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Exercice 1

Il existe de fait plein de méthodes différentes qui marchent. En voici trois envisageables avec ce
qu’on a vu ensemble en cours :

6 5 5 22 21 21
e Méthode naive : on calcule A2=| 5 6 5 |, puis A2=| 21 22 21 |.On conjecture
5 5 6 21 21 22
an anp—1 ap—1
alors assez facilement que toutes les puissances sont de la forme A" = | a, — 1 an anp — 1
a,—1 a,—1 an

pour un certain réel a,. Démontrons-le par récurrence, ce qui nous donnera des informations
sur les termes de la suite (a,). C’est vrai pour n = 0 en posant ap = 1. Supposons la formule
4a, — 2 4a, —3 4a, —3
vraie au rang n, alors un calcul direct donne A"t = A"xA = | 4a, —3 4a, —2 4a, —3
4a, — 3 4a, —3 4a, —2
ce qui prouve la propriété au rang n + 1 en posant simplement a1 = 4a, — 2. La suite (ay)
est donc arithmético-géométrique. Son équation de point fixe x = 4x — 2 a pour solution

. e . 2 .
x = 3 On pose donc une suite auxiliaire définie par v, = a, — 3’ et on vérifie qu’elle est

2
géométrique : Upy1 = Gpy1 — 3 = 4a, — 2 — 3 = 4a,, —

. . . 2
géométrique de raison 4 et de premier terme vg = ag — = =

= 4v,,. La suite (v,) est donc

n

, donc v, = . On en déduit

4" 42 4" -1 4" -1

. Autrement dit, A" = -] 4" -1 4" 4+2 4" -1

3 4 —1 4" —1 4"+ 2
e Méthode classique vue en cours : on calcule 14 aussi A2 (cf ci-dessus), et on constate que A? =
5A — 413. On peut bien entendu construire ensuite des suites récurrentes pour exprimer A"
en fonction de A et de I3, mais rédigeons plutdt avec des divisions euclidiennes de polynomes.
On constate facilement que P = X? —5X +4 = (X —1)(X —4) (s'il y en a vraiment besoin,
on calcule un petit discriminant pour obtenir les racines). On effectue alors la division du
mondme X" par le polynéme P. Le reste en sera un polynéme de degré 1, on peut donc écrire
X" = PQn+ap, X +by,. En évaluant cette égalité pour les racines 1 et 4 (qui annulent P donc le

produit PQ,), on obtient les deux équations 1 = a,, + by, et 4" = 4a,, + b,,. En soustrayant ces
équations, on trouve 3a,, = 4" — 1, donc a,, = MT_:L, puis b, =1—-a, = # On a donc
X" = PQ, + 4n3_ 1X + 1- 4n. Il ne reste plus qu’a évaluer cette égalité pour la matrice
A (qui vérifie elle aussi P(A) = 0, donc P(A)Q,(A) = 0), ce qui donne tout simplement
A" = "= 1A + 1 _34n I3. On retrouve bien stir les mémes coefficients pour la matrice si on
I’écrit explicitement.

e pour les plus masochistes, on peut aussi exploiter le binéme de Newton : on écrit A = I3+ J,
ou J est la matrice dont tous les coefficients sont égaux & 1. On montre facilement par

2 4"+ 2
que,VnEN,anzvn+§: +




récurrence que, ¥n > 1, J® = 3"71J (calcul déja effectué en exercice). Les matrices I3 et
n

n

J commutent évidemment, donc A" = (J + I3)" = Z (Z) JRR = I+ Z <Z> 3kt
k=0 k=1

(la formule appliquée n’étant valable qu’a partir de k = 1, on est obligés d’isoler le premier

terme de la somme). Quitte a diviser par 3, on reconnait un quasi-binéme de Newton :

4" —1
Z 3k = (3+1)" = 4", donc Z 3% = 4™ —1. On en déduit finalement que A™ = I3+ J.
k=1
La encore, on reconstitue aisément tous les coefficients de la matrice A™.
Si on veut vérifier la validité des formules obtenues pour n = —1, on peut le faire & partir de la
matrice explicite, mais aussi en repartant de la formule obtenue par la deuxiéme méthode : pour
1 1
-1 4— 2 1 5
n = —1, on devrait avoir A~ = 4 3 A+ 3 A = _ZA + 113. Or, puisque A% = 54 — 413, on a
1
bien I3 = ZA(M?’ — A), ce qui donne la méme formule pour A~!. Si on tient & I'écrire explicitement,
3 -1 -1
A7l = 1 -1 3 —1 |, et on vérifie trés facilement que A~'A = I3. Méme méthode pour
-1 -1 3
5 91 1 1 -5 -5
n = —2,onobtient A2 = —— A+ I3 s0it A2 =-—-| —5 11 —5 |.II s’agit bien du carré
16 16 16
-5 =5 11
de la matrice A~! obtenue juste avant, donc la formule reste valable pour n = —1. Essayons enfin

de voir ce que ¢a donne avec n = 3 Les calculs sont simples puisque v4 = 2, et ca donne la formule

4 1 1
1 2 1
théorique As = §A—|— §I 3, donc As = 3 1 4 1 |, dontlecarré est bel et bien égal & la matrice
1 1 4

A. Bref, tout marche!

Exercice 2

1. 11 suffit d’é¢tudier la fonction z :  — zln(x) sur l'intervalle |1, +oo[. Cette fonction z est
évidemment dérivable sur tout cet intervalle, et vérifie 2/(z) = In(x) + 1 > 0, donc z est
strictement croissante sur |1, +oo[. Comme z(1) = 0 et liril z(x) = +o00, la fonction z est

T—r+00

donc bijective de |1, +o00] vers |0, +oo[. En particulier, '’équation z(x) = 1 a bien une unique
solution sur l'intervalle ]1, 4o00].

e®In(z) — < _ef(zln(z) — 1))
In?(x) B zln®(z)
Cette dérivée est du signe de xIn(x) — 1 = z(x) — 1. Elle est donc positive quand z(x) > 1,
soit sur lintervalle [a, +o00[. La fonction f est donc décroissante sur ]1,a] puis croissante
sur [, +oo[, et admet bien un minimum en «. Sans chercher & étre plus précis, on aura
«

e
5= ot
3. La question précédente montre que la fonction f est bijective de [ar, +00[ vers [, +oo[ (on
a lir_ir_l f(xz) = 400 par croissance comparée). Tout réel z > S admet donc un antécédent
T—>+00

2. La encore, la fonction est clairement dérivable, et f/'(z) =

= ae® puisque par définition aln(a) = 1.

par la fonction f sur [a,+oo[, qu’on peut décider de noter h(z). On a alors par définition
h(zx)
e
f(h(z)) =z, donc ———— = x, ce qui est équivalent a la relation donnée dans ’énoncé. On

(A (z))

fait exactement la méme chose pour définir la fonction g, mais en constatant cette fois que f
est bijective de |1, ] vers le méme intervalle [3, +oo[ (cette fois-ci, le calcul de la limite de f
en 1 est immeédiat).



4. C’est en fait trés simple : g et h sont les réciproques respectives de la restriction de f aux
intervalles |1,a] et [a, +oo[. D’aprés le théoréme de la bijection, elles ont donc la méme
monotonie que f sur ces intervalles, et des limites « inversées », soit :

x |1 «
—+00
g
B
T | « —+00
+o0
h
B

Exercice 3

1. Sion veut vraiment en faire une démonstration rigoureuse, on définit pour tout réel positif a la
fonction f, par f,(z) = v/a + x. Chacune des fonctions f, est croissante sur [0, +oo[ de fagon
évidente. Or, un = fay © fay -+ © fa, (0), et Uny1 = fag © fay - © fa, (\/@nt1). Toute composée
de fonctions croissantes étant croissante et \/a,11 étant positif, on en déduit directement que
Up41 = Uy, donc que la suite est croissante.

2. Si a, = 1, on a simplement u,+1 = /1 + u,. La fonction f; : x — /1 + x est croissante
sur [0, +oo[. Surtout, en posant g(x) = f(z) — z, la fonction g est dérivable et ¢'(z) =

1 1 - 1-2y1+=x
2WT+z 21+«

et 1i1;{1 g(x) = —oo, elle s’annule exactement une fois sur [0, +oo[. En fait, on peut calculer
T—r+00

explicitement la valeur d’annulation en résolvant I'équation v/1+ 2 = 2 = 1 4+ 2 = 22, qui

1+5
2

positive). On peut résumer les informations obtenues dans le tableau suivant :

< 0. La fonction g est donc décroissante, et comme g(0) = 1

a pour discriminant A = 1+ 4 = 5 et s’annule en 27 = (on ne garde que la valeur

x 0 T +00
+oo

/

fi x

1/

filz) —x + 0 -

L’intervalle [0, z1[ étant stable par la fonction fi, tous les termes de la suite (u,) appar-
tiennent & cet intervalle (récurrence triviale, sachant que ug = 1). La suite est donc majorée
par x1 et croissante, donc convergente. Sa limite est un point fixe de f; qui n’en a qu'un seul,

, 1++5
donc lim wu, =z = )
n——4o0 2

3. Regardons ce qui se passe pour les premiers termes de la suite : ag = 3% donc ug = y/ag = 3;
a; = 3* =81, donc u; = V9+ 81 = V18 = 3v2; as = 3%, donc us = v/9+ 81 +81 =
VI+9v2 = 31+ 2. Si on nest pas complétement endormi, on constate que les va-

leurs obtenues sont exactement triples de celles correspondant a la suite (u,) de la question



précédente (avec une suite constante égale a 1, on a bien ug = 1, u1 = VI+1 = /2,
uy = /T Fu; = V142 ete). Si on note plutdt v, les termes de la suite correspondant a
la suite (ay) constante égale a 1, on prouve par récurrence que u, = 3v, pour tout entier n.
On vient de constater que c’était vrai pour les premiéres valeurs de n, et si on le suppose vrai
pour un certain entier n, alors tn41 = fa, © fay ©* 0 fa, (\/@nt1) = fay © fag 00 fa, (3%") =
3fa; 00 fa,(1) = 3vp41 (on a un empilement de n — 1 racines carrées qui transforment le
32" en simple facteur 3). On en déduit évidemment que notre nouvelle suite (u,) converge
3+3v5

—

. C’est évident en exploitant ’écriture sous forme de composées de fonctions croissantes donnée
a la premiére question (et le fait que, si a,, < by, fo, () < fp, () pour tout réel positif x).
Méme pas vraiment de récurrence. Si a, = n, on a a, < 32" pour tout entier naturel n
(I'inégalité est tellement large que je me refuse & en faire une démonstration rigoureuse).
La suite correspondant & a,, = n sera donc croissante et majorée par la limite obtenue & la
question précédente, elle converge donc. Pour a, = n! et a, = n™, c’est en fait exactement
pareil. Il faudrait évidemment démontrer rigoureusement qu’on a toujours 32" s pn (lui-
méme est plus grand que n!), ce qui sera au moins vrai a partir d’un certain rang (par exemple
en appliquant une croissante comparée a In(32""') = 271 In(3), et a In(n™) = nln(n)). Clest
suffisant pour conclure exactement de la méme fagon.

vers 3x1 =

1
. ’inégalité demandée est en fait évidente : /a, > aj (c’est méme une égalité dans ce cas,

1
bien entendu), puis y/an—1 + an = /0 + /a, = an, et ainsi de suite. En fait, par croissance
des fonctions f,, on a u, = foo foo---o folan) = \/ Ay, = 2"“ . Il suffit donc de

1
choisir par exemple une suite (a,) pour laquelle on a aj" G

qui va diverger vers 4+o00. C’est toujours possible, en posant a, = n
valeurs particuliérement énormes!).

= n pour obtenir une suite (uy,)
2n+1 .
(ce qui donne des



