Feuille d'exercices n° 9 : Suites numériques

MPSI Lycée Camille Jullian

7 décembre 2021

Exercice 1 (***)

Montrer que l'ensemble $\left\{\frac{p}{2^n} \mid p \in \mathbb{Z}, n \in \mathbb{N}\right\}$ est un sous-ensemble dense de \mathbb{R} .

Exercice 2 (**)

Démontrer à l'aide des définitions (avec des ε) les limites suivantes :

- $\bullet \lim_{n \to +\infty} n^2 2n = +\infty$
- $\bullet \lim_{n \to +\infty} \frac{1}{2n+3} = 0$ $\bullet \lim_{n \to +\infty} \frac{2n-1}{n+1} = 2$ $\bullet \lim_{n \to +\infty} \sqrt{n+3} = +\infty$

Exercice 3 (* à **)

Déterminer la limite éventuelle de chacune des suites suivantes :

- $u_n = \frac{3^n 2^n}{4^n}$ $u_n = (-n+2)e^{-n}$ $u_n = \frac{n^2 3n + 2}{2n^2 + 5n 34}$ $u_n = \sqrt{n^2 1} n$ $u_n = \frac{(n+2)!}{(n^2 + 1) \times n!}$ $u_n = e^{-\frac{1}{2n}} + \ln\left(\frac{n}{n+2}\right)$ $u_n = \frac{n + \sin(n)}{n \cos(n)}$ $u_n = \sinh(2n) 2\sinh(n)$ $u_n = \tan\left(\frac{n\sqrt{\ln(1 + \frac{\pi^2}{n^2})}}{4}\right)$

Exercice 4 (**)

Trois réels a, b et c (avec $a \neq 0$) vérifient les drôles de conditions suivantes :

- a, b et c sont trois termes consécutifs d'une suite géométrique de raison q.
- a, 2b et 3c sont trois termes consécutifs d'une suite arithmétique de raison q (la même que ci-dessus,

Déterminer les valeurs possibles de a, b, c et q.

Exercice 5 (*)

Déterminer pour chacune des suites suivantes la valeur de u_n en fonction de n:

- 1. $u_0 = 1$ et $\forall n \in \mathbb{N}, u_{n+1} = 4u_n 6$
- 2. $u_0 = 0$, $u_1 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 3u_{n+1} 2u_n$
- 3. $u_0 = 0$, $u_1 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 6u_{n+1} 9u_n$
- 4. $u_0=1, u_1=2$ et $\forall n\in\mathbb{N}, u_{n+2}=\frac{u_{n+1}+u_n}{2}$ (méthode alternative à celle que vous avez naturellement utilisée : étudier la suite $(u_{n+1} - \overset{2}{u_n})$)
- 5. $u_0 = 2$, $u_1 = \frac{10}{3}$ et $\forall n \in \mathbb{N}$, $3u_{n+2} = 4u_{n+1} u_n$

6.
$$u_n = 1 + 11 + 111 + \dots + \underbrace{11 \dots 11}_{n}$$

7.
$$z_0 = 2i$$
 et $\forall n \in \mathbb{N}, z_{n+1} = \frac{1}{3}(2z_n - \overline{z_n})$ (oui, c'est une suite de nombres complexes)

Exercice 6 (**)

On considère la suite (u_n) définie par $u_0=2$ et $\forall n\in\mathbb{N},\ u_{n+1}=2u_n+2n^2-n$. Déterminer trois réels a,b et c tels que la suite (v_n) définie par $v_n=u_n+an^2+bn+c$ soit une suite géométrique. En déduire la valeur de u_n .

Exercice 7 (**)

Soient (u_n) et (v_n) deux suites à valeurs dans [0,1] telles que $\lim_{n\to+\infty} u_n v_n = 1$. Montrer que les deux suites convergent vers 1.

Exercice 8 (***)

Soit (u_n) une suite réelle strictement positive telle que $\lim_{n\to+\infty} \frac{u_{n+1}}{u_n} = l \in \mathbb{R}$.

- 1. Montrer que, si l < 1, la suite (u_n) converge nécessairement vers 0.
- 2. Que peut-on dire dans le cas où l > 1?
- 3. Montrer par des exemples qu'on ne peut rien conclure sur la limite de (u_n) quand l=1.

Exercice 9 (***)

On s'intéresse à la suite (u_n) définie par $u_n = \sqrt{n} - \lfloor \sqrt{n} \rfloor$.

- 1. Que vaut u_{n^2+n} . Que peut-on en déduire sur la convergence éventuelle de la suite (u_n) ?
- 2. Montrer que, pour tout couple d'entiers naturels a et b, avec $b \neq 0$ et $a \leqslant b$, la sous-suite $u_{n^2b^2+2an}$ converge vers $\frac{a}{b}$.
- 3. Prouver rigoureusement que, pour tout réel $l \in [0, 1]$, il existe une sous-suite de (u_n) convergeant vers l.

Exercice 10 (**)

On considère une suite (u_n) définie par $u_0 > 0$ et $\forall n \in \mathbb{N}, u_{n+1} = \frac{1}{2} \left(u_n + \frac{a}{u_n} \right)$, où a est un réel fixé strictement positif.

- 1. Étudier la nature de la suite (u_n) .
- 2. On pose $v_n = \frac{u_n \sqrt{a}}{u_n + \sqrt{a}}$, déterminer v_{n+1} en fonction de v_n , puis v_n en fonction de n et de v_0 .
- 3. En déduire une majoration de l'écart entre u_n et la limite de la suite en fonction de u_0 et de v_0 . Pour a=2, quelle valeur de n suffit-il de choisir pour que u_n soit une valeur approchée de la limite à 10^{-100} près (calculatrice autorisée pour l'application numérique!).

Exercice 11 (***)

On pose, pour tout entier naturel $n \ge 1$, $u_n = \sum_{k=0}^n \frac{1}{\binom{n}{k}}$, $v_n = n! u_n$ et $w_n = \sum_{k=0}^n k \frac{n!}{\binom{n}{k}}$.

- 1. Calculer les valeurs prises par ces trois suites pour n = 1, n = 2 et n = 3.
- 2. Expliquer pourquoi $w_n = \sum_{k=0}^n (n-k) \frac{n!}{\binom{n}{k}}$. En déduire que $w_n = \frac{nv_n}{2}$.

- 3. Montrer en exploitant le résultat de la question précédente que $u_{n+1} = 1 + \frac{n+2}{2n+2}u_n$.
- 4. En déduire les valeurs de u_5 , u_6 et u_7 .
- 5. On pose enfin $t_n = \frac{2^n u_n}{n+1}$. Déterminer une relation entre t_{n+1} et t_n .
- 6. En déduire que $u_n = \frac{n+1}{2^n} \sum_{k=0}^n \frac{2^k}{k+1}$.

Exercice 12 (**)

Une suite de Cauchy est une suite réelle (u_n) vérifiant la propriété suivante : $\forall \varepsilon > 0, \exists n_0 \in \mathbb{N}, \forall (p,q) \geq n_0, |u_p - u_q| < \varepsilon.$

- 1. Montrer qu'une suite de Cauchy est nécessairement bornée.
- 2. Montrer qu'une suite convergente est une suite de Cauchy.
- 3. Montrer la réciproque : toute suite de Cauchy converge nécessairement.

Exercice 13 (***)

On considère une suite (u_n) définie par $u_n = \left(1 + \frac{a}{n}\right)^n$, avec $a \in \mathbb{R}_+$.

- 1. Montrer que la suite est croissante (pour cette question, on étudiera les variations de la fonction $f: x \mapsto x \ln\left(1 + \frac{a}{x}\right)$ en la dérivant deux fois).
- 2. Montrer que, $\forall x \ge 0$, $\frac{t}{1+t} \le \ln(1+t) \le t$.
- 3. En déduire que, $\forall n \in \mathbb{N}^*, \frac{na}{n+a} \leqslant \ln u_n \leqslant a$.
- 4. Montrer que la suite (u_n) est convergente.
- 5. Quel résultat obtient-on en prenant a = 1?

Exercice 14 (**)

On considère deux suites (u_n) et (v_n) telles que $u_0=v_0=1$ et $\forall n\in\mathbb{N},$ $\begin{cases} u_{n+1}=3u_n+v_n+1\\ v_{n+1}=2-2u_n \end{cases}$

- 1. Montrer que $a_n = u_n + v_n$ définit une suite arithmétique.
- 2. Montrer que $b_n = 2u_n + v_n$ définit une suite arithmético-géométrique.
- 3. En déduire les expressions de u_n et de v_n .
- 4. Calculer $S_n = \sum_{k=0}^n u_k$ et déterminer la limite de cette suite.

Exercice 15 (*)

On considère la suite (u_n) définie par $u_0 = 0$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$, où on a posé $f(x) = \frac{4x+2}{x+5}$.

- 1. Déterminer les réels x vérifiant f(x) = x. On note a le plus petit d'entre eux, et b le plus grand.
- 2. Expliquer soigneusement pourquoi la suite (v_n) définie par $v_n = \frac{u_n b}{u_n a}$ est effectivement bien définie.

3

- 3. Montrer que la suite (v_n) est géométrique.
- 4. En déduire une expression explicite de u_n .

Exercice 16 (**)

Montrer que les deux suites définies par $u_n = \prod_{k=1}^n \left(1 + \frac{1}{k \times k!}\right)$ et $v_n = \left(1 + \frac{1}{n \times n!}\right) u_n$ sont adjacentes.

Exercice 17 (*)

On considère deux suites (u_n) et (v_n) définies de la façon suivante : $u_n = \sum_{k=0}^{k=n} \frac{1}{k!}$, et $v_n = u_n + \frac{1}{n \times n!}$

Montrer que ces deux suites sont adjacentes (les curieux seront contents d'apprendre que leur limite commune vaut e). Question subsidiaire (nettement plus difficile) : montrer que la limite commune des ces deux suites est un nombre irrationnel (qu'on ne peut pas écrire sous la forme d'un quotient d'entiers) en faisant un raisonnement par l'absurde.

Exercice 18 (**)

Soient a et b deux réels vérifiant 0 < a < b. On définit deux suites de la façon suivante : $u_0 = a$, $v_0 = b$ et $\forall n \in \mathbb{N}, \ u_{n+1} = \sqrt{u_n v_n}$ et $v_{n+1} = \frac{u_n + v_n}{2}$.

- 1. Vérifier que ces deux suites sont bien définies.
- 2. Montrer que, $\forall n \in \mathbb{N}, u_n \leq v_n$ (pour une fois, pas besoin de récurrence).
- 3. Déterminer la monotonie de chacune des deux suites.
- 4. En déduire que (u_n) et (v_n) convergent vers la même limite.

Exercice 19 (**)

Soient (u_n) et (v_n) deux suites définies par $u_0=v_0=0$ et $\forall n\geqslant 0,$ $\left\{\begin{array}{ll} u_{n+1}&=&\sqrt{3-v_n}\\ v_{n+1}&=&\sqrt{3+u_n} \end{array}\right.$

- 1. Montrer que toutes les valeurs de chacune des deux suites appartiennent à l'intervalle [0, 3].
- 2. En supposant que (u_n) et (v_n) soient deux suites convergentes, quelles seraient les valeurs possibles de leurs limites?
- 3. On pose $a_n = u_n 1$ et $b_n = v_n 2$, montrer que $|a_{n+1}| \le |b_n|$ et $|b_{n+1}| \le \frac{1}{2}|a_n|$.
- 4. On pose enfin $c_n = \max(|a_n|, |b_n|)$, montrer que $c_{n+2} \leq \frac{1}{2}c_n$. En déduire rigoureusement la convergence de (c_n) , puis celles de (u_n) et de (v_n) .

Exercice 20 (***)

- 1. Démontrer le théorème de Cesaro : si une suite (u_n) converge vers une limite finie l, alors la suite (v_n) définie par $\forall n \in \mathbb{N}, \ v_n = \frac{1}{n+1} \sum_{k=0}^{k=n} u_k$ a la même limite l (on pourra commencer par traiter le cas particulier où l=0, et revenir à la définition de la limite).
- 2. La réciproque de ce résultat est-elle toujours vraie?
- 3. Le théorème de Cesaro fonctionne-t-il encore avec une limite infinie? La réciproque est-elle vraie dans ce cas?
- 4. Si on suppose que (u_n) est une suite monotone, montrer que la réciproque du théorème de Cesaro devient vraie.
- 5. Pour une suite (u_n) convergeant vers l, on pose désormais $v_n = \frac{1}{n^2} \sum_{k=0}^{k=n} k u_k$. Déterminer la limite de (v_n) en utilisant une technique proche de celle de la première question.

Exercice 21 (**)

On considère une suite (u_n) vérifiant $0 \le u_0 \le u_1$ et $\forall n \in \mathbb{N}, u_{n+2} = \frac{1+u_n}{1+u_{n+1}}u_{n+1}$.

- 1. Montrer que la suite (u_n) est bien définie et que $u_n \ge 0$.
- 2. Étudier le signe de $(u_{n+2} u_{n+1})(u_{n+2} u_n)$.
- 3. Montrer que, $\forall n \in \mathbb{N}, u_{2n} \leq u_{2n+1}$.
- 4. Préciser la monotonie des sous-suites (u_{2n}) et (u_{2n+1}) . Conclure sur la convergence de la suite (u_n) .

Exercice 22 (***)

On considère une suite complexe définie par $z_0 \in \mathbb{C}$ et $\forall n \in \mathbb{N}, z_{n+1} = \frac{z_n + |z_n|}{2}$.

- 1. Étudier la suite dans le cas particulier où $z_0 \in \mathbb{R}$.
- 2. On suppose désormais que z_0 n'est pas réel et on pose $z_0 = re^{i\theta}$, avec $\theta \in]-\pi, 0[\cup]0, \pi[$. De même, on notera r_n et θ_n le module et l'argument de z_n . Exprimer r_{n+1} et θ_{n+1} en fonction de r_n et θ_n .
- 3. En déduire une expression explicite de r_n et de θ_n .
- 4. Montrer que la suite (z_n) converge vers une valeur à préciser.

Exercice 23 (***)

Cet exercice a pour but de démontrer certaines propriétés de la suite de Fibonacci. Rappelons que cette suite (F_n) est définie de la façon suivante : $F_0=0,\ F_1=1,$ et $\forall n\in\mathbb{N},\ F_{n+2}=F_{n+1}+F_n.$ On note dans cet exercice $\varphi=\frac{1+\sqrt{5}}{2}$ (c'est le fameux nombre d'or), on pourra noter $\psi=-\frac{1}{\varphi}$ l'opposé de son inverse si on le souhaite.

- 1. Vérifier que $\psi = \frac{1 \sqrt{5}}{2}$.
- 2. En remarquant que (F_n) est une suite d'un type bien connu, déterminer explicitement F_n en fonction de n (on ne sera pas surpris d'avoir des coefficients un peu laids, et on se posera par contre des questions philosophiques si φ n'intervient pas dans la formule).
- 3. On note, pour tout entier naturel $n \ge 1$, $u_n = \frac{F_{n+1}}{F_n}$. Donner la valeur des cinq premiers termes de la suite (u_n) .
- 4. Étudier la monotonie de la suite (u_n) (ne vous étonnez pas s'il n'y a pas de conclusion simple).
- 5. En utilisant le résultat de la question 2, prouver que $\lim_{n\to+\infty}u_n=\varphi$.
- 6. Déterminer une fonction simple f telle que $u_{n+1} = f(u_n)$. Étudier la fonction f, puis tracer dans un même repère une allure de sa courbe représentative et la droite d'équation y = x. Faire un schéma permettant de comprendre la monotonie et la limite de la suite (u_n) dans ce même repère.
- 7. Montrer que, $\forall n \geqslant 1, |\varphi u_n| = \frac{1}{\varphi^n F_n}$.
- 8. En déduire que $|\varphi u_n| \leqslant \frac{1}{F_n^2}$.
- 9. Donner un nombre rationnel approchant φ à 10^{-4} près (on utilisera évidemment la question précédente). Est-ce une approximation par défaut ou par excès? Donner les valeurs décimales approchées à 10^{-4} près par défaut et par excès de φ .
- 10. Montrer que, pour tous les entiers pour lesquels ça a un sens, $F_{n+p} = F_{n-1}F_p + F_nF_{p+1}$. En déduire que tous les termes impairs de la suite de Fibonacci sont des nombres entiers pouvant s'écrire comme somme de deux carrés de nombre entiers.
- 11. Montrer que, $\forall n \in \mathbb{N}, \sum_{k=0}^{n} F_k = F_{n+2} 1.$
- 12. Montrer que, $\forall n \in \mathbb{N}, F_{n+1}F_{n-1} F_n^2 = (-1)^n$ est une suite géométrique, et déterminer sa valeur.
- 13. En déduire que, $\forall n \in \mathbb{N}$, $\arctan\left(\frac{F_{n+2}}{F_{n+1}}\right) \arctan\left(\frac{F_n}{F_{n+3}}\right) = \frac{\pi}{4}$.

Problème 1 : autour de la méthode de Newton (**)

La méthode de Newton sert à déterminer des valeurs approchées de solutions d'équations de la forme f(x)=0, où f est une fonction continue strictement monotone sur un intervalle I (et ayant des signes opposés aux extrémités de I, pour assurer que l'équation admet bien une solution sur I). Pour celà, on construit une suite (x_n) de la façon suivante : $x_0 \in I$, et pour tout entier naturel n, le réel x_{n+1} est l'abscisse du point d'intersection de l'axe des abscisses (O_x) et de la tangente en x_n à la courbe de la fonction f.

- 1. Faire un dessin illustrant la construction des premiers termes de la suite (x_n) (on prendra une allure de type parabolique pour la courbe de f).
- 2. Montrer que $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$.
- 3. Pour la suite de l'exercice, on pose $f(x) = x^2 a$, où a > 1; $I =]0, +\infty[$ et $x_0 = a$.
 - (a) Vérifier que, dans ce cas, $x_{n+1} = \frac{x_n^2 + a}{2x_n}$.
 - (b) Étudier la fonction $g: x \mapsto \frac{x^2 + a}{2x}$ et la fonction $h: x \mapsto g(x) x$ sur l'intervalle I.
 - (c) En déduire que la suite (x_n) est décroissante et minorée, puis qu'elle converge vers \sqrt{a} .
- 4. On pose, pour tout entier naturel n, $v_n = \frac{x_n \sqrt{a}}{x_n + \sqrt{a}}$
 - (a) Montrer que $v_{n+1} = v_n^2$.
 - (b) En déduire que $|x_n \sqrt{a}| \leq 2x_0(v_0)^{2^n}$.
- 5. On suppose désormais a=2.
 - (a) Calculer les quatre premiers termes de la suite (x_n) .
 - (b) Montrer que $|x_n \sqrt{2}| \leqslant \frac{4}{3(2^n)}$
 - (c) À partir de quelle valeur de n est-on sûr que x_n est une valeur approchée de $\sqrt{2}$ à 10^{-6} près?

Problème 2 : autour de la série harmonique (***)

La série harmonique (nous verrons en fin d'année ce que désigne exactement le terme de **série**, aucune connaissance à ce sujet n'est évidemment nécessaire pour résoudre cet exercice) est la suite (H_n) dont le terme général est défini par $H_n = \sum_{i=1}^n \frac{1}{k}$ (pour $n \ge 1$).

- 1. Divergence de la suite (H_n) .
 - (a) Déterminer la monotonie de la suite (H_n) .
 - (b) Montrer que, $\forall n \in \mathbb{N}^*$, on a $H_{2n} H_n \geqslant \frac{1}{2}$.
 - (c) Conclure quant à la nature de la suite (H_n) .
- 2. On pose pour cette question $u_n = \sum_{k=1}^{2n} \frac{1}{k}$ et $v_n = \sum_{k=1}^{n} \frac{1}{n+k}$.
 - (a) Calculer les trois premiers termes de chaque suite.
 - (b) Prouver que les deux suites sont adjacentes, et en déduire la convergence de (v_n) .
- 3. Équivalent du terme général H_n de la série harmonique.
 - (a) Montrer que, $\forall k \geqslant 1$, l'encadrement $\frac{1}{k+1} \leqslant \ln(k+1) \ln(k) \leqslant \frac{1}{k}$ est valable (on pourra ici s'intéresser à des histoires d'intégrales, ou plus simplement étudier le signe de fonctions bien choisies).
 - (b) En déduire que $\ln(n+1) \leqslant H_n \leqslant \ln(n) + 1$, puis montrer que $\lim_{n \to +\infty} \frac{H_n}{\ln(n)} = 1$.
 - (c) En posant $a_n = H_n \ln(n)$ et $b_n = H_n \ln(n+1)$, montrer que les suites (a_n) et (b_n) sont adjacentes, et en déduire que $(H_n \ln(n))$ admet une limite finie (connue par les mathématiciens sous le nom de constante d'Euler, et habituellement notée γ).
 - (d) Montrer rigoureusement que la suite (v_n) introduite à la question 2 a pour limite $\ln(2)$ (on pourra commencer par écrire que $v_n = H_{2n} H_n$).

Problème 3 (***)

On s'intéresse dans ce problème à l'ensemble $\mathcal S$ constitué de toutes les suites (u_n) vérifiant la relation de récurrence $u_{n+2}=\frac{1}{2}(u_n^2+u_{n+1}^2)$, avec $u_0\geqslant 0$ et $u_1\geqslant 0$. Si (x,y) est un couple de réels positifs, on notera $(u_n(x,y))$ la suite appartenant à $\mathcal S$ et vérifiant $u_0(x,y)=x$ et $u_1(x,y)=y$. Pour tout réel λ , on notera $E_\lambda=\{(x,y)\in(\mathbb R^+)^2\mid (u_n(x,y)) \text{ converge vers }\lambda\}$. On notera également $E_\infty=\{(x,y)\in(\mathbb R^+)^2\mid (u_n(x,y)) \text{ diverge vers }+\infty\}$.

- 1. Calculer les cinq premiers termes de la suite $(u_n(1,0))$.
- 2. (a) Déterminer toutes les suites constantes appartenant à S.
 - (b) Montrer que, si une suite dans S a deux termes consécutifs égaux à 1, alors elle est constante.
 - (c) Que peut-on dire d'une suite de S ayant un terme nul autre que les deux premiers?
- 3. On suppose qu'une suite de S admet une limite finie l. En passant à la limite dans la relation de récurrence, déterminer les valeurs possibles de l.
- 4. Soient a et b deux réels quelconques.
 - (a) Montrer que, si $0 \leqslant a \leqslant b \leqslant \frac{a^2+b^2}{2}$, alors $b \geqslant 1$ ou a=b=0.
 - (b) Montrer que, si $\frac{a^2+b^2}{2}\leqslant a\leqslant b$, alors $b\leqslant 1$.
- 5. Comparer le signe de $u_{n+3} u_{n+2}$ et celui de $u_{n+2} u_n$ pour une suite appartenant à S.
- 6. On suppose dans cette question que la suite (u_n) (appartenant à S) vérifie la condition suivante : pour un certain entier n, on a $u_n \leq u_{n+2}$ et $u_{n+1} \leq u_{n+2}$.
 - (a) Montrer que $u_{n+1} \leqslant u_{n+2} \leqslant u_{n+3}$.
 - (b) Montrer que (u_n) est croissante à partir du rang n+1, puis strictement croissante ou constante à partir de ce rang.
 - (c) Montrer que $u_{n+2} \geqslant 1$.
 - (d) En déduire que la suite diverge vers $+\infty$ (ou est constante).
- 7. On suppose cette fois que $u_{n+2} \leq u_n$ et $u_{n+2} \leq u_{n+1}$. Montrer en procédant comme dans la question précédente que la suite (u_n) converge vers 0 (si elle n'est pas constante).
- 8. Quelles sont les limites des suites $(u_n(\sqrt{2},0))$ et $(u_n(2,0))$?
- 9. On suppose qu'une suite (u_n) appartenant à S n'a pas pour limite 0, ni $+\infty$, et et qu'elle n'est pas constante.
 - (a) Montrer que $u_1 \neq u_0$.
 - (b) Montrer que u_{n+2} est toujours strictement compris entre u_n et u_{n+1} .
 - (c) On suppose $u_0 < u_1$, montrer que la sous-suite (u_{2n}) est strictement croissante et la sous-suite (u_{2n+1}) strictement décroissante. Prouver ensuite que (u_n) converge vers 1.
 - (d) On obtient la même conclusion si $u_0 > u_1$. Déduire des questions précédentes que tout couple de réels positifs (x, y) appartient à l'un des trois ensembles E_0 , E_1 et E_{∞} .
- 10. Déterminer et représenter graphiquement l'ensemble $C_2 = \{(x,y) \in (\mathbb{R}^+)^2 \mid u_2(x,y) = 1\}.$
- 11. Déterminer une fonction h telle que $u_3(x,y)=1 \Leftrightarrow x=h(y)$. Étudier la fonction h et représenter graphiquement l'ensemble $\mathcal{C}_3=\{(x,y)\in(\mathbb{R}^+)^2\mid u_3(x,y)=1\}$.
- 12. Étudier la position relative des ensembles C_2 et C_3 .
- 13. On admet les résultats suivants concernant les suites de $\mathcal S$:
 - (u_n) diverge vers $+\infty$ si et seulement s'il existe un entier n pour lequel $u_n \ge 1$ et $u_{n+1} \ge 1$.
 - (u_n) converge vers 0 si et seulement s'il existe un entier n tel que $u_n \leq 1$ et $u_{n+1} \leq 1$. Déterminer deux sous-ensembles de $(\mathbb{R}^+)^2$ les plus grands possibles inclus respectivement dans E_0 et dans E_{∞} .