Devoir Maison nº 3

MPSI Lycée Camille Jullian

pour le 4 novembre 2025

Problème

Le but de ce problème est de proposer une construction rigoureuse de l'ensemble $\mathbb R$ et de démontrer quelques propriétés des nombres réels ainsi obtenus. On suppose dans ce problème que les ensembles $\mathbb Z$ et $\mathbb Q$ sont déjà construits et munis de leur ordre naturel, avec les propriétés usuelles de cet ordre. En particulier, on pourra utiliser si besoin le résultat suivant : tout sous-ensemble non vide de $\mathbb N$ admet un minimum. On pourra aussi utiliser la caractérisation de la borne supérieure suivante, qui est une adaptation de celle vue en cours : si R est une relation d'ordre totale sur un ensemble E, et $A \subset E$, alors M est la borne supérieure de l'ensemble A si et seulement si M majore A et si $\forall x \in E, xRM \Rightarrow \exists a \in A, xRa$ et aRM. Il est par contre hors de question d'utiliser le moindre résultat faisant intervenir les nombres réels « usuels » puisqu'ils sont censés ne pas encore exister au début de ce problème.

On définit justement une section de l'ensemble $\mathbb Q$ comme un sous-ensemble $S\subset \mathbb Q$ vérifiant les propriétés suivantes :

- $S \neq \emptyset$ et $S \neq \mathbb{Q}$
- S n'a pas de maximum : $\forall x \in S, \exists y \in S, x < y$
- $\forall (x,y) \in \mathbb{Q}^2$, si $y \leqslant x$ et $x \in S$, alors $y \in S$ (autrement dit, S contient tous les élements inférieurs à chacun de ses éléments)

Par **définition**, un nombre réel est une section de \mathbb{Q} , et on note \mathbb{R} l'ensemble des nombres réels (un nombre réel est donc, aussi bizarre que ça puisse vous sembler, un sous-ensemble de \mathbb{Q}).

I. Propriétés générales de \mathbb{R} .

- 1. Montrer que, si $x \in \mathbb{Q}$, l'ensemble $S_x = \{y \in \mathbb{Q} \mid y < x\}$ est une section de \mathbb{Q} .
- 2. Soit S une section de \mathbb{Q} . Montrer que tout rationnel n'appartenant pas à S est un majorant strict de S. Montrer par ailleurs que, $\forall \varepsilon \in \mathbb{Q}^{+*}, \exists x \in S, \exists y \notin S, y x < \varepsilon$.
- 3. Si S et S' sont deux sections de \mathbb{Q} , montrer que $S \subset S'$ ou $S' \subset S$.
- 4. Montrer que, si S_1, S_2, \ldots, S_n sont des sections de \mathbb{Q} , alors $S_1 \cup S_2 \cdots \cup S_n$ est aussi une section de \mathbb{Q} . Cette propriété reste-elle vraie pour une union infinie?
- 5. Montrer que l'application $i: x \mapsto S_x$ est une fonction injective et strictement croissante. Cette constatation permet d'identifier \mathbb{Q} à un sous-ensemble de \mathbb{R} en considérant que $S_x = x$ lorsque $x \in \mathbb{Q}$.
- 6. On définit une relation d'ordre \leq sur \mathbb{R} en posant $S \leq S' \Leftrightarrow S \subset S'$ (on rappelle si besoin que les réels sont par définition des sections de \mathbb{Q}). Montrer que \leq est une relation d'ordre totale sur \mathbb{R} prolongeant l'ordre naturel sur \mathbb{Q} (autrement dit, si x, y sont deux rationnels vérifiant $x \leq y$, alors avec les notations des questions précédentes $i(x) \leq i(y)$).
- 7. Montrer qu'un sous-ensemble non vide $A \subset \mathbb{R}$ qui est majoré admet une borne supérieure M, et que $M = \bigcup_{S \in A} S$.

- 8. Montrer que \mathbb{Q} est dense dans $\mathbb{R}: \forall (S, S') \in \mathbb{R}^2$, si S < S', alors $\exists z \in \mathbb{Q}, S < i(z) < S'$.
- 9. Montrer que \mathbb{R} est archimédien : $\forall S \in \mathbb{R}, \exists n \in \mathbb{N}, S \leq i(n)$.

II. Construction des opérations usuelles sur \mathbb{R} .

On souhaite désormais définir les opérations sur nos nombres réels, toujours définis comme des sections de \mathbb{Q} . On définit pour cela les objets suivants :

- la somme des sections S et S' est l'ensemble $S + S' = \{x + y \mid x \in S, y \in S'\}$.
- l'opposé d'une section S est définie par $-S = \{x \in \mathbb{Q} \mid -x \notin S\}$ (on admettra que, si S est en fait un nombre rationnel, autrement dit si S = i(x), avec $x \in \mathbb{Q}$, alors -S = i(-x)).
- on note 0 la section $i(0) = \{x \in \mathbb{Q} \mid x < 0\}.$
- la valeur absolue d'une section S est égale à S si $0 \le S$ (au sens défini dans la première partie), et à -S si $S \le 0$.
- on note enfin \mathbb{R}^{+*} l'ensemble des sections vérifiant 0 < S et \mathbb{R}^{-*} l'ensemble des sections vérifiant S < 0.
- 1. Expliquer pourquoi, si $x \in \mathbb{Q}$, -i(r) = i(-r).
- 2. Vérifier que -0=0 et que, pour une section S n'appartenant pas à $\mathbb{Q}, x \notin S \Leftrightarrow -x \in (-S)$.
- 3. Montrer que $S \in \mathbb{R}^{+*} \Leftrightarrow \exists x \in S, x > 0$.
- 4. Montrer que l'addition définie ci-dessus est une loi de composition interne commutative sur l'ensemble \mathbb{R} , ce qui signifie deux choses : $\forall (S, S') \in \mathbb{R}^2$, $S + S' \in \mathbb{R}$, et S + S' = S' + S.
- 5. Montrer que l'addition définie sur \mathbb{R} est un prolongement de l'addition naturelle sur \mathbb{Q} : $\forall (x,y) \in \mathbb{Q}^2, i(x) + i(y) = i(x+y).$
- 6. Montrer que l'addition définie sur \mathbb{R} est commutative, et que 0 en est un élément neutre : $\forall S \in \mathbb{R}, \ 0+S=S+0=S.$
- 7. Montrer que l'opposé d'un réel (donc d'une section) est un réel, et que S+(-S)=0.
- 8. Montrer que, $\forall S \in \mathbb{R}, -(-S) = S$.
- 9. En déduire que, $\forall S \in \mathbb{R}, |-S| = |S|$.
- 10. Si S et S' sont deux réels appartenant à \mathbb{R}^{+*} , on définit le **produit** de S et de S' par $SS' = \bigcup_{0 < x \in S, 0 < y \in S'} i(xy)$. On peut étendre cette définition à d'autres réels que ceux qui sont strictement positifs, mais on s'en dispensera pour ce devoir.

Montrer que ce produit est une loi de composition interne commutative sur \mathbb{R} .

- 11. Montrer que, $\forall (S, S') \in (\mathbb{R}^{+*})^2$, $SS' \in \mathbb{R}^{+*}$.
- 12. Montrer que le produit de réels prolonge le produit des nombres rationnels (même principe que pour l'addition plus haut : i(xy) = i(x)i(y) si x et y sont rationnels).
- 13. Montrer que i(1) est élément neutre pour le produit de réels.
- 14. On définit enfin l'**inverse** d'une section $S \in \mathbb{R}^{+*}$ par $S^{-1} = \bigcup_{x \in \mathbb{Q}, x > 0, S < i(x)} i\left(\frac{1}{x}\right)$. Montrer que, si $S \in \mathbb{R}^{+*}$, alors $S^{-1} \in \mathbb{R}^{+*}$.
- 15. Montrer que, si $S \in \mathbb{R}^{+*}$, $SS^{-1} = i(1)$ (ce qui revient à dire que S^{-1} est bien l'inverse de S).