Devoir Maison nº 3 : corrigé

MPSI Lycée Camille Jullian

7 novembre 2022

Problème : construction des fonctions puissances.

I. Construction des racines n-èmes.

- 1. Il suffit pour cette question d'exploiter la croissante stricte de la fonction y → yⁿ sur]0, +∞[, qui peut se démontrer par récurrence en utilisant uniquement des manipulations basiques d'inégalité. Supposons donc 0 < y < z et montrons par récurrence que, ∀n ≥ 1, 0 < yⁿ < zⁿ. La propriété est clairement vraie pour n = 1 puisque c'est notre hypothèse initiale, et si on suppose 0 < yⁿ < zⁿ, il suffit de multiplier cet encadrement par celui pris comme hypothèse (on peut, tout est positif), pour obtenir 0 < yⁿ⁺¹ < zⁿ⁺¹. Deux réels strictement positifs distincts ont donc toujours des puissances n-èmes distinctes, ce qui prouve par contraposée que yⁿ = zⁿ ⇒ y = z. Il ne peut donc exister (au maximum) qu'un seul réel strictement positif tel que yⁿ = x.
- 2. (a) Il s'agit donc de prouver que $\left(\frac{x}{1+x}\right)^n < x$. C'est évident pour n=1:1+x>1, donc $\frac{x}{1+x} < x$. Remarquons également que $\frac{x}{1+x} < 1$ puisque 0 < x < 1+x. On prouve alors par récurrence triviale que $\left(\frac{x}{1+x}\right)^n < x$: c'est vrai au rang 1, et si c'est vrai au rang n, la multiplication du membre de gauche par $\frac{x}{1+x} < 1$ conservera l'inégalité.
 - (b) On a déjà signalé que x < 1+x et 1 < 1+x. On en déduit (via la croissance des fonctions puissances démontrée à la première question) que $1 < (1+x)^n$ et $x^n < (1+x)^n$ pour tout entier $n \ge 1$. Or, si $x \le 1$, on aura donc $x \le 1 < (1+x)^n$, et si x > 1, alors $x \le x^n < (1+x)^n$. Dans tous les cas, $x < (1+x)^n$, ce qui prouve qu'on a nécessairement $t^n < (1+x)^n$, et donc t < 1+x, encore une fois en exploitant la croissance stricte de la fonction $y \mapsto y^n$.
 - (c) L'ensemble A_x est majoré et non vide, il admet nécessairement une borne supérieure.
- 3. On exploite l'identité remarquable démontrée en cours $b^k a^k = (b-a) \times \sum_{i=0}^{k-1} a^i b^{k-1-i}$. Comme on a supposé a < b, on a $a^i \leqslant b^i$ (l'inégalité est stricte sauf pour i=0), donc $a^i b^{k-1-i} \leqslant b^i b^{k-1-i} = b^{k-1}$ (on ne manipule que des puissances entières ici). On peut donc majorer la somme de droite dans notre identité remarquable par $\sum_{i=0}^{k-1} b^{k-1} = kb^{k-1}$, l'inégalité demandée en découle immédiatement.
- 4. (a) En posant b=y+h et a=y, on peut appliquer le résultat de la question 3 pour obtenir $b^n-a^n\leqslant n(b-a)b^{n-1}=nh(y+h)^{n-1}$. Or, on a supposé h<1, donc $(y+h)^{n-1}<(y+1)^{n-1}$, et comme par ailleurs on a aussi (toujours par hypothèse) $h<\frac{x-y^n}{n(1+y)^{n-1}}$, on peut majorer brutalement $nh(y+h)^{n-1}$ par $n\times\frac{x-y^n}{n(1+y)^{n-1}}\times(1+y)^{n-1}=x-y^n$, soit exactement la majoration souhaitée.

- (b) On déduit directement de la question précédente que $(y+h)^n < x$, ce qui prouve effectivement que $y+h \in A_x$. Notons qu'il existe toujours un réel h vérifiant les hypothèses faites puisque $x-y^n>0$ par hypothèse, donc $\frac{x-y^n}{n(1+y)^{n-1}}$ également, et on peut donc trouver des réels strictement positifs inférieurs à cette valeur.
- (c) S'il existe un réel strictement positif h tel que $y + h \in A_x$, y ne peut pas être la borne supérieure de l'ensemble A_x (cela contredit la définition même de borne supérieure). L'hypothèse $y^n < x$ est donc absurde, ce qui prouve que $y^n \ge x$.
- 5. Constatons déjà qu'un tel réel k est strictement positif avec l'hypothèse $y^n x > 0$, et surtout que $y k \geqslant x$, donc y k est également strictement positif. On applique exactement le même raisonnement que précédemment à a = y k et $b = y : y^n (y k)^n \leqslant n \times k \times y^{n-1} = y^n x$, donc $(y k)^n \geqslant x$ (il faut juste faire attention au sens de l'inégalité quand on manipule). Tout réel $t \in A_x$ vérifie donc $t^n \leqslant x \leqslant (y k)^n$, ce qui par croissance de la fonction puissance n implique $t \leqslant y k$. On a bien prouvé que y k était un majorant de A_x , et donc que y ne peut à nouveau pas être borne supérieure de A_x , puisqu'il existe un majorant de A_x strictement plus petit que lui. L'hypothèse $y^n > x$ est donc absurde, ce qui prouve que $y^n \leqslant x$.
- 6. Les deux inégalités prouvées démontrent que $y^n = x$, on a construit une notion cohérente de racine n-ème.
- 7. Par définition, $((ab)^{\frac{1}{n}})^n = ab$, mais par ailleurs $(a^{\frac{1}{n}} \times b^{\frac{1}{n}})^n = (a^{\frac{1}{n}})^n \times (b^{\frac{1}{n}})^n = a \times b$ (on a le droit d'utiliser la règle de calcul $(uv)^n = u^n \times v^n$ pour des puissances entières de nombres positifs). Les deux nombres ont donc la même puissance n-ème et sont tous les deux strictement positifs, ils sont égaux d'après la tout première question de cette partie.

II. Puissances rationnelles.

- 1. Si on est capable de définir les puissances rationnelles de tous les nombres supérieurs à 1, on en déduira celles des nombres appartenant à]0,1[par un simple passage à l'inverse : $\left(\frac{1}{x}\right)^r = \frac{1}{x^r}$, avec $r \in \mathbb{Q}$ et $\frac{1}{x} \in$]0,1[donc x > 1.
- 2. Notons $a=(x^p)^{\frac{1}{q}}$ et $b=(x^s)^{\frac{1}{t}}$. Par définition, $a^q=x^p$ et $b^t=x^s$. On peut en déduire (ce sont des puissances entières qu'on va manipuler) que $a^{qt}=(x^p)^t=x^{pt}$, et de même que $b^{tq}=(x^s)^q=x^{sq}$. Or, par hypothèse, $\frac{p}{q}=\frac{s}{t}$, donc pt=qs, et $x^{pt}=s^{qs}$. On a donc prouvé que $a^{qt}=b^{tq}$, ce qui prouve que a=b en appliquant pour la 42-ème fois la stricte croissance des puissances entières.
- 3. Si r et s sont deux rationnels, on peut toujours les mettre au même dénominateur pour les mettre sous la forme $r=\frac{p_1}{q}$ et $s=\frac{p_2}{q}$. On a alors $x^{r+s}=x^{\frac{p_1+p_2}{q}}=(x^{p_1+p_2})^{\frac{1}{q}}=(x^{p_1}\times x^{p_2})^{\frac{1}{q}}=(x^{p_1}\times x^{p_2})^{\frac{1}{q}}=(x^{p_$
- 4. Avec l'hypothèse $r \leqslant s$, on peut toujours noter $r = \frac{p_1}{q}$ et $s = \frac{p_2}{q}$, avec $p_1 \leqslant p_2$. On a alors trivialement $x^{p_1} \leqslant x^{p_2}$ (ici, ce sont des puisssances entières, et on a supposé x > 1). Or, la fonction $x \mapsto x^{\frac{1}{q}}$ est une fonction croissante sur $]0, +\infty[$. On ne l'a pas encore prouvé explicitement, mais c'est assez évident avec la définition donnée dans la première partie : si $x \leqslant x'$ alors $A_x \subset A_{x'}$ (avec les notations de la question I.2), donc tout majorant de $A_{x'}$ est aussi un majorant de A_x et $\sup(A_x) \leqslant \sup(A_{x'}$. Ceci prouve bien que $(x^{p_1})^{\frac{1}{q}} \leqslant (x^{p_2})^{\frac{1}{q}}$, donc $x^r \leqslant x^s$.

III. Puissances réelles quelconques.

- 1. Le résultat de la question II.4 prouve que B_y est majoré par x^y . Comme x^y est par ailleurs un élément de B_y quand y est rationnel, l'ensemble admet donc dans ce cas un maximum égal à x^y , qui est aussi sa borne supérieure. Autrement dit, la définition donnée des puissances réelles quelconques généralise correctement celle des puissances rationnelles.
- 2. Si y est un réel strictement positif quelconque, il existe toujours un rationnel (et même un entier) z vérifiant $y \leq z$ (par exemple $z = \lfloor y \rfloor + 1$). La question II.4 prouve alors que B_y est majoré par x^z . L'ensemble B_y n'étant par ailleurs jamais vide (il contient par exemple $x^1 = x$), il admet donc nécessairement une borne supérieure.
- 3. Si α ∈ B_y et β ∈ B_z, alors α = x^r avec r ≤ y et β = x^s avec s ≤ z, donc r + s ≤ y + z, et x^{r+s} = x^r × x^s ≤ x^{y+z}. Comme cette inégalité est vraie quels que soient les éléments choisis dans B_y et B_z, on peut « passer à la limite » pour en déduire qu'elle reste vraie pour les bornes supérieures, et donc que x^y × x^z ≤ x^{y+z} (pour faire les choses tout à fait rigoureusement, on passe deux fois à la limite, d'abord pour α puis pour β). Réciproquement, la caractérisation de la borne supérieure permet de choisir des valeurs de α et de β telles que x^y − ε ≤ α = x^r ≤ x^y et x^z − ε ≤ β = x^s ≤ x^z, quel que soit le réel strictement positif ε. On en déduit, en multipliant les deux encadrements, que x^{r+s} − 2ε ≤ x^y × x^z (on a laissé tomber en cours de route le ε² qui ne fait qu'alourdir l'écriture et ne sert à rien), donc x^{y+z} ≤ x^y × x^z + 2ε. Comme ε peut être choisi arbitrairement proche de 0, on peut en déduire que x^{y+z} ≤ x^y × x^z, ce qui combiné à la première inégalité obtenue prouve bien que x^{y+z} = x^y × x^z.

Exercice bonus.

Supposons donc $x_1 + \dots + x_n = 42$, avec $(x_1, \dots, x_n) \in]0, +\infty[^n,$ alors l'inégalité arithmético-géométrique prouve que $x_1 \times \dots \times x_n \leqslant \left(\frac{x_1 + \dots + x_n}{n}\right)^n = \left(\frac{42}{n}\right)^n$, avec égalité si et seulement si $x_1 = \dots = x_n = \frac{42}{n}$. La valeur maximale de notre produit est donc égale à $\left(\frac{42}{n}\right)^n$. Quelques exemples plus concrets pour visualiser ce que ça donne :

- pour n=2, on prend simplement $x_1=x_2=21$ et on obtient un produit égal à $21^2=441$.
- pour n = 3, on prend trois nombres égaux à 14 et on obtient un produit égal à $14^3 = 2744$. Jusque-là on a l'impression que le produit va augmenter très vite quand on augmente la valeur de n, mais c'est un peu plus compliqué que ça.
- pour n = 10 (allons un peu plus loin), on prend dix nombres tous égaux à 4.2, et on obtient un produit égal à $(4.2)^{10} = 1$ 708 019.812 17. Pas mal. Mais ça finira forcément par redescendre car on sait que pour un certain cas particulier, la réponse va être assez débile!
- pour n = 42, on prend 42 nombres tous égaux à 1, et le produit vaut évidemment 1. On ne peut vraiment pas faire mieux en prenant certains nombres plus gros et d'autres plus petits que 1? Ben non.
- pour n = 50, on prend 50 nombres tous égaux à $\frac{42}{50} = 0.84$, et le produit vaut donc $0.84^{50} \simeq 0.000$ 164. Le produit va tendre très vite vers 0 si on continue.

Bon, mais alors du coup, ces produits maximaux ont-ils un maximum? Vu la formule obtenue, on va simplement poser $f(x) = \left(\frac{42}{x}\right)^x = e^{x(\ln(42) - \ln(x))}$. La fonction f est définie et dérivable sur \mathbb{R}^{+*} , et $f'(x) = f(x) \times (\ln(42) - \ln(x) - 1)$. Cette dérivée s'annule en particulier lorsque $\ln(x) = \ln(42) - 1$, donc en $x_0 = e^{\ln(42) - 1} = e^{\ln(\frac{42}{e})}$. La fonction admet un maximum en x_0 , qui vaut approximativement 15.4, et elle est croissante sur $]0, x_0]$ et décroissante ensuite. Si on se restreint à des valeurs de x entières, le maximum est donc atteint pour n = 15 ou n = 16, et on vérifie à la main : $\left(\frac{42}{15}\right)^{15} \simeq 5$ 097 655,

et $\left(\frac{42}{16}\right)^{16} \simeq 5~082~401$. Le plus grand produit possible est donc atteint pour n=15.

Pour le cas des entiers naturels, on peut déjà se restreindre à des valeurs de n ne dépassant pas 42 (sinon on ne pourra pas construire n entiers naturels non nuls dont la somme vaut 42). Il n'y a pas de méthode vraiment mathématique évidente, même si sans surprise les résultats atteints sont assez proches de ce qu'on trouve avec des réels :

- pour n=2 ou n=3, la solution optimale étant de toute façon constituée d'entiers, on ne change rien.
- pour n = 4, le produit optimal est égal à 12 100, atteint en prenant $x_1 = x_2 = 11$ et $x_3 = x_4 = 10$ (avec des réels, on atteint un produit maximal égal à 12 155.0625).
- pour n=5, il faut choisir trois nombres égaux à 8 et deux égaux à 9, sans surprise, pour obtenir un produit maximal égal à 41 472.
- pour n = 6 ou n = 7 on retombe sur des cas où l'optimum est constitué de nombres entiers (produit égal à 117 649 pour n = 6 et à 279 936 pour n = 7).
- je ne vais pas faire tous les cas, pour n = 10, on prend huit nombres égaux à 4 et deux égaux à 5 pour obtenir un produit égal à 1 638 400.
- pour n=14, on retombe sur un cas où l'optimum est constitué de nombres entiers, en l'occurrence $3^{14}=4$ 782 969.
- pour n = 15, on prend douze nombres égaux à 3 et trois égaux à 2, ce qui donne un produit égal à 4 251 528. On est déjà en-dessous ce qu'on obtenuit avec 14 entiers.
- pour n = 16, dix nombres égaux à 3 et six égaux à 2 donnent un produit égal à 3 779 136, donc encore nettement moins. On ne redépassera jamais la valeur obtenue pour n = 14.
- pour n=40 par exemple, on ne peut pas faire mieux que prendre deux entiers égaux à 2 et tous les autres égaux à 1, pour un produit égal à 4. Alors qu'avec des réels, le produit maximal serait égal à $\left(\frac{42}{40}\right)^{42} \simeq 7.762$. Quasiment deux fois plus! En fait, on ne peut pas avoir un écart gigantesque entre les deux produit maximaux, mais c'est loin d'être évident à prouver.