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Problème : démonstration (de cas particuliers) du grand théorème
de Fermat.

Le but de ce problème est de démontrer le très célèbre théorème de Fermat, dont l’énoncé est
rappelé ci-dessous, pour les plus petites valeurs de n (on se limitera à n ⩽ 4, ce qui est déjà bien).
On rappelle en passant que ce théorème, énoncé par Pierre de Fermat dans une note écrite sur son
exemplaire d’un classique d’arithmétique de Diophante au dix-septième siècle (la note en question n’a
été publiée par le fils de Fermat que quelques années après sa mort en 1 665, on ne sait donc pas pré-
cisément à quelle date Fermat lui-même a énoncé cette conjecture), n’a été démontré complètement
qu’en 1 994 par le mathématicien anglais Andrew Wiles, à l’aide de méthodes bien trop compliquées
pour être évoquées dans un DM à votre niveau. Avant cela, les plus grands mathématiciens s’étaient
penchés sur les cas de petites valeurs de n, puisque la démonstration présentée ici pour n = 3 est
basée sur une première démonstration d’Euler, qui s’est avérée erronée (sacré Euler, comme d’hab,
il a rien vérifié et raconté n’importe quoi), et corrigée ensuite par Gauss. Pour les plus curieux, un
théorème beaucoup plus général qui permet de traiter les valeurs de n inférieures ou égales à 100,
mais avec une restriction sur les inconnues x, y et z, a été démontré au début du dix-neuvième siècle
par la grande mathématicienne française Sophie Germain.

Théorème 1. Théorème de Fermat-Wiles.

L’équation xn + yn = zn n’admet aucun triplet de solutions entières strictement positives
lorsque n est un entier supérieur ou égal à 3.

Partie I : Démonstration du théorème dans le cas n = 4.

1. Commençons par nous intéresser au cas n = 2 : un triplet d’entiers non nuls (x, y, z) vérifiant
x2 + y2 = z2 est appelé triplet pythagoricien, et correspond aux longueurs entières de trois
côtés d’un triangle rectangle. On dit qu’un triplet pythagoricien est primitif si x ∧ y = 1.

(a) Donner un exemple de triplet pythagoricien, et expliquer comment on peut facilement, à
partir d’un triplet primitif, créer une infinité d’autres triplets pythagoriciens non primitifs.

(b) Montrer que le triplet (x, y, z) est primitif si et seulement si x, y et z sont premiers
entre eux deux à deux, mais aussi si et seulement si ils sont premiers entre eux dans leur
ensemble.

(c) Montrer que, si (x, y, z) est un triplet pythagoricien primitif, alors z est impair, et x et y
de parité opposée (on supposera pour la suite que x est pair et y impair).
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(d) Soient p et q deux entiers premiers entre eux, de parité opposée, tels que p > q. Montrer
que (2pq, p2 − q2, p2 + q2) est un triplet pythagoricien primitif.

(e) On veut montrer la réciproque du résultat précédent.
i. On suppose qu’un triplet pythagoricien primitif (x, y, z) (avec x pair et y impair) s’écrit

sous la forme (2pq, p2 − q2, p2 + q2), avec p > q et p et q de parité opposée et premiers
entre eux. Exprimer alors le quotient

p

q
en fonction de x et de z − y.

ii. Si p et q sont définis comme numérateur et dénominateur de la fraction irréductible
x

z − y
, montrer qu’il existe un entier α tel que p2 + q2 = αz et p2 − q2 = αy.

iii. Montrer que α = 1, et conclure.
2. Un triangle pythagoricien est un triangle rectangle dont les côtés ont pour longueurs (x, y, z),

ces trois entiers formant un triplet pythagoricien. On souhaite prouver dans cette question
que l’aire d’un tel triangle n’est jamais un carré parfait. On suppose pour cela dans toute
cette question que (x, y, z) est un triangle pythagoricien dont l’aire est un carré parfait.
(a) Montrer qu’on peut se restreindre à traiter le cas d’un triplet pythagoricien primitif, qu’on

décrira sous la forme (2pq, p2 − q2, p2 + q2) comme expliqué en question 1.
(b) Que vaut l’aire du triangle en question en fonction de x et y, puis de p et q ?
(c) Montrer alors que p, q, p− q et p+ q sont tous des carrés parfaits, qu’on écrira donc a2,

b2, c2 et d2.
(d) Montrer que (d− c) ∧ (c+ d) = 2.

(e) En déduire, en étudiant le produit (d − c)(c + d), que
c+ d

2
et

d− c

4
sont deux carrés

parfaits, ou
c+ d

4
et

d− c

2
sont deux carrés parfaits.

(f) En se plaçant dans le premier cas (le deuxième se traite de façon similaire) et en posant
c+ d

2
= r2 et

d− c

4
= s2, montrer que (r2, 2s2, a) est un triplet pythagoricien dont le

troisième entier est inférieur à celui du triplet initial.
(g) Conclure rigoureusment que l’aire d’un triangle pythagoricien n’est jamais un carré parfait.

3. On démontre (enfin) le cas n = 4 du théorème de Fermat. Supposons donc que x4 + y4 = z4,
avec x, y et z entiers strictement positifs.
(a) Montrer qu’on peut supposer x et y premiers entre eux, et x pair (on suppose désomais

que c’est le cas).
(b) Montrer qu’on peut trouver deux entiers a et b tels que z2 − y2 = 8a4 et z2 + y2 = 2b4.
(c) Montrer en exploitant la question 3 que la situation précédente est impossible, et conclure.

Partie II : Démonstration du théorème dans le cas n = 3.

Cette deuxième démonstration est déjà nettement plus technique que celle donnée pour n = 4.
Autrement dit, si vous avez souffert sur la partie I, abordez prudemment cette partie II...

On note dans cette partie Z[j] = {a+ jb | (a, b) ∈ Z2}, où j désigne comme d’habitude le nombre
complexe ei

2π
3 . Cet ensemble est un sous-anneau de C dont les éléments inversibles sont les éléments
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de module 1 (propriétés admises). On admet également que Z[j] est un anneau factoriel, c’est-à-
dire dans lequel tout élément peut se factoriser de façon unique (à l’ordre des facteurs près et à un
produit par un inversible près) comme produit de nombres premiers. Ici, un nombre premier est un
nombre de la forme a + bj ne pouvant pas se factoriser comme produit de deux éléments de Z[j]
de module strictement supérieur à 1. Par exemple, le nombre 3 n’est pas premier dans ce contexte,
puisqu’il peut s’écrire sous la forme (1 + 2j)(−1 − 2j), avec les deux facteurs qui ont pour module√
3. Toutes les autres définitions et théorèmes (notamment Bézout et Gauss) vus dans Z s’adaptent

sans problème dans Z[j].

1. On suppose que (p, q, s) sont trois entiers solutions de l’équation p2 + 3q2 = s3, avec de plus
p ∧ q = 1.

(a) Montrer que p et q sont premiers entre eux dans Z[j].
(b) Montrer que p+ i

√
3q et p− i

√
3q sont des éléments de Z[j], et qu’ils sont premiers entre

eux (question loin d’être facile, on pourra commencer par prouver que 2 et i
√
3 sont des

nombres premiers dans Z[j]).
(c) En déduire qu’il existe deux entiers a et b tels que p+ i

√
3q = (a+ i

√
3b)3. Exprimer p et

q en fonction de a et b.
(d) Montrer que a et b sont premiers entre eux.

2. On suppose désormais que (x, y, z) est une solution de l’équation de Fermat x3 + y3 = z3.

(a) Montrer qu’on peut supposer x, y et z premiers entre eux deux à deux, et x et y impairs.
On supposera ces propriétés vérifiées par la suite.

(b) En posant p et q tels que x = p+ q et y = p− q (pourquoi sont-ils entiers ?), montrer que
p

4
(p2 + 3q2) =

(z
2

)3
.

(c) Montrer que p2 + 3q2 est impair, puis déterminer la parité de p et q (on constatera en
passant que

p

4
est entier).

3. On suppose dans cette question que z n’est pas un multiple de 3.

(a) Montrer qu’il existe deux entiers r et s tels que
p

4
= r3 et p2 + 3q2 = s3.

(b) Montrer qu’il existe deux entiers a et b tels que p = a(a+ 3b)(a− 3b) et q = 3b(a2 − b2).
Vérifier que a et b sont premiers entre eux.

(c) Déterminer la parité des entiers a et b.

(d) Justifier que
a

4
, a + 3b et a − 3b sont des cubes, et en déduire une nouvelle solution de

l’équation de Fermat pour n = 3.
(e) Montrer que le produit des trois entiers constituant cette nouvelle solution est strictement

inférieur à celui des trois entiers de la solution initiale. Que peut-on en conclure ?

4. Traiter de façon similaire à la question précédente le cas où z est un multiple de 3 (on pourra
commencer par montrer, en conservant les notations des questions précédentes, que p est
divisible par 36).
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