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Probléme : démonstration (de cas particuliers) du grand théoréme
de Fermat.

Le but de ce probléme est de démontrer le trés célébre théoréme de Fermat, dont 1’énoncé est
rappelé ci-dessous, pour les plus petites valeurs de n (on se limitera & n < 4, ce qui est déja bien).
On rappelle en passant que ce théoréme, énoncé par Pierre de Fermat dans une note écrite sur son
exemplaire d'un classique d’arithmétique de Diophante au dix-septiéme siécle (la note en question n’a
été publiée par le fils de Fermat que quelques années aprés sa mort en 1 665, on ne sait donc pas pré-
cisément a quelle date Fermat lui-méme a énoncé cette conjecture), n’a été démontré complétement
qu’en 1 994 par le mathématicien anglais Andrew Wiles, & ’aide de méthodes bien trop compliquées
pour étre évoquées dans un DM & votre niveau. Avant cela, les plus grands mathématiciens s’étaient
penchés sur les cas de petites valeurs de n, puisque la démonstration présentée ici pour n = 3 est
basée sur une premiére démonstration d’Euler, qui s’est avérée erronée (sacré Euler, comme d’hab,
il a rien vérifié et raconté n’importe quoi), et corrigée ensuite par Gauss. Pour les plus curieux, un
théoréme beaucoup plus général qui permet de traiter les valeurs de n inférieures ou égales a 100,
mais avec une restriction sur les inconnues x, y et z, a été démontré au début du dix-neuviéme siécle
par la grande mathématicienne francaise Sophie Germain.

Théoréme 1. Théoréme de Fermat-Wiles.

L’équation z"™ 4 4™ = 2™ n’admet aucun triplet de solutions entiéres strictement positives
lorsque n est un entier supérieur ou égal a 3.

Partie I : Démonstration du théoréme dans le cas n = 4.

1. Commengons par nous intéresser au cas n = 2 : un triplet d’entiers non nuls (z,y, z) vérifiant
z? + y? = 22 est appelé triplet pythagoricien, et correspond aux longueurs entiéres de trois
cOtés d’un triangle rectangle. On dit qu'un triplet pythagoricien est primitif si z Ay = 1.

(a) Donner un exemple de triplet pythagoricien, et expliquer comment on peut facilement, &
partir d’un triplet primitif, créer une infinité d’autres triplets pythagoriciens non primitifs.

(b) Montrer que le triplet (z,y,z) est primitif si et seulement si x, y et z sont premiers
entre eux deux a deux, mais aussi si et seulement si ils sont premiers entre eux dans leur
ensemble.

(c) Montrer que, si (z,y, z) est un triplet pythagoricien primitif, alors z est impair, et = et y
de parité opposée (on supposera pour la suite que z est pair et y impair).



(d) Soient p et g deux entiers premiers entre eux, de parité opposée, tels que p > g. Montrer
que (2pq, p* — ¢%,p* + ¢%) est un triplet pythagoricien primitif.
(e) On veut montrer la réciproque du résultat précédent.
i. On suppose qu’un triplet pythagoricien primitif (x,y, z) (avec x pair et y impair) s’écrit
sous la forme (2pgq, p2 — q2, p2 + qz), avec p > q et p et g de parité opposée et premiers
entre eux. Exprimer alors le quotient g en fonction de = et de z — y.

ii. Si p et ¢ sont définis comme numérateur et dénominateur de la fraction irréductible

, montrer qu'’il existe un entier a tel que p? + ¢> = az et p? — ¢* = ay.

oy —
iii. Mon?:rer que o = 1, et conclure.

2. Un triangle pythagoricien est un triangle rectangle dont les cotés ont pour longueurs (z,y, z),
ces trois entiers formant un triplet pythagoricien. On souhaite prouver dans cette question
que 'aire d’un tel triangle n’est jamais un carré parfait. On suppose pour cela dans toute
cette question que (z,y, z) est un triangle pythagoricien dont I’aire est un carré parfait.

(a) Montrer qu’on peut se restreindre a traiter le cas d’un triplet pythagoricien primitif, qu’on
décrira sous la forme (2pq, p* — ¢, p* + ¢*) comme expliqué en question 1.

(b) Que vaut l'aire du triangle en question en fonction de = et y, puis de p et ¢?
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(c) Montrer alors que p, ¢, p — q et p + g sont tous des carrés parfaits, qu’on écrira donc a
b2, 2 et d?.
(d) Montrer que (d —c) A (c+d) = 2.

d
(e) En déduire, en étudiant le produit (d — ¢)(c + d), que et sont deux carrés

d d—
c+ ot c

parfaits, ou sont deux carrés parfaits.

(f) En se plagant dans le premier cas (le deuxiéme se traite de fagon similaire) et en posant
c+d d—c . .
=72 et 1 s, montrer que (r?,2s% a) est un triplet pythagoricien dont le

troisiéme entier est inférieur & celui du triplet initial.

(g) Conclure rigoureusment que l’aire d’un triangle pythagoricien n’est jamais un carré parfait.
4

)

3. On démontre (enfin) le cas n = 4 du théoréme de Fermat. Supposons donc que z# + y* = 2z
avec x, y et z entiers strictement positifs.
a) Montrer qu’on peut supposer z et remiers entre eux, et x pair (on suppose désomais
q P pPp yp p pp
que c’est le cas).
b) Montrer qu’on peut trouver deux entiers a et b tels que 22 — y? = 8a* et 22 + y? = 2b%.
Y Y
(c) Montrer en exploitant la question 3 que la situation précédente est impossible, et conclure.

Partie II : Démonstration du théoréme dans le cas n = 3.
Cette deuxiéme démonstration est déja nettement plus technique que celle donnée pour n = 4.
Autrement dit, si vous avez souffert sur la partie I, abordez prudemment cette partie II...

On note dans cette partie Z[j] = {a+jb | (a,b) € Z?}, ot j désigne comme d’habitude le nombre

complexe e'3 . Cet ensemble est un sous-anneau de C dont les éléments inversibles sont les éléments



de module 1 (propriétés admises). On admet également que Z[j] est un anneau factoriel, c’est-a-
dire dans lequel tout élément peut se factoriser de fagon unique (a l'ordre des facteurs prés et & un
produit par un inversible prés) comme produit de nombres premiers. Ici, un nombre premier est un
nombre de la forme a + bj ne pouvant pas se factoriser comme produit de deux éléments de Z[j]
de module strictement supérieur & 1. Par exemple, le nombre 3 n’est pas premier dans ce contexte,
puisqu’il peut s’écrire sous la forme (1 + 25)(—1 — 25), avec les deux facteurs qui ont pour module
/3. Toutes les autres définitions et théorémes (notamment Bézout et Gauss) vus dans Z s’adaptent
sans probléme dans Z[j].

1. On suppose que (p, g, s) sont trois entiers solutions de I’équation p? + 3¢% = s3, avec de plus
pAqg=1.
(a) Montrer que p et ¢ sont premiers entre eux dans Z[j].
(b) Montrer que p +iv/3q et p — i/3q sont des éléments de Z[j], et qu’ils sont premiers entre
eux (question loin d’étre facile, on pourra commencer par prouver que 2 et iv3 sont des
nombres premiers dans Z[j]).

(¢) En déduire qu'il existe deux entiers a et b tels que p 4 iv/3q = (a +iv/3b)%. Exprimer p et
q en fonction de a et b.

(d) Montrer que a et b sont premiers entre eux.
2. On suppose désormais que (z,, z) est une solution de I'’équation de Fermat 2 + y3 = 23.
(a) Montrer qu’on peut supposer x, y et z premiers entre eux deux a deux, et z et y impairs.
On supposera ces propriétés vérifiées par la suite.

(b) En posant p et g tels que x = p+ q et y = p — g (pourquoi sont-ils entiers 7), montrer que

o< ()

(c) Montrer que p? + 3¢? est impair, puis déterminer la parité de p et ¢ (on constatera en
passant que 2 est entier).

3. On suppose dans cette question que z n’est pas un multiple de 3.
(a) Montrer qu'il existe deux entiers r et s tels que g =73 et p? + 3¢% = 5.
(b) Montrer qu'’il existe deux entiers a et b tels que p = a(a + 3b)(a — 3b) et ¢ = 3b(a? — b?).
Vérifier que a et b sont premiers entre eux.
(c) Déterminer la parité des entiers a et b.

(d) Justifier que %, a + 3b et a — 3b sont des cubes, et en déduire une nouvelle solution de
I’équation de Fermat pour n = 3.

(e) Montrer que le produit des trois entiers constituant cette nouvelle solution est strictement
inférieur & celui des trois entiers de la solution initiale. Que peut-on en conclure ?

4. Traiter de fagon similaire a la question précédente le cas ou z est un multiple de 3 (on pourra

commencer par montrer, en conservant les notations des questions précédentes, que p est
divisible par 36).



