Feuille d'exercices n° 22 : Fractions rationnelles.

MPSI Lycée Camille Jullian

10 mai 2023

Exercice 1 (**)

Calculer la décomposition en éléments simples dans $\mathbb{C}(X)$ des fractions suivantes :

$$\bullet \quad \frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$

$$\frac{3X-1}{X^2(X+1)^2} \quad \bullet \quad$$

$$\frac{1}{X^2 + X + 1}$$

•
$$\frac{X^2 + 2X + 5}{X^2 - 3X + 2}$$
 • $\frac{3X - 1}{X^2(X + 1)^2}$ • $\frac{1}{X^2 + X + 1}$
• $\frac{X^2 + 1}{(X - 1)(X - 2)(X - 3)}$ • $\frac{2}{X(X - 1)^2}$ • $\frac{3}{(X^3 - 1)^2}$

$$\frac{2}{X(X-1)^2}$$

$$\bullet \quad \frac{3}{(X^3-1)^2}$$

Exercice 2 (*)

- 1. Montrer que $F = \frac{1}{X}$ n'a pas de primitive dans $\mathbb{C}(X)$ (une primitive étant bien sûr définie comme une fraction rationnelle ayant pour dérivée la fonction étudiée).
- 2. Montrer qu'il n'existe pas de fraction rationnelle F telle que $F^2 = X$.
- 3. Déterminer toutes les fractions rationnelles F vérifiant $F(X+1) F(X) = \frac{X+3}{X(X-1)(X+1)}$.

Exercice 3 (** à ***)

Calculer la décomposition en éléments simples dans $\mathbb{R}(X)$ des fractions rationnelles suivantes :

•
$$F_1 = \frac{X^3 - 3X^2 + X - 4}{Y - 1}$$

$$\bullet \ F_2 = \frac{X}{X^4 + 1}$$

•
$$F_3 = \frac{X^5 - X^4 + 1}{X^3 - X}$$

•
$$F_4 = \frac{X^7 + 3}{(X^2 + X + 2)^2}$$

•
$$F_5 = \frac{X^5 + X + 1}{X^6 - 1}$$

•
$$F_6 = \frac{2X^4 + X^3 + 3X^2 - 6X + 1}{2X^3 - X^2}$$

•
$$F_7 = \frac{X^6}{(X^3 - 1)^2}$$

•
$$F_8 = \frac{X^2 - 3}{(X^2 + 1)(X^2 + 4)}$$

•
$$F_9 = \frac{4X^6 - 2X^5 + 11X^4 - X^3 + 11X^2 + 2X + 3}{X(X^2 + 1)^3}$$

Calculer la décomposition en éléments simples dans
$$\mathbb{R}(X)$$
 des fractions rationnelles suivantes :
• $F_1 = \frac{X^3 - 3X^2 + X - 4}{X - 1}$
• $F_2 = \frac{X}{X^4 + 1}$
• $F_3 = \frac{X^5 - X^4 + 1}{X^3 - X}$
• $F_4 = \frac{X^7 + 3}{(X^2 + X + 2)^2}$
• $F_5 = \frac{X^5 + X + 1}{X^6 - 1}$
• $F_6 = \frac{2X^4 + X^3 + 3X^2 - 6X + 1}{2X^3 - X^2}$
• $F_7 = \frac{X^6}{(X^3 - 1)^2}$
• $F_8 = \frac{X^2 - 3}{(X^2 + 1)(X^2 + 4)}$
• $F_9 = \frac{4X^6 - 2X^5 + 11X^4 - X^3 + 11X^2 + 2X + 3}{X(X^2 + 1)^3}$
• $F_{10} = \frac{X^5 + X^4 + 1}{X(X - 1)^4}$ (on pourra poser en cours de route $X = Y + 1$ pour simplifier le calcul)

1

Exercice 4 (**)

Déterminer un supplémentaire de $\mathbb{K}[X]$ dans $\mathbb{K}(X)$.

Exercice 5 (**)

Calculer dans $\mathbb{C}(X)$ les décompositions en éléments simples des fractions suivantes (n est toujours un

$$\bullet \ F_1 = \frac{1}{X^n - 1}$$

entier naturel
$$\geqslant 1$$
):

• $F_1 = \frac{1}{X^n - 1}$

• $F_2 = \frac{1}{(X - 1)(X^n - 1)}$

• $F_3 = \frac{X^{n-1}}{X^n - 1}$

•
$$F_3 = \frac{X^{n-1}}{X^n - 1}$$

•
$$F_4 = \frac{X^n - 1}{X(X - 1)(X - 2)\dots(X - n)}$$

Exercice 6 (*)

Soit $P \in \mathbb{C}[X]$ un polynôme scindé à racines simples $\alpha_1, \ldots, \alpha_n$.

1. Écrire la décomposition en éléments simples de
$$F = \frac{P''}{P}$$
.

2. En déduire que
$$\sum_{k=1}^{n} \frac{P''(\alpha_k)}{P'(\alpha_k)} = 0$$

Exercice 7 (** à ***)

Calculer les intégrales suivantes :

•
$$I_1 = \int_0^1 \frac{1}{(x^2+4)(x+1)} dx$$

•
$$I_2 = \int_0^1 \frac{x}{(x+1)(x-2)^2} dx$$

• $I_3 = \int_0^1 \frac{x^3}{(x+1)^3} dx$

•
$$I_3 = \int_0^1 \frac{x^3}{(x+1)^3} dx$$

•
$$I_4 = \int_0^1 \frac{x}{(x+1)(x^3+1)} dx$$

Exercice 8 (***)

Soit $P \in \mathbb{C}[X]$ un polynôme à racines simples a_1, a_2, \ldots, a_n .

1. Exprimer à l'aide de
$$P'$$
 et éventuellement de P'' les sommes $\sum_{i=1}^{n} \frac{1}{X - a_i}$, $\sum_{i=1}^{n} \frac{1}{(X - a_i)^2}$, et $\sum_{i=1}^{n} \sum_{X \in \mathcal{X}} \frac{1}{(X - a_i)(X - a_i)}$.

2. Montrer que, si
$$z$$
 est racine de P' mais $P(z) \neq 0$, alors $z = \sum_{i=1}^{n} \lambda_i a_i$, où les coefficients λ_i sont des réels positifs ou nuls tels que $\sum_{i=1}^{n} \lambda_i = 1$. Interpréter géométriquement le résultat.

2

Exercice 9 (***)

Soit
$$P$$
 un polynôme de degré n tel que $\forall k \in \{1, 2, \dots, n\}, \int_0^1 t^k P(t) \ dt = 0.$

Montrer que
$$\int_0^1 (P(t))^2 dt = (n+1)^2 \left(\int_0^1 P(t) dt \right)^2$$
.