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Exercice 1

Il existe de fait plein de méthodes différentes qui marchent. En voici trois envisageables avec ce
qu’on a vu ensemble en cours :

• Méthode naïve : on calcule A2 =

 6 5 5
5 6 5
5 5 6

, puis A3 =

 22 21 21
21 22 21
21 21 22

. On conjecture

alors assez facilement que toutes les puissances sont de la forme An =

 an an − 1 an − 1
an − 1 an an − 1
an − 1 an − 1 an

,

pour un certain réel an. Démontrons-le par récurrence, ce qui nous donnera des informations
sur les termes de la suite (an). C’est vrai pour n = 0 en posant a0 = 1. Supposons la formule

vraie au rang n, alors un calcul direct donne An+1 = An×A =

 4an − 2 4an − 3 4an − 3
4an − 3 4an − 2 4an − 3
4an − 3 4an − 3 4an − 2

,

ce qui prouve la propriété au rang n+ 1 en posant simplement an+1 = 4an − 2. La suite (an)
est donc arithmético-géométrique. Son équation de point fixe x = 4x − 2 a pour solution

x =
2

3
. On pose donc une suite auxiliaire définie par vn = an − 2

3
, et on vérifie qu’elle est

géométrique : vn+1 = an+1 − 2

3
= 4an − 2 − 2

3
= 4an − 8

3
= 4vn. La suite (vn) est donc

géométrique de raison 4 et de premier terme v0 = a0 −
2

3
=

1

3
, donc vn =

×4n

3
. On en déduit

que, ∀n ∈ N, an = vn +
2

3
=

4n + 2

3
. Autrement dit, An =

1

3

 4n + 2 4n − 1 4n − 1
4n − 1 4n + 2 4n − 1
4n − 1 4n − 1 4n + 2

.

• Méthode classique vue en cours : on calcule là aussi A2 (cf ci-dessus), et on constate que A2 =
5A − 4I3. On peut bien entendu construire ensuite des suites récurrentes pour exprimer An

en fonction de A et de I3, mais rédigeons plutôt avec des divisions euclidiennes de polynômes.
On constate facilement que P = X2 − 5X +4 = (X − 1)(X − 4) (s’il y en a vraiment besoin,
on calcule un petit discriminant pour obtenir les racines). On effectue alors la division du
monôme Xn par le polynôme P . Le reste en sera un polynôme de degré 1, on peut donc écrire
Xn = PQn+anX+bn. En évaluant cette égalité pour les racines 1 et 4 (qui annulent P donc le
produit PQn), on obtient les deux équations 1 = an+ bn et 4n = 4an+ bn. En soustrayant ces

équations, on trouve 3an = 4n − 1, donc an =
4n − 1

3
, puis bn = 1− an =

4− 4n

3
. On a donc

Xn = PQn +
4n − 1

3
X +

4− 4n

3
. Il ne reste plus qu’à évaluer cette égalité pour la matrice

A (qui vérifie elle aussi P (A) = 0, donc P (A)Qn(A) = 0), ce qui donne tout simplement

An =
4n − 1

3
A+

4− 4n

3
I3. On retrouve bien sûr les mêmes coefficients pour la matrice si on

l’écrit explicitement.
• pour les plus masochistes, on peut aussi exploiter le binôme de Newton : on écrit A = I3+ J ,

où J est la matrice dont tous les coefficients sont égaux à 1. On montre facilement par
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récurrence que, ∀n ⩾ 1, Jn = 3n−1J (calcul déjà effectué en exercice). Les matrices I3 et

J commutent évidemment, donc An = (J + I3)
n =

n∑
k=0

(
n

k

)
JkIn−k

3 = I3 +

n∑
k=1

(
n

k

)
3k−1J

(la formule appliquée n’étant valable qu’à partir de k = 1, on est obligés d’isoler le premier
terme de la somme). Quitte à diviser par 3, on reconnaît un quasi-binôme de Newton :
n∑

k=0

3k = (3+1)n = 4n, donc
n∑

k=1

3k = 4n−1. On en déduit finalement que An = I3+
4n − 1

3
J .

Là encore, on reconstitue aisément tous les coefficients de la matrice An.

Si on veut vérifier la validité des formules obtenues pour n = −1, on peut le faire à partir de la
matrice explicite, mais aussi en repartant de la formule obtenue par la deuxième méthode : pour

n = −1, on devrait avoir A−1 =
1
4 − 1

3
A+

4− 1
4

3
I3 = −1

4
A+

5

4
I3. Or, puisque A2 = 5A− 4I3, on a

bien I3 =
1

4
A(5I3 −A), ce qui donne la même formule pour A−1. Si on tient à l’écrire explicitement,

A−1 =
1

4

 3 −1 −1
−1 3 −1
−1 −1 3

, et on vérifie très facilement que A−1A = I3. Même méthode pour

n = −2, on obtient A−2 = − 5

16
A+

21

16
I3, soit A−2 =

1

16

 11 −5 −5
−5 11 −5
−5 −5 11

. Il s’agit bien du carré

de la matrice A−1 obtenue juste avant, donc la formule reste valable pour n = −1. Essayons enfin

de voir ce que ça donne avec n =
1

2
. Les calculs sont simples puisque

√
4 = 2, et ça donne la formule

théorique A
1
2 =

1

3
A+

2

3
I3, donc A

1
2 =

1

3

 4 1 1
1 4 1
1 1 4

, dont le carré est bel et bien égal à la matrice

A. Bref, tout marche !

Exercice 2

1. Il suffit d’étudier la fonction z : x 7→ x ln(x) sur l’intervalle ]1,+∞[. Cette fonction z est
évidemment dérivable sur tout cet intervalle, et vérifie z′(x) = ln(x) + 1 > 0, donc z est
strictement croissante sur ]1,+∞[. Comme z(1) = 0 et lim

x→+∞
z(x) = +∞, la fonction z est

donc bijective de ]1,+∞[ vers ]0,+∞[. En particulier, l’équation z(x) = 1 a bien une unique
solution sur l’intervalle ]1,+∞[.

2. Là encore, la fonction est clairement dérivable, et f ′(x) =
ex ln(x)− ex

x

ln2(x)
=

ex(x ln(x)− 1))

x ln2(x)
.

Cette dérivée est du signe de x ln(x) − 1 = z(x) − 1. Elle est donc positive quand z(x) ⩾ 1,
soit sur l’intervalle [α,+∞[. La fonction f est donc décroissante sur ]1, α] puis croissante
sur [α,+∞[, et admet bien un minimum en α. Sans chercher à être plus précis, on aura

β =
eα

ln(α)
= αeα puisque par définition α ln(α) = 1.

3. La question précédente montre que la fonction f est bijective de [α,+∞[ vers [β,+∞[ (on
a lim

x→+∞
f(x) = +∞ par croissance comparée). Tout réel x ⩾ β admet donc un antécédent

par la fonction f sur [α,+∞[, qu’on peut décider de noter h(x). On a alors par définition

f(h(x)) = x, donc
eh(x)

ln(h(x))
= x, ce qui est équivalent à la relation donnée dans l’énoncé. On

fait exactement la même chose pour définir la fonction g, mais en constatant cette fois que f
est bijective de ]1, α] vers le même intervalle [β,+∞[ (cette fois-ci, le calcul de la limite de f
en 1 est immédiat).
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4. C’est en fait très simple : g et h sont les réciproques respectives de la restriction de f aux
intervalles ]1, α] et [α,+∞[. D’après le théorème de la bijection, elles ont donc la même
monotonie que f sur ces intervalles, et des limites « inversées », soit :

x 1 α

g

+∞
@

@
@R
β

x α +∞

h

β

��
�

�

+∞

Exercice 3

1. Si on veut vraiment en faire une démonstration rigoureuse, on définit pour tout réel positif a la
fonction fa par fa(x) =

√
a+ x. Chacune des fonctions fa est croissante sur [0,+∞[ de façon

évidente. Or, un = fa0 ◦ fa1 · · · ◦ fan(0), et un+1 = fa0 ◦ fa1 · · · ◦ fan(
√
an+1). Toute composée

de fonctions croissantes étant croissante et √an+1 étant positif, on en déduit directement que
un+1 ⩾ un, donc que la suite est croissante.

2. Si an = 1, on a simplement un+1 =
√
1 + un. La fonction f1 : x 7→

√
1 + x est croissante

sur [0,+∞[. Surtout, en posant g(x) = f(x) − x, la fonction g est dérivable et g′(x) =
1

2
√
1 + x

− 1 =
1− 2

√
1 + x

2
√
1 + x

< 0. La fonction g est donc décroissante, et comme g(0) = 1

et lim
x→+∞

g(x) = −∞, elle s’annule exactement une fois sur [0,+∞[. En fait, on peut calculer

explicitement la valeur d’annulation en résolvant l’équation
√
1 + x = x ⇒ 1 + x = x2, qui

a pour discriminant ∆ = 1 + 4 = 5 et s’annule en x1 =
1 +

√
5

2
(on ne garde que la valeur

positive). On peut résumer les informations obtenues dans le tableau suivant :

x 0 x1 +∞

f1

1

�*�
�

x1

�*��

+∞

f1(x)− x + 0 −

L’intervalle [0, x1[ étant stable par la fonction f1, tous les termes de la suite (un) appar-
tiennent à cet intervalle (récurrence triviale, sachant que u0 = 1). La suite est donc majorée
par x1 et croissante, donc convergente. Sa limite est un point fixe de f1 qui n’en a qu’un seul,

donc lim
n→+∞

un = x1 =
1 +

√
5

2
.

3. Regardons ce qui se passe pour les premiers termes de la suite : a0 = 32 donc u0 =
√
a0 = 3 ;

a1 = 34 = 81, donc u1 =
√

9 +
√
81 =

√
18 = 3

√
2 ; a2 = 38, donc u2 =

√
9 +

√
81 + 81 =√

9 + 9
√
2 = 3

√
1 +

√
2. Si on n’est pas complètement endormi, on constate que les va-

leurs obtenues sont exactement triples de celles correspondant à la suite (un) de la question
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précédente (avec une suite constante égale à 1, on a bien u0 = 1, u1 =
√
1 + 1 =

√
2,

u2 =
√
1 + u1 =

√
1 +

√
2 etc). Si on note plutôt vn les termes de la suite correspondant à

la suite (an) constante égale à 1, on prouve par récurrence que un = 3vn pour tout entier n.
On vient de constater que c’était vrai pour les premières valeurs de n, et si on le suppose vrai
pour un certain entier n, alors un+1 = fa1 ◦ fa2 ◦ · · · ◦ fan(

√
an+1) = fa1 ◦ fa2 ◦ · · · ◦ fan(32

n
) =

3fa1 ◦ · · · ◦ fan(1) = 3vn+1 (on a un empilement de n− 1 racines carrées qui transforment le
32

n en simple facteur 3). On en déduit évidemment que notre nouvelle suite (un) converge

vers 3x1 =
3 + 3

√
5

2
.

4. C’est évident en exploitant l’écriture sous forme de composées de fonctions croissantes donnée
à la première question (et le fait que, si an ⩽ bn, fan(x) ⩽ fbn(x) pour tout réel positif x).
Même pas vraiment de récurrence. Si an = n, on a an ⩽ 32

n+1 pour tout entier naturel n
(l’inégalité est tellement large que je me refuse à en faire une démonstration rigoureuse).
La suite correspondant à an = n sera donc croissante et majorée par la limite obtenue à la
question précédente, elle converge donc. Pour an = n! et an = nn, c’est en fait exactement
pareil. Il faudrait évidemment démontrer rigoureusement qu’on a toujours 32

n+1
> nn (lui-

même est plus grand que n!), ce qui sera au moins vrai à partir d’un certain rang (par exemple
en appliquant une croissante comparée à ln(32

n+1
) = 2n+1 ln(3), et à ln(nn) = n ln(n)). C’est

suffisant pour conclure exactement de la même façon.

5. L’inégalité demandée est en fait évidente :
√
an ⩾ a

1
2
n (c’est même une égalité dans ce cas,

bien entendu), puis
√
an−1 + an ⩾

√
0 +

√
an ⩾ a

1
4
n , et ainsi de suite. En fait, par croissance

des fonctions fa, on a un ⩾ f0 ◦ f0 ◦ · · · ◦ f0(an) =
√√

. . .
√
an = a

1
2n+1
n . Il suffit donc de

choisir par exemple une suite (an) pour laquelle on a a
1

2n+1
n = n pour obtenir une suite (un)

qui va diverger vers +∞. C’est toujours possible, en posant an = n2n+1 (ce qui donne des
valeurs particulièrement énormes !).
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