complexe s correspond & une symétrie par rapport a 'axe réel. L’application r

P
est une rotation d’angle 5 autour de l'origine du repére. L’application 72 est donc une rotation

3 .
d’angle 7 et 73 une rotation d’angle > autour de ce méme point. Les trois applications sor,

sor? et sor3 sont des réflexions (symétries par rapport a des droites) en tant que composées
d’une symétrie et d’une rotation (ce sont nécessairement des isométries indirectes) : s o r est
une symeétrie par rapport a la droite d’équation y = —z, s o r? est une symétrie par rapport
a l'axe imaginaire (on a r2(z) = i(iz) = —z, donc s o r%(z) = —%) et s o> est une symétrie
par rapport a la droite d’équation y = x.

2. Toutes ces applications étant des isométries complexes, elles sont trivialement bijectives. Les
quatre réflexions (s, sor, so r? et so 7“3) sont leur propre réciproque. La réciproque de r est
73 (puisque 7 o r® est une rotation d’angle 27, donc égale & I'identité), et 72 est également sa
propre réciproque.
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3. On I'a déja dit a la question précédente : r* = id. Les trois composées ro s, 120 s et 2o s
sont & nouveau nécessairement des réflexions. Plus précisément, puisque 7o s est une réflexion,
ros=(ros) ! =s"1lor ! =so0r? (réflexion par rapport & la droite d’équation y = x). De
méme, r2os =s"1o (1)t =s07r? et rPos=s5"1o(r3)"! = sor (réflexion par rapport a
la droite d’équation y = —x). Tous les élements de G sont de la forme s% o r?, avec a € {0, 1}
et b € {0,1,2,3}. Si on compose deux tels éléments, on calcule donc s* o r? o s¢ o s Les
calculs précédents montrent que 7° o s¢ = s¢ o 7t (avec toujours b/ € {0,1,2,3}, ce qui donne
une composée égale a 41t o r?'+d. En utilisant le fait que s? = r* = id, on peut toujours
simplifier les expressions pour obtenir une « puissance » de s égale & 0 ou 1, et une puissance

de r inférieure ou égale a 3, donc un élément de G, qui est bien stable par composée.

4. L’ensemble G est non vide, il est stable par composition et par passage a la réciproque, c’est
donc un sous-groupe de ’ensemble de toutes les applications bijectives sur C, muni de la
composition. Il n’est pas abélien puisque par exemple s o r et r o s ne sont pas égales.

5. Un sous-groupe a deux éléments dans un groupe est nécessairement constitué de 1’élément
neutre (ici id) et d’un élément égal a sa propre réciproque. On a donc pas moins de cing
sous-groupes a deux éléments pour le groupe G : {id,r?}, {id, s}, {id,s o r}, {id,s o r?},
{id, s or3}.

6. Le sous-ensemble H; est manifestement non vide, stable par composition (ce qui sera de
toute fagon vérifié dans la table de Cayley qu’on va faire ci-dessous), et stable par passage a
la réciproque d’aprés les calculs effectués plus haut. C’est donc un sous-groupe de G. La table
demandée :



Lo Jad][ r [r*][r*]
id || id | r 23
rllr [ 2] id
2 203 lid | r
s 31id | r | r?

7. Encore un ensemble non vide et stable par réciproque (tous les éléments de Ho sont leur
propre réciproque), dont la stabilité par composition va découler du tableau ci-dessous :

’ o H id ‘ r2 ‘ S ‘ sor? ‘
1 id r? s sor?
r2 r2 id sor? s
s S sor? id r2
sor?| sor? s r? id

8. Supposons qu’il existe un isomorphisme f entre H; et Hy. Puisque tous les élements de Ho
sont égaux a leur propre récirpoque, on devrait donc avoir (f(r))? = id. Or, si f est un
morphisme, cela revient & dire que f(r?) = id, ce qui contredit 'injectivité de f (on aurait
au moins deux éléments dans le noyau). Il n’est donc pas possible de créer un isomorphisme
entre les deux sous-groupes.

9. Cette application f serait en fait un morphisme sur ’ensemble de toutes les isomtries de C.
En effet, la composée de deux isométries directes est directes, ce qui est cohérent avec le fait
que, si f et g sont deux isométries directes, p(go f) =1 =1x1=p(g) X p(f). Si fet g
sont toutes deux indirectes, g o f sera directe, c’est & nouveau cohérent car p(go f) =1 =
(—1) x (=1) = ¢(g) X ¢(f). Enfin, si I'une des deux isométries est directe et 'autre indirecte,
on obtiendra une composée indirecte, et —1 = (—1) x 1 =1 x (—1).

10. Le noyau de ¢ est tout simplement constitué de toutes les isométries directes de G, donc
ker(¢) = Hj. Le morphisme ¢ n’est évidemment pas un isomoprhisme puisqu’il n’est pas
injectif (noyau non réduit a I’élément neutre).

Exercice 2

1. Puisque le coefficient dominant du polynoéme est égal & 1, on a simplement z; + z5 = 2a et
Z1R9 = b.

2. (a) On cherche donc & résoudre I'équation du second degré 22 — (2 + 8i)z — 6 + 8i = 0. Son

discriminant vaut A = (2 + 8i)2 — 4(8 — 6) = 4 + 32 — 64 — 32i + 24 = —36. Pas

besoin de calculs compliqués pour obtenir une racine carrée de ce discriminant réel, 6 = 67

2+ 8i— 614
conviendra fort bien. Les solutions de ’équation sont donc z; = cror=br 1417 et

2
_ 2—1—8;—1—62 14T

(b) Les points sont symétriques si et seulement si ils ont méme partie imaginaire et des parties
réelles opposées, autrement dit si z9 = —Zz7. Dans ce cas, z1 + z2 = 2a est donc imaginaire
pur. De plus, on doit avoir 2129 = —2127 = —|21|> = b, ce qui est manifestement impossible
puisque b n’est pas réel négatif. La question était en fait posée de facon trés surprenante,
puisque la symeétrie est impossible (en fait, cette question aurait du apparaitre & un moment
ot la valeur de b n’était pas imposée égale a —6 + 81).
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(c)
(d)

C’est tout aussi impossible qu’a la question précédente puisqu’on doit cette fois-ci avoir
z9 = Z1, ce qui impose & nouveau que b soit un nombre réel (positif cette fois).
Pour que le triangle soit isocéle rectangle en A, le point Ms doit étre I'image de M7 par une

T
rotation d’angle i§ autour du point a. Autrement dit, on doit avoir zg — 2a = i(z; — 2a)

ou zyg — 2a = —i(z2 — 2a). Or, zo = 2a — 21, donc le premier cas peut s’écrire —z; =
21 21(1 —1
iz1 — 2ia, soit z1(i+ 1) = 2ia, donc z; = %= ( 5 )a = (i + 1)a. Dans l'autre cas,
i
21 2i(t + 1
—21 = —iz1 + 2ia, donc z; = - 0= ( ; )a = (1 — 7)a. Cela correpond bien aux
Z p— J—

deux relations données dans I’énoncé.

Siz1 = (1 +1)a, alors z3 = 2a — 21 = (1 — i)a, et inversement. En fait, les deux cas n’en
constituent qu’un seul, avec permutation du réle de z; et de z9. Dans cet unique cas, donc,
b= 2120 = a®(1+14)(1 — i) = 2a®. Avec la valeur de b choisie dans 1’énoncé, cela implique

a’ = 5= —3+44. En posant a = a+i/3, on obtient les conditions o2 — % = —3 et 2a8 = 4,
auxquelles on ajoute 'équation aux modules a? + 32 = |a|> = | — 3 + 4i| = /9 + 16 = 5.

En additionnant et soustrayant comme d’habitude les deux équations faisant intervenir les
carrés, on trouve 2o = 2, donc av = +1 et 28? = 8 donc = +2. Puisque « et 3 sont de
méme signe, les deux valeurs possibles de a sont a = 1427 et a = —1 — 2. Vérifions ce qui
se passe dans ces deux cas : I'équation (E) du premier cas s’écrit 2% — (2444)z —6+8i = 0.
Elle admet pour discriminant A = (2+44)2 —4(8i—6) = 4+16i—16—32i+24 = 12— 16i =
—4(—3 +44) = —4a®. Une racine carrée de ce discriminant est § = 2ia, et les deux racines

2a — 21 2 21
de ’équation sont donc z; = i a(l —i) et z9 = fot e a(l + 1), ce qui

prouve que notre triangle est bien rectangle isocéle en A. Le deuxiéme cas est identique
(le discriminant est le méme) & permutation des racines preés.

On sait bien entendu que les racines de I’équation sont conjuguées si a et b sont réels et
si le discriminant A est réel négatif, donc si (—2a)? — 4b < 0, soit a® < b (ga fonctionne
méme dans le cas ot A = 0, puisque deux nombres réels identiques sont effectivement
conjugués). Réciproquement, supposons que zo = Z7, alors 2a = z1 + 2o = 2Re(z1), donc
a = Re(z1) est réel, et b = 2125 = |21]? est aussi réel, et méme réel positif. De plus, on sait
bien que |Re(z1)| < |21/, donc |a| < Vb, ce qui implique bien a? — b < 0. La réciproque
est donc démontrée, la condition est nécessaire et suffisante.

On va noter simplement r = r; = r9, et on suppose donc que z; = re’® et zo = ret.
On calcule alors b = 2129 = r2ei@th) (commengons par le plus facile), et 2a = 2z +

i i . e T ,otB  ;a=p jB=a
29 = 7(e' 4 ¢'P). Par une factorisation par 'angle moitié, a = 562 2 ("2 4z )=

2
a— ‘ot a— , a
r1COS < 5) ¢“2”. On en déduit que a? = 7% cos? (26> e'@th) puis que — =

2 b
a—p . ) - e e
cos? — ) Ce nombre est clairement réel, tout aussi clairement positif, et inférieur ou

égal & 1 puisqu’un cosinus ne peut pas étre plus grand que 1. On a par ailleurs supposé au
tout début de I’exercice que 2a n’était pas nul, donc ce quotient non plus, ce qui prouve
bien qu’il appartient a |0, 1].
b
Le discriminant de 1’équation (E) vaut A = 4a? — 4b = 4a? <1 - 2>. Avec I'hypothese
a
2

L ) a ) b ) L. , . .
faite, a savoir que > €]0, 1], son inverse — est un réel supérieur ou égal a 1, ce qui
a



b . . .| b
prouve que 1 — — est un réel négatif. Une racine carrée de ce nombre est donc i4/— — 1,
a a

b
et comme 4a? est par ailleurs manifestement le carré de 2a, on peut poser § = 2ai — —1
a

pour obtenir un nombre complexe (rappelons que a n’a aucune raison d’étre réel) vérifiant
b

62 = A. Les racines de (F) sont alors (& échange prés) z; = a + iay/— —1let 2 =
a

/b
a —iay/ — — 1. Apres factorisation par a (indispensable car a n’est toujours pas réel), on
a

/ b /b b
calcule donc |z1] = |a| x y/1 4+ — — 1 = |a]4/ —. De méme, |23| = |a|y/ —, donc on a bien
a a a

|z1] = |22].
(d) On suppose donc cette fois que z; = rie'® et z9 = roet®. On calcule alors 2a = (r1 —i—rg)em,
2 2 2
r+r . . . a T+
donc a? = (142)62“". Par ailleurs, 8 = r11me%®, donc 5= (142) Ce nombre est
T17T2

un quotient de réels strictement positifs (1 et ro sont des modules) donc il est lui-méme réel
positif. De plus, (r1+7r2)2—4rire = ri+2r1ro+13—4r1r9 = ri+15—2r1r9 = (r1—r2)? > 0,
ce qui prouve que (11 + r2)? > 4riry et donc que leur quotient est un réel supérieur ou
égal a 1.

b
(e) Le calcul de disriminant effectué plus haut reste toujours valable : A = 4a? (1 — 2)
a

b / b
Mais cette fois, on a supposé a® > b, donc 1—— > 0, et on peut donc poser § = 2a4/1 — —
a

(avec toujours a complexe blen entendu). Tres 81m11a1rement au calcul précédent, on en

déduit que 21 = a +ay/1 — — et 20 = a — ay/1 — —. Il ne reste plus qu’a factoriser

b
par a pour calculer les arguments : a = arg(z;) = arg(a) + arg 1-— | = arg(a)
a

puisque le deuxiéme argument est celui d’un réel positif, donc nul (on travaille modulo
27 sans le dire, comme d’habitude quand on calcule des arguments). De méme, § =

b b
arg(a) + arg 1 — — | = arg(a) puisque 1 — 4/1 — — est lui aussi un réel positif (la
a a

racine carrée étant celle d’un nombre inférieur a 1, elle est elle-méme inférieure ou égale &
1). On a bien prouvé que oo = f3.
a2
(f) Avec les deux démonstrations qu’on vient d’effectuer, si 5= 1, on aura a la fois r; = rg et
a = B3, donc z; = z. C’est normal, puisque 1’équation (E) s’écrit alors 22 — 2az + a® = 0,
soit (24)% = 0, et admet donc une racine double.

Exercice 3

A. Démonstration du théoréme de Cesaro dans le cas monotone.

1. La suite (uy,) étant croissante et convergeant vers [, elle est nécessairement majorée par [ (en
effet, s’il existe un indice ng pour lequel u,, > [, on aura pour tous les entiers supérieurs a ng
la minoration u, > u,, > [, ce qui améne une contradiction en passant a la limite). On peut



1 1 1)l
alors majorer v, : —— Zuk < | < M = .
n+1 n+1 n+1
k=0 k=0
1 n+1 1 n
. On va classiquement calculer vy, 1—v, = s z; k_n+ 1 kz = <n+2 — 1> kZOUk+
1 1 1 n+1l—n—2

Up+1 en isolant le dernier terme de la premiére somme. Or, — =

n+2 n+2 nt+l (m+L)n+2)
1 1 =
—m, et on peut écrire le terme isolé :;T:le sous la forme m E Upt1-
O déduit al 1 E >0 i de 1
n en déduit alors que v -y = —————— U —up = ar croissance de la
q n+1 n (n+ 1)(7’L+ 2 n+1 k p

suite (uy,) (tous les termes de la somme sont positifs). On a bien prouvé la croissance de
la suite auxiliaire (vy,), et comme (vy,) est croissante et majorée par | (premiére question de
I'exercice), elle converge effectivement vers une limite I’ < [.

2n+1 2n+1 1 2n+1

2 1
. Par définition, 2vg, 41 = M2 Z U = il Z ug, donc 2vapy1 — P Z U —

k=0
T
k p—
2 — n+1

2n+1
E ug. Par croissance de la suite (u,,), chaque terme de la somme est
k=n+1

2n+1
Z Un = uy, (il y a bien n + 1 termes
k=n+1

1
=
n+1

supérieur ou égal a uy,, donc 2vep4+1 — U

dans la somme).

. Si on passage a la limite dans l'inégalité prouvée a la question précédente (la sous-suite
(van+1) de la suite (vy,) converge vers la méme limite que cette derniére), on obtient 'inégalité
2 — 1" > 1, donc I"” > I. On savait déja que I’ < [, la conclusion s’impose donc : ' = .
On a donc prouvé que, si une suite est croissante et convergente, la suite des moyennes de
ses premiers termes converge vers la méme limite. Ce résultat est en fait vrai pour une suite
convergente quelconque (sans hypothése de monotonie), c’est ce résultat plus général qui
constitue le théoréme de Cesaro.

B. Une application du théoréme de Cesaro.

1. C’est une récurrence complétement triviale : ag > 0 par hypothése, et supposer a, > 0

implique clairement > 0 (le dénominateur étant lui-méme bien défini et strictement

an
V14 a,
positif).

. . N o , . . An+41
. Puisque la suite est & termes positifs, on peut étudier sa monotonie en calculant =

an
1

V1+ay

stricte de la suite (a,,) et sa convergence, puisqu’elle est minorée par 0. En notant [ sa limite,

l

un passage a la limite dans la relation de récurrence donne | = ——, donc [ = 0 ou
passag Vitl

V141 =1, ce qui ne laisse finalement que la possibilité [ = 0. La suite (a,) a donc une limite
nulle.

< 1 (le dénominateur étant strictement supérieur a 1). On en déduit la décroissance

v ~ Vet 1+l x—2(x+1)+2/1+z

3. Lafonction f est dérivable sur |0, +oo[, et f'(z) = =

x2 2221+«



=24 2J1+x
B 202\/1+x
sitif, 2v14+2 < 2 +2 & 41+ 2) < 22 + 42 +4 < 22 > 0, inégalité qui est toujours
vérifiée. Ceci prouve que notre humérateur de f’ est toujours négatif, et donc que f est bien
décroissante sur ]0, 4-o00].

V1
4. (a) En effet, Viton
n

nature n : 0 < an41 < ay, ce qui implique par décroissance de la fonction f que by41 = by,
donc que la suite (by,) est croissante.

. Cette dérivée est du signe de son numérateur. Or, puisque tout est po-

1
— — = f(ap). La suite (ay) étant décroissante, on a pour tout entier
G,

(b) Pas besoin de théoréme compliqué, un simple produit par une quantité conjuguée suffit

. | b vi+a,—1 14+a,—1 1 0 i deis
a conclure : = = = . On sait déja que
" an an(VI+tan,+1)  1+VI+a, A

P . 1 1
a = 0, on en déduit directement que lim b, = = —.
n—+o0,, n—+o00 1+ \/I 2

_ 1 1 . . 1/1 1

5. (a) Par définition, ¢,, = — g ——. Il s’agit d’une somme télescopique: ¢, = — [ — — — .
N antr an n \a, ag

(b) A un décalage d’indice prés, la suite (c,) correspond & la suite des moyennes des termes
de la suite (b,) (on fait simplement une moyenne sur n termes et pas sur n + 1). Elle

converge donc, d’aprés le théoréme de Cesaro, vers la méme limite que ¢, : lim ¢, = —=.
n—+00 2
. 1 . 1 iy
Or, on vient de prouver que — = ¢, + —, donc lim —— = — (le deuxiéme terme
NGy nag n—+oonay,
ayant clairement une limite nulle), puis lim na, = 2.
n——+0o00

C. Une conséquence de ’application.

1. C’est & nouveau une récurrence triviale, qu'on ne va méme pas se donner la peine de faire
semblant de rédiger.

2. Comme Up41 — Uy = /U, = 0, la suite est croissante. Si elle était majorée, elle convergerait
vers une limite [ > ug > 0. Or, en passant a la limite dans la relation de récurrence, on devrait
avoir | = [ ++/1, donc [ = 0. C’est manifestement impossible, ce qui prouve que (u,) n’est pas
majorée et donc que lim wu, = 4oo.

n—-+o0o
3. Si intelli t ! 1 > 0, et tout !
. Si on pose intelligemment a, = ——, alors ag , et surtout an4; = —FV—]— =
TV " Un + \/Un
1 a n
—— /1 4+ L = —2__ Lapartie B prouve alors que lim na, = 0, donc que lim =
Uy VUn V1+ay p P 4 ntoo 4 n—+00 /Uy,
U 1
2. En passant au carré et a l'inverse, on trouve alors lim — = - (ce qui est d’ailleurs une
n—+oon?2 4

autre fagon de prouver que (u,) a une limite infinie).



