Petites Mines 2008 : corrigé.

MPSI Lycée Camille Jullian

20 mai 2025

Problème 1

Partie A : étude de φ_1 .

- 1. La dérivation et le produit d'un polynôme par un polynôme fixe étant des applications linéaires, les applications $P\mapsto (X-a)(X-b)P'$ et $P\mapsto \left(X-\frac{a+b}{2}\right)P$ sont linéaires, et φ_1 également en tant que somme d'applications linéaires. En anticipant les questions suivantes, on va montrer que φ_1 est un endomorphisme en calculant explicitement l'image par l'application d'un polynôme quelconque de $\mathbb{R}_1[X]$. Si $P=\alpha X+\beta$, on a $P'=\alpha$, donc $\varphi_1(P)=\alpha(X-a)(X-b)-\left(X-\frac{a+b}{2}\right)(\alpha X+\beta)=\alpha X^2-\alpha(a+b)X+\alpha ab-\alpha X^2-\beta X+\frac{\alpha a+\alpha b}{2}X+\frac{\beta a+\beta b}{2}\in\mathbb{R}_1[X]$ puisque les termes en X^2 se simplifient (pas besoin non plus de simplifier l'écriture pour le moment. L'application φ_1 est bien un endomorphisme de $\mathbb{R}_1[X]$.
- 2. En reprenant les calculs de la question précédente, $\varphi_1(1) = -X + \frac{a+b}{2}$, et $\varphi_1(X) = -(a+b)X + ab + \frac{a+b}{2}X = -\frac{a+b}{2}X + ab$. On en déduit la matrice demandée : $M_1 = \begin{pmatrix} \frac{a+b}{2} & ab \\ -1 & -\frac{a+b}{2} \end{pmatrix}$.
- 3. L'application est bijective si et seulement si le déterminant de la matrice M_1 est non nul, donc si $-\frac{(a+b)^2}{4} + ab \neq 0$ ou encore $(a+b)^2 \neq 4ab$. en passant tout du même côté et en développant, on trouve $a^2 2ab + b^2 \neq 0$, soit $(a-b)^2 \neq 0$, ce qui est vérifié si $a \neq b$. Il n'y a donc que lorsque a = b que l'application n'est pas bijective.
- 4. (a) Il s'agit d'une famille de deux vecteurs dans un espace vectoriel de dimension 2. Les vecteurs sont non proportionnels quand $a \neq b$, ils forment donc une base de $\mathbb{R}_1[X]$.
 - (b) Calculons: $\varphi_1(X-a) = (X-a)(X-b) \left(X \frac{a+b}{2}\right)(X-a) = (X-a)\left(X b X + \frac{a+b}{2}\right) = \frac{a-b}{2}(X-a)$. De même, on obtient $\varphi_2(X-b) = (X-a)(X-b) \left(X \frac{a+b}{2}\right)(X-b) = \frac{b-a}{2}(X-b)$. Les deux polynômes sont donc des vecteurs propres de l'application φ_1 , associés à des valeurs propres opposées. On peut alors écrire simplement $M = \frac{a-b}{2}\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
 - (c) Pour la matrice $P_{\mathcal{B},\mathcal{B}_1}$, il suffit d'écrire (en colonnes comme d'habitude) les coordonnées des vecteurs de \mathcal{B} dans la base canonique : $P_{\mathcal{B}_1,\mathcal{B}} = \begin{pmatrix} -a & -b \\ 1 & 1 \end{pmatrix}$. Cette matrice a pour

déterminant b-a, donc son inverse, qui correspond à la matrice de passage en sens inverse, est $P_{\mathcal{B},\mathcal{B}_1} = \frac{1}{b-a} \begin{pmatrix} 1 & b \\ -1 & -a \end{pmatrix}$. (d) Question de cours : $M = P_{\mathcal{B},\mathcal{B}_1} M_1 P_{\mathcal{B}_1,\mathcal{B}}$, ou dans l'autre sens $M_1 = P_{\mathcal{B}_1,\mathcal{B}} M P_{\mathcal{B},\mathcal{B}_1}$.

- (e) La matrice M étant diagonale, on a simplement $M^p = \left(\frac{a-b}{2}\right)^p \begin{pmatrix} 1 & 0 \\ 0 & (-1)^p \end{pmatrix}$ une récurrence triviale permet de prouver que $M_1^p = P_{\mathcal{B}_1,\mathcal{B}} M^p P_{\mathcal{B},\mathcal{B}_1}$ (les notations de l'énoncé sont suffisamment pénibles pour que je n'aie pas envie de l'écrire explicitement, mais c'est exactement la même récurrence que d'habitude dans ce genre de cas), donc $M_1^p = -\frac{(a-b)^{p-1}}{2^p} \left(\begin{array}{cc} -a & -b \\ 1 & 1 \end{array} \right) \left(\begin{array}{cc} 1 & 0 \\ 0 & (-1)^p \end{array} \right) \left(\begin{array}{cc} 1 & b \\ -1 & -a \end{array} \right)$ $= \frac{(a-b)^{p-1}}{2^p} \begin{pmatrix} a & (-1)^p b \\ -1 & (-1)^{p-1} \end{pmatrix} \begin{pmatrix} 1 & b \\ -1 & -a \end{pmatrix}$ $= \frac{(a-b)^{p-1}}{2^p} \begin{pmatrix} a+(-1)^{p-1}b & ab(1-(-1)^p) \\ (-1)^p-1 & (-1)^pa-b \end{pmatrix}. \text{ Vraiment passionnant.}$
- 5. (a) Par définition, $\Gamma = \text{Vect}(I_2, M_1, M_1^2, M_1^3)$, donc Γ est bien un sous-espace vectoriel de
 - (b) En prenant la formule explicite de M_1^p calculée plus haut (autant qu'elle serve à quelque chose), on a $M_1^2 = \frac{a-b}{4} \begin{pmatrix} a-b & 0 \\ 0 & a-b \end{pmatrix} = \frac{(a_b)^2}{4} I_2$, qui est effectivement un cas très particulier de combinaison linéaire de I_2 et de M_1 . On en déduit immédiatement $M_1^3 =$ $\frac{(a-b)^2}{4}M_1$, ce qui permet de conclure.
 - (c) Les matrices I_2 et M_1 forment donc une famille génératrice de Γ . Comme les deux matrices ne sont pas proportionnelles (la matrice M_1 n'étant même pas diagonale), elles forment aussi une famille libre, donc une base de Γ .
- 6. Si a=4 et b=2, on a $\frac{(a-b)^2}{4}=1$, donc $M_1^2=I_2$, ce qui suffit à prouver que $\varphi_1^2=id$, et donc que φ_1 est une symétrie. De plus, on sait déjà que la matrice de φ_1 sera diagonale dans la base $\mathcal{B} = (X - 4, X - 2)$, avec des coefficients diagonaux égaux à 1 et -1. Le ponôme X_4 est donc invariant par φ_1 , et le polynôme X-2 vérifie $\varphi_1(X-2)=-(X-2)$, ce qui suffit à affirmer que φ_1 est la symétrie par rapport à Vect(X-4) parallèlement à Vect(X-2).

Partie B : Quelques généralités sur φ_n .

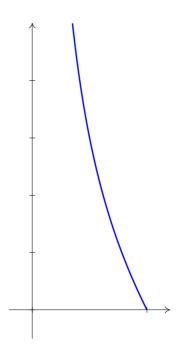
7. La linéarité de φ_n se démontre exactement de la même façon que celle de φ_1 évoquée en tout début d'énoncé (ce n'est pas le facteur n en plus qui va perturber la linéarité). Reste à prouver que, si P est un polynôme de degré inférieur ou égal à n, alors $\varphi_n(P) \in \mathbb{R}_n[X]$. Le polnyôme dérivé P' étant de degré (au plus) n-1, le produit (X-a)(X-b)P' a un degré majoré par n+1, ce qui est aussi le cas du terme $n\left(X-\frac{a+b}{2}\right)P$. Il suffit donc de prouver que le terme de degré n+1 de leur différence est nul. Notons pour cela a_n le coefficient de degré n du polynôme P_n , alors le polynôme P' a un coefficient de degré n-1 égal à na_n , et c'est également la valeur du coefficient de degré n+1 de (X-a)(X-b)P' (je ne parle volontairement pas de coefficient dominant car a_n a tout à fait le droit d'être nul). Or, le coefficient de degré n+1 de $n\left(X-\frac{a+b}{2}\right)P$ est clairement lui aussi égal à na_n , ce qui prouve que $\varphi_n(P)$ a un coefficient de degré n+1 qui est nul, et donc que φ_n est bien un

- endomorphisme (on pouvait aussi faire un calcul beaucoup plus bourrin de l'image complète de P).
- 8. (a) Le dénominateur de f se factorise sous la forme (x-a)(x-b) (ça doit être évident si on connait ses relations coefficients-racines), donc ne s'annule pas sur l'intervalle $]\alpha, +\infty[$ qui par définition de α ne contient ni a ni b. La fonction f est donc définie (et trivialement continue par théorèmes généraux) sur cet intervalle.
 - (b) On reconnaît bien sûr une forme $\frac{u'}{u}$, et comme le dénominateur u est positif sur l'intervalle $]\alpha, +\infty[$ (on est à l'extérieur des racines), on peut prendre $F: x \mapsto \ln(x^2 (a+b)x + ab)$.
 - (c) C'est une équation linéaire homogène du premier ordre, qu'on peut écrire sous la forme $y'-\frac{n}{2}f(x)y=0$. La fonction $\frac{n}{2}f$ admettant pour primitive $\frac{n}{2}F$, les solutions de (E) sont toutes les fonctions de la forme $y:x\mapsto Ke^{\frac{n}{2}F(x)}=K(x^2-(a+b)x+ab)^{\frac{n}{2}}$, avec $K\in\mathbb{R}$.
 - (d) L'intervalle I étant un ensemble infini, un polynôme est nul si et seulement si il s'annule sur I tout entier. En particulier, $P \in \ker(\varphi_{2p}) \Leftrightarrow \forall x \in I$, $P'(x) \frac{nx n\frac{a+b}{2}}{x^2 (a+b)x + ab} = 0$. Autrement dit, P doit être une solution de l'équation (E), donc $P(x) = K(x^2 (a+b)x + ab)^p$. On a bien des fonctions polynômiales (de degré n qui plus est), ce qui permet de conclure que $\ker(\varphi_{2p}) = \operatorname{Vect}((X^2 (a+b)X + ab)^p)$.
 - (e) Ici, le problème est qu'a priori les solutions de (E) ne sont pas des fonctions polynômiales. A priori seulement, car si a=b, on a en fait $(x^2-(a+b)x+ab)^{\frac{2p+1}{2}}=(x^2-2ax+a^2)^{\frac{n}{2}}=(x-a)^n$, donc on retrouve simplement dans ce cas $\ker(\varphi_{2p+1})=\operatorname{Vect}((X-a)^{2p+1})$. Par contre, si $a\neq b$, l'équation n'admet aucune solution polynômiale, ce qui prouve que $\ker(\varphi_{2p+1})=\{0\}$. On retrouve en fait ici le fait que l'application est bijective lorsque $a\neq b$, ce qui était déjà le cas lorsque n=1 (donc pour p=0).

Partie C : Intersection de courbes dans le cas où n=2.

- 9. On a donc désormais $\varphi_2(P) = (X a)^2 P' 2(X a)P$. On calcule donc facilement $\varphi_2(1) = -2(X a) = 2a 2X$, $\varphi_2(X) = (X a)^2 2X(X a) = -(X + a)(X a) = a^2 X^2$, et enfin $\varphi_2(X^2) = 2X(X a)^2 2X^2(X a) = 2X(X a) \times (-a) = -2aX^2 + 2a^2X$.
- 10. (a) On cherche donc à résoudre l'équation $2a-2x=-2ax^2+2a^2x$, soit $ax^2-(1+a^2)x+a=0$. Si on n'est pas observaut, on calcule le discriminant $\Delta=(1+a^2)^2-4a^2=1+2a^2+a^4-4a^2=1-2a^2+a^4=(a^2-1)^2$, et on en déduit la présence de deux racines $x_1=\frac{1+a^2+a^2-1}{2a}=a$ et $x_2=\frac{1+a^2-a^2+1}{2a}=\frac{1}{a}$ (on pouvait constater directement que a était racine évidente). Ces deux racines sont distinctes puisqu'on a supposé a>1, et f(a)=2a-2a=0, et $f\left(\frac{1}{a}\right)=2a-\frac{2}{a}$, ce qui donne bien les coordonnées annoncées pour les points d'intersection.
 - (b) En notant (x_a, y_a) les coordonnées du point B_a , on constate aisément que $y_a = -2x_a + \frac{2}{x_a}$. Tous les points appartiennent donc à la courbe d'équation $y = -2x + \frac{2}{x}$. Notons pour être précis qu'ils appartiennent même à la portion de cette courbe dont les abscisses appartiennent à l'intervalle]0,1[puisque l'hypothèse a > 1 implique $x_a = \frac{1}{a} \in]0,1[$.
 - (c) On arrive à **LA** question du sujet que vous ne pouviez pas traiter. Il s'agit en l'occurrence d'une hyperbole, ce qu'on pourrait constater simplement en traçant la courbe de la fonction $x\mapsto -2x+\frac{2}{x}$ sur $\mathbb R$ tout entier.

(d) Puisqu'on ne veut tracer que sur]0,1[, on pose $h(x)=-2x+\frac{2}{x}$, on dérive pour obtenir $h'(x)=-2-\frac{2}{x^2}<0$, et on calcule brillamment $\lim_{x\to 0}h(x)=+\infty$ et h(1)=0, ce qui donne l'allure de courbe suivante :

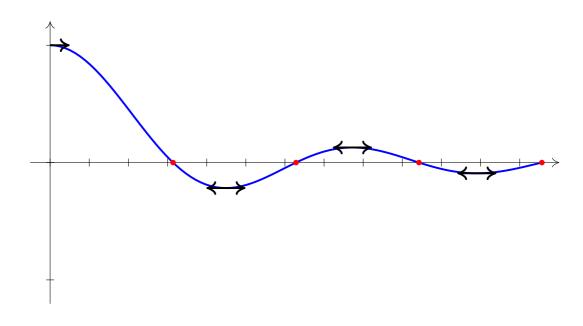


Problème 2

Partie A : Études de deux fonctions.

- 1. (a) Leur dénominateur ne s'annulant qu'en 0, les fonctions F et G sont trivialement continues sur $]0, +\infty[$.
 - (b) En exploitant les DL classiques des fonctions trigonométriques, on a $F(x) = \frac{x + o(x^2)}{x} = 1 + o(x)$, donc $\lim_{x \to 0} F(x) = 1$, et $G(x) = \frac{1 1 + \frac{x^2}{2} + o(x^3)}{x} \sim \frac{x}{2}$ donc $\lim_{x \to 0} G(x) = 0$. Les deux fonctions sont donc prolongeables, en posant F(0) = 1 et G(0) = 0.
- 2. (a) La dérivabilité est triviale par théorèmes généraux. De plus, $F'(x) = \frac{x\cos(x) \sin(x)}{x^2}$ et $G'(x) = \frac{x(1+\sin(x)) 1 + \cos(x)}{x^2}$ (rien de sympathique à simplifier là-dedans).
 - (b) Les calculs effectués plus haut montrent que les deux fonctions admettent un DL à l'ordre 1 en 0, donc qu'elles y sont dérivables (une fois prolongées par continuité). Plus précisément, puisque F(x) = 1 + o(x), on aura F'(0) = 0, et puisque $G(x) = \frac{x}{2} + o(x)$, on aura $G'(0) = \frac{1}{2}$.
- 3. (a) Les réels a_k sont les valeurs d'annulation du sinus, donc $a_k = k\pi$ (qui est bien une suite strictement croissante si on fait l'effort particuliètement épuisant de les prendre dans l'ordre!).
 - (b) Encore une question débile, on doit cette fois-ci résoudre $\cos(x) = 1$, donc $b_k = 2k\pi$, et $b_k = a_{2k}$ (donc (b_k) est une sous-suite de (a_k) , si on veut vraiment essayer de dire quelque chose de vaguement intelligent).

- 4. (a) C'est une application directe du théorème de Rolle : f prend la même valeur en a_k et en a_{k+1} , elle est dérivable sur l'intervalle $]a_k, a_{k+1}[]$, donc f' s'annule sur cet intervalle ouvert.
 - (b) Oui, c'est vrai (devant une question aussi triviale, on est obligés de s'incliner, on n'arrive plus à justifier quoi que ce soit).
 - (c) On dérive : $h'(x) = \cos(x) x\sin(x) \cos(x) = -x\sin(x)$ qui est de signe constant sur $]a_k, a_{k+1}[$ puisque le sinus y est de signe constant (et ne s'annule pas), ce qui prouve la stricte monotonie de h sur l'intervalle (elle est strictement croissante si k est impair et strictement décroissante si k est pair, si on veut être précis).
 - (d) La fonction h est strictement monotone donc injective sur $]a, a_{k+1}[$, elle ne peut donc pas s'y annuler plus d'une fois (et donc F' non plus).
 - (e) On calcule $h\left(a_k+\frac{\pi}{2}\right)=-\sin\left(k\pi+\frac{\pi}{2}\right)$ (le cosinus s'annule), qui vaut 1 lorsque k est impair et -1 lorsque k est pair. Dans le cas où k est pair, la fonction k est donc strictement décroissante sur l'intervalle a_k, a_{k+1} et prend une valeur négative au milieu de l'intervalle, elle ne peut donc pas s'annuler entre $a_k+\frac{\pi}{2}$ et a_{k+1} . Puisqu'on sait qu'elle s'annule exactement une fois sur a_k, a_{k+1} , on a donc nécessairement $a_k \in a_k, a_k+\frac{\pi}{2}$. Le raisonnement est identique pour a_k, a_{k+1} , avec une fonction strictement croissante et une valeur positive en milieu d'intervalle.
 - (f) On sait que $x_k > a_k = k\pi$, ce qui suffit évidemment à affirmer que $\lim_{k \to +\infty} x_k = +\infty$. De plus, $k\pi < x_k k\pi + \frac{\pi}{2}$, donc $1 < \frac{x_k}{k\pi} < 1 + \frac{1}{2k}$. Un petit coup de théorème des gendarmes et on conclut : $x_k \sim k\pi$.
- 5. On connaît les valeurs d'annulation et la position approximative des extrêma de la courbe (abscisse x_k). Il manque le fait que les ordonnées de ces extrêma sont décroissantes (en valeur absolue) pour faire une courbe raisonnable. Sans même le prouver rigoureusement, on doit savoir que $x\mapsto \frac{\sin(x)}{x}$ va donner une courbe sinusoïdale amortie ressemblant à ceci :



Partie B : Deux fonctions définies par des intégrales.

- 6. Les fonctions à intégrer étant continues sur le segment d'intégration, c'est trivial.
- 7. La parité du cosinus et l'imparité du sinus ont pour conséquence immédiate la parité de f et l'imparité de g (ici, c'est x qu'on fait changer de signe pour étudier la parité, il n'y a donc aucune difficulté).
- 8. (a) Par « linéarité complexe » (les propriétés sont les mêmes que celles des intégrales réelles), on peut écrire $I_f(x) + iJ_f(x) = \int_0^1 f(t)\cos(xt) + if(t)\sin(xt) dt = \int_0^1 f(t)e^{ixt} dt$. On fait alors une IPP en posant u(t) = f(t), donc u'(t) = f'(t) (la fonction f étant supposée de classe C^1 , on a le droit), et $v'(t) = e^{ixt}$ qui s'intègre comme n'importe quelle exponentielle en $v(t) = \frac{1}{ix}e^{ixt}$. On obtient alors $I_f(x) + iJ_f(x) = \left[\frac{f(t)e^{ixt}}{ix}\right]_0^1 \int_0^1 \frac{f'(t)e^{ixt}}{ix} dt = \frac{f(1)e^{ix} f(0)}{ix} \frac{1}{ix}\int_0^1 f'(t)e^{ixt} dt$ (pour les plus étourdis d'entre vous, ne pas oublier que c'est la variable t qu'on remplace par 0 et 1 dans le crochet).
 - (b) Ces fonctions sont continues sur un segment, donc bornées (et atteignent leur bornes), c'est le théorème du maximum.
 - (c) Par majoration brutale à coups d'inégalités triangulaires, $|I_f(x)+iJ_f(x)| \leq \frac{|f(1)|+|f(0)|}{x} + \frac{1}{x} \int_0^1 |f'(t)| dt \leq \frac{2M+M'}{x}$. On peut donc poser A = 2M+M' pour avoir la majoration souhaitée.
 - (d) Un théorème des gendarmes évident donne $\lim_{x\to +\infty} I_f(x) + iJ_f(x) = 0$. On en déduit que $\lim_{x\to +\infty} I_f(x) = \lim_{x\to +\infty} J_f(x) = 0$ (une fonction complexe a une limite nulle si et seulement ses partie réelle et imaginaire ont une limite nulle).
 - (e) La parité des fonctions donne immédiatement des limites nulles également du côté de $-\infty$.
- 9. (a) Ah, une question de cours sur les formules de transformation somme-produit, quelle bonne idée : $\cos(p) \cos(q) = -2\sin\left(\frac{p+q}{2}\right)\sin\left(\frac{p-q}{2}\right)$. Si on veut la redémontrer rapidement, on écrit $\cos(p) \cos(q) = \frac{1}{2}(e^{ip} + e^{-ip} e^{iq} e^{-iq}) = \frac{1}{2}(e^{i\frac{p+q}{2}}(e^{i\frac{p-q}{2}} e^{i\frac{q-p}{2}}) e^{-i\frac{p+q}{2}}(e^{i\frac{p-q}{2}} e^{i\frac{q-p}{2}}))$ et on reconnaît des sinus via les formules d'Euler).
 - (b) La fonction sinus est dérivable sur \mathbb{R} et sa dérivée est majorée en valeur absolue par 1. En appliquant l'IAF entre 0 et u (peu importe le signe de u puisqu'on va travailler en valeur absolue), on en déduit donc que $|\sin(u) \sin(0)| \le |u 0|$, soit $|\sin(u)| \le |u|$.
 - (c) Un calcul brutal exploitant les questions précédentes et l'inégalité triangulaire (version intégrales) : $|I_f(x) I_f(y)| = \left| \int_0^1 f(t) \cos(xt) \ dt \int_0^1 f(t) \cos(yt) \ dt \right| \le \int_0^1 |f(t)| |\cos(xt) \cos(yt)| \ dt \le 2 \int_0^1 |f(t)| \left| \sin\left(\frac{(x+y)t}{2}\right) \right| \left| \sin\left(\frac{(x-y)t}{2}\right) \right| \ dt$. On majore subtilement le premier sinus par 1, et le deuxième (en exploitant la question b) par $\frac{1}{2}|(x-y)t|$ pour obtenir $|I_f(x) I_f(y)| \le |x-y| \int_0^1 t|f(t)| \ dt$, comme demandé.
 - (d) En notant A la constante $\int_0^1 t|f(t)|\ dt$ (c'est une intégrale sur un segment d'une fonction continue, qui ne dépend pas du tout de x), on a donc $|I_f(x)-I_f(y)|\leqslant A|x-y|$. La fonction I_f est donc A-Lipschitzienne, et en particulier continue.

10. Il faut effectivement choisir très judicieusement la fonction f. Attention, c'est une fonction compliquée : on va poser f(x)=1. On a alors $I_f(x)=\int_0^1\cos(xt)\,dt=\left[\frac{\sin(xt)}{x}\right]_0^1=\frac{\sin(x)}{x}=F(x)$, et $J_f(x)=\int_0^1\sin(xt)\,dt=\left[-\frac{\cos(xt)}{x}\right]_0^1=\frac{1-\cos(x)}{x}=G(x)$. Une conclusion à la hauteur de ce problème particulièrement difficile.