Devoir Surveillé nº 10

MPSI Lycée Camille Jullian

3 juin 2023

Exercice: probabilités

On suppose que le nombre d'enfants dans une famille française est une variable aléatoire X. Pour connaître la loi de X, on propose le protocole suivant : on interroge tous les élèves d'une école pour connaître le nombre d'enfants dans leur famille. On va voir que cette approche introduit un biais en considérant une situation particulière : on suppose dans tout cet exercice (sauf pour la toute dernière question) que $X \sim \mathcal{B}\left(10, \frac{1}{5}\right)$. On notera $p_k = \mathbb{P}(X = k)$.

- 1. Rappeler l'expression de p_k , en précisant les valeurs de k pour lesquelles $p_k \neq 0$.
- 2. Donner les valeurs de $\mathbb{E}(X)$, $\mathbb{V}(X)$, puis en déduire $\mathbb{E}(X^2)$.
- 3. On note M_k le nombre de familles à k enfants de la population étudiée (tous les enfants de toutes ces familles vont dans l'école où s'effectue le sondage), et $M = \sum_{k=0}^{10} M_k$ le nombre total de familles. On a donc $p_k = \frac{M_k}{M}$. On note également N_k le nombre total d'enfants appartenant à une famille de k enfants, et $N = \sum_{k=0}^{10} N_k$ le nombre total d'enfants présents dans l'école.
 - (a) Montrer que $N_k = kp_k M$.
 - (b) Montrer que N = 2M.
 - (c) Montrer que la proportion d'enfants issus d'une famille à k enfants vaut $q_k = \frac{kp_k}{2}$.
- 4. On choisit un élève de l'école au hasard et on lui demande le nombre d'enfants dans sa famille. On note Y ce nombre d'enfants.
 - (a) Préciser $Y(\Omega)$ et donner la loi vérifiée par la variable Y. Est-ce la même que celle de la variable X?
 - (b) Montrer que $\mathbb{E}(Y) = \frac{\mathbb{E}(X^2)}{\mathbb{E}(X)}$.
 - (c) En déduire la valeur de $\mathbb{E}(Y)$, et la comparer à celle de $\mathbb{E}(X)$. Expliquer le résultat obtenu.
- 5. Refaire le calcul de la question précédente en supposant cette fois-ci que $X \sim \mathcal{U}(\{1,2,3,4\})$.

Problème 1 : analyse

On considère dans tout cet exercice la fonction f définie sur $]0, +\infty[$ par $f(x) = \int_0^1 \frac{e^t}{t+x} dt.$

1

A. Généralités.

- 1. Justifier rigoureusement que la fonction f est bien définie sur $]0, +\infty[$.
- 2. Préciser le signe de la fonction f.
- 3. À l'aide d'un changement de variables, montrer que $f(x) = e^{-x} \int_{x}^{x+1} \frac{e^{u}}{u} du$.
- 4. On pose $g(x) = e^x f(x) = \int_x^{x+1} \frac{e^u}{u} du$. Justifier que g est de classe C^{∞} sur $]0, +\infty[$ et déterminer l'expression explicite de g'(x).
- 5. En déduire que f est solution d'une équation différentielle de la forme $y' + y = \alpha(x)$, où α est une fraction rationnelle à expliciter.
- 6. À l'aide d'une intégration par parties, montrer que $f'(x) = -\int_0^1 \frac{e^t}{(t+x)^2} dt$.
- 7. Déterminer la monotonie de f. La fonction f admet-elle des limites en 0 et en $+\infty$ (on ne demande pas de **calculer** ces éventuelles limites)?

B. Étude asymptotique de la fonction f.

- 1. Montrer l'encadrement suivant, valable sur $]0, +\infty[: \frac{e-1}{x+1} \leqslant f(x) \leqslant \frac{e-1}{x}]$.
- 2. En déduire un équivalent simple de f(x) quand x tend vers $+\infty$.
- 3. Rappeler l'énoncé précis du théorème des accroissements finis.
- 4. Justifier l'existence d'un réel $M\geqslant 0$ tel que $\forall t\in [0,1],\, |e^t-1|\leqslant Mt.$
- 5. Montrer que la fonction h définie par $h(x) = \int_0^1 \frac{e^x 1}{x + t} dt$ est bornée sur $]0, +\infty[$.
- 6. En déduire que $f(x) \underset{x\to 0^+}{\sim} -\ln(x)$.
- 7. Tracer une allure possible de la courbe représentative de la fonction f (on précise que $f(1) \simeq 1.12$).

Problème 2 : algèbre

On associe dans tout ce problème à un couple de réels (a,b) la matrice $M_{a,b}=\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, ainsi que le nombre complexe $\omega=a+ib$. On notera ρ et θ le module et l'argument principal du nombre ω .

A. Calcul matriciel.

- 1. Montrer que $F = \{M_{a,b} \mid (a,b) \in \mathbb{R}^2\}$ est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$. On précisera la dimension de F, et on en donnera une base.
- 2. Prouver que, pour tous réels a, b, c et $d, M_{a,b} \times M_{c,d} = M_{e,f}$, où e et f sont deux réels à exprimer en fonction de a, b, c et d.
- 3. Calculer $M_{a,b} \times M_{a,-b}$. En déduire que, si $M_{a,b}$ est inversible, son inverse est une matrice appartenant à F.

2

4. Montrer que, pour tout entier $n \in \mathbb{N}$, $M_{a,b}^n = \rho^n M_{\cos(n\theta),\sin(n\theta)}$.

Dans toute la suite du problème, on supposera désormais que b est un réel non nul.

B. Un espace vectoriel de fonctions.

Dans cette partie, on note E l'ensemble des fonctions de classe \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{R} , et G le sous-espace vectoriel de E engendré par la famille (f_1, f_2) , où on a posé $f_1(x) = e^{ax} \sin(bx)$ et $f_2(x) = e^{ax} \cos(bx)$. On note enfin ϕ l'application qui associe à toute fonction $f \in G$ sa dérivée f'.

- 1. Montrer que la famille (f_1, f_2) est une base de G.
- 2. Montrer que φ est un endomorphisme de G, et donner sa matrice M dans la base (f_1, f_2) .
- 3. Montrer que toute fonction $f \in G$ admet une primitive appartenant à G. Déterminer en particulier l'unique primitive de f_1 appartenant à G (on pourra utiliser les propriétés de la matrice M).
- 4. Vérifier que M^2 peut s'écrire comme combinaison linéaire des matrices M et I_2 . En déduire que G est l'ensemble des solutions d'une équation différentielle qu'on précisera.

C. Diagonalisation de la matrice $M_{a,b}$.

On note dans cette partie f l'endomorphisme de \mathbb{C}^2 ayant pour matrice $M_{a,b}$ dans la base canonique $\mathcal{B} = ((1,0),(0,1))$ de \mathbb{C}^2 .

- 1. Montrer que les noyaux $\ker(f-\omega id)$ et $\ker(f-\overline{\omega} id)$ sont tous les deux de dimension 1, engendrés respectivement par les vecteurs u=(1,-i) et v=(1,i).
- 2. Justifier que $\mathcal{C}=(u,v)$ est une base de \mathbb{C}^2 . Préciser la matrice de passage P de \mathcal{B} vers \mathcal{C} , et calculer son inverse P^{-1} .
- 3. Déterminer sans calcul la matrice D de f dans la base C, et exprimer $M_{a,b}$ en fonction de P, P^{-1} et D.
- 4. Calculer D^n en fonction de ρ et de θ , et retrouver ainsi le résultat de la question A.4.

D. Étude d'une suite.

À la matrice $M_{a,b}$ on associe désormais la fonction $h_{M_{a,b}}$ définie sur $\mathbb{R}\setminus\left\{-\frac{a}{b}\right\}$ par $h_{M_{a,b}}(x)=\frac{ax-b}{bx+a}$.

- 1. Dresser le tableau de variations de la fonction $h_{M_{a,b}}$, et montrer que cette fonction est bijective vers un sous-ensemble de \mathbb{R} à préciser.
- 2. Montrer que $(h_{M_{a,b}})^{-1} = h_{M_{a,b}^{-1}}$.
- 3. On veut définir une suite (u_n) par les conditions $u_0 = 0$ et $\forall n \in \mathbb{N}$,

$$u_{n+1} = h_{M_{a,b}}(u_n) = \frac{au_n - b}{bu_n + a}.$$

À quelle condition sur a et b la valeur de u_1 est-elle bien définie? Et celle de u_2 ?

- 4. On suppose qu'il est possible de construire les premiers termes de la suite (u_n) , jusqu'à u_p inclus (avec $p \ge 2$).
 - (a) Montrer qu'il existe un réel α_p non nul tel que $M_{a,b}^n \times \begin{pmatrix} 0 \\ 1 \end{pmatrix} = \alpha_p \begin{pmatrix} u_p \\ 1 \end{pmatrix}$.
 - (b) En déduire une expression de u_p en fonction de p et de θ .
 - (c) Vérifier que le terme suivant u_{p+1} est correctement défini si et seulement si $\cos((p+1)\theta) \neq 0$.
- 5. Montrer que la suite (u_n) est correctement définie si $\theta \notin \left\{ \frac{2p+1}{2q} \pi \mid p \in \mathbb{Z}, q \in \mathbb{N}^* \right\}$.

3