Feuille d'exercices n° 26 : espaces préhilbertiens.

MPSI Lycée Camille Jullian

7 juin 2022

Exercice 1 (* à **)

Montrer que les applications suivantes sont des produits scalaires :

1.
$$(f,g) \mapsto \int_0^1 f(t)g(t)(1-t^2) dt \text{ sur } E = \mathcal{C}([0,1],\mathbb{R}).$$

2.
$$(f,g) \mapsto f(0)g(0) + \int_0^1 f'(t)g'(t) dt \text{ sur } E = \mathcal{C}^1([0,1], \mathbb{R}).$$

3.
$$(P,Q) \mapsto P(1)Q(1) + P'(2)Q'(2) + P''(0)Q''(0)$$
 sur $E = \mathbb{R}_2[X]$.

4.
$$(P,Q) \mapsto \int_0^{2\pi} P(\cos(\theta))Q(\cos(\theta)) dt \text{ sur } \mathbb{R}[X].$$

5.
$$((u_n), (v_n)) \mapsto \sum_{n=0}^{+\infty} u_n v_n$$
, sur $E = \left\{ (u_n)_{n \in \mathbb{N}} \mid \sum_{n=0}^{+\infty} u_n^2 < +\infty \right\}$.

Exercice 2 (*)

Orthonormaliser à l'aide de Gram-Schmidt les familles suivantes :

- 1. $\mathcal{F} = ((0,1,1),(1,0,1),(1,1,0))$ dans \mathbb{R}^3 muni du produit scalaire canonique.
- 2. (f,g,h), où f(t)=1, g(t)=t et h(t)=|t|, dans $\mathcal{C}([-1,1],\mathbb{R})$ pour le produit scalaire $f\cdot g=\int_{-1}^1 f(t)g(t)\ dt$.
- 3. $(1, X, X^2, X^3)$ dans $\mathbb{R}_3[X]$ muni du produit scalaire $P \cdot Q = \sum_{i=0}^3 P(i)Q(i)$.

Exercice 3 (**)

On se place dans \mathbb{R}^3 muni du produit scalaire canonique et on pose $u=(1,2,2),\ v=(-1,4,1)$ et w=(2,5,1).

- 1. Vérifier que (u, v, w) est une base de \mathbb{R}^3 .
- 2. Orthonormaliser la base (u, v, w) en appliquant le procédé de Gram-Schmidt.
- 3. On note F = Vect(u, v). Déterminer la matrice dans la base canonique de la projection orthogonale sur F (qu'on notera p).
- 4. Déterminer la matrice dans la base canonique de la réflexion s par rapport à E.

Exercice 4 (**)

On se place dans l'espace vectoriel $E = \mathbb{R}_3[X]$ muni du produit scalaire $P \cdot Q = \int_{-1}^1 P(t)Q(t) dt$.

- 1. Vérifier qu'il s'agit bien d'un produit scalaire sur E.
- 2. Déterminer une base orthonormale de E pour ce produit scalaire.
- 3. Calculer la distance de X^3 à $\mathbb{R}_2[X]$.

- 4. En déduire la valeur de $\inf_{(a,b,c)\in\mathbb{R}^3}\int_{-1}^1(t^3+at^2+bt+c)^2\ dt$.
- 5. Tracer dans un même repère une allure des courbes représentatives sur [-1,1] de la fonction cube et de son projeté orthogonal calculé à la question 3. Commenter le résultat obtenu.

Exercice 5 (***)

Soit p un projecteur d'un espace vectoriel euclidien E. Montrer que p est un projecteur orthogonal si et seulement si $\forall u \in E$, $||p(u)|| \leq ||u||$.

Exercice 6 (**)

Soient x_1, x_2, \ldots, x_n des réels strictement positifs tels que $\sum_{i=1}^n x_i = 1$. Montrer que $\sum_{i=1}^n \frac{1}{x_i} \ge n^2$. Préciser à quelle condition cette inégalité devient une égalité.

Exercice 7 (**)

Montrer les inégalités suivantes :

$$1. \sum_{k=0}^{n} \sqrt{\binom{n}{k}} \leqslant \sqrt{(n+1)2^n}.$$

2. si
$$(x_1, \ldots, x_n) \in \mathbb{R}^n$$
, $\left(\sum_{k=1}^n \frac{x_k}{2^k}\right)^2 \leqslant \frac{1}{3} \sum_{k=1}^n x_k^2$. Quand a-t-on égalité?

3. si
$$f$$
 est continue strictement positive sur $[0,1]$, $\left(\int_0^1 f(t) \ dt\right)^2 \leqslant \int_0^1 f(t)^3 \ dt \times \int_0^1 \frac{1}{f(t)} \ dt$.

4. si
$$f$$
 est continue sur $[a,b]$ telle que $\int_a^b f(t) dt = 1$, alors $\int_a^b \frac{1}{f(t)} dt \ge (b-a)^2$. Quand a-t-on égalité?

Exercice 8 (***)

On se place dans l'espace $E = \mathcal{C}([0,1],\mathbb{R})$ (espace des fonctions continues sur [0,1], à valeurs dans \mathbb{R}). On pose, $\forall (f,g) \in E^2$, $\varphi(f,g) = \int_0^1 f(t)g(t) + f'(t)g'(t) \ dt$. On notera par ailleurs $F = \{f \in E \mid f(0) = f(1) = 0\}$, et $G = \{f \in E \mid f'' = f\}$.

- 1. Vérifier que φ est un produit scalaire sur l'espace E.
- 2. Montrer que F et G sont supplémentaires orthogonaux pour ce produit scalaire.
- 3. Donner une expression explicite de la projection orthogonale sur G.
- 4. On note enfin $E_{a,b} = \{ f \in E \mid f(0) = a \text{ et } f(1) = b \}.$
 - (a) Exhiber une fonction $f_0 \in E_{a,b}$, calculer sa projection orthogonale sur F et montrer que $E_{a,b} = \{f_0 + h \mid h \in F\}$ (quelle structure a-t-on ainsi défini sur l'ensemble $E_{a,b}$?).
 - (b) Déterminer la valeur de $\inf_{f \in E_{a,b}} \int_0^1 (f^2(t) + f'^2(t)) dt$.

Exercice 9 (**)

Sur l'espace vectoriel $E = \mathbb{R}_n[X]$, on considère le produit scalaire défini par $P \cdot Q = \sum_{k=0}^n P^{(k)}(0)Q^{(k)}(0)$.

- 1. Vérifier qu'il s'agit bien d'un produit scalaire sur E.
- 2. Calculer $X^i \cdot X^j$ pour tous entiers $(i, j) \in \{1, \dots, n\}^2$.
- 3. En déduire une base orthonormale de E pour ce produit scalaire.
- 4. Déterminer le projeté orhogonal d'un polynôme quelconque P sur $\mathbb{R}_k[X]$, pour k < n.

Exercice 10 (*)

Dans \mathbb{R}^4 muni de son produit scalaire canonique, on pose $F = \{(x,y,z,t) \mid x+y+z+t = x-y+z-t = 0\}$. Déterminer la matrice dans la base canonique de la symétrie orthogonale par rapport à F, puis de la symétrie orthogonale par rapport à F^{\perp} .

Exercice 11 (*)

Dans $\mathcal{M}_2(\mathbb{R})$ muni de son produit scalaire canonique, on note $F = \left\{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \mid (a,b) \in \mathbb{R}^2 \right\}$.

- 1. Déterminer une base orthonormale de F.
- 2. Calculer la projection orthogonale d'une matrice M sur F.
- 3. Calculer la distance de la matrice $\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ à F.

Exercice 12 (**)

On souhaite calculer $m = \inf_{(a,b) \in \mathbb{R}^2} \int_0^1 (t - a\sqrt{t} - b)^2 \ dt$.

- 1. Calculer m en utilisant la une distance à un sous-espace vectoriel de dimension finie dans un espace préhilbertien.
- 2. Retrouver la valeur de m par une méthode directe.
- 3. Calculer de même (avec deux méthodes!) $\inf_{(a,b)\in\mathbb{R}^2}\int_0^1 (x^4-ax-b)^2\ dx$.

Exercice 13 (***)

Soit (u_1, \ldots, u_n) une famille de vecteurs dans un espace euclidien E. On appelle matrice de Gram de la famille la matrice $(u_i \cdot u_j)_{1 \leqslant i,j \leqslant n}$, et déterminant de Gram son déterminant, noté $G(u_1, \ldots, u_n)$.

- 1. Exprimer la matrice de Gram en fonction de la matrice $M = \operatorname{Mat}_{\mathcal{B}}(u_1, \dots, u_n)$, où \mathcal{B} est une base orthonormale quelconque de E.
- 2. Montrer que $\ker(M^{\top}M) = \ker(M)$, en déduire que la matrice de Gram a le même rang que la famille (u_1, \ldots, u_n) .
- 3. En déduire que $G(u_1,\ldots,u_n)=0$ si et seulement si la famille (u_1,\ldots,u_n) n'est pas libre.
- 4. Montrer que, si $u_n \in (\text{Vect}(u_1, \dots, u_{n-1}))^{\perp}$, alors $G(u_1, \dots, u_n) = G(u_1, \dots, u_{n-1}) \times ||u_n||^2$.
- 5. Si F est un sous-espace de E de base (f_1,\ldots,f_k) , montrer que, pour tout vecteur $u\in E$,

$$d(u,F) = \sqrt{\frac{G(f_1,\ldots,f_k,u)}{G(f_1,\ldots,f_k)}}.$$

Exercice 14 (***)

Soient (u_1, u_2, \ldots, u_k) des vecteurs distincts d'un espace euclidien de dimension n vérifiant $\forall (i, j) \in \{1, 2, \ldots, k\}^2, i \neq j \Rightarrow u_i \cdot u_j < 0$. Montrer que $k \leq n+1$ (autrement dit, on ne peut pas placer plus de n+1 vecteurs en dimension n faisant des angles deux à deux obtus).

Exercice 15 (***)

Dans $E = \mathbb{R}[X]$, on définit une forme bilinéaire par $\varphi(P,Q) = \int_0^{+\infty} P(t)Q(t)e^{-t} dt = \lim_{n \to +\infty} \int_0^n P(t)Q(t)e^{-t} dt$. On posera par ailleurs, pour tout entier naturel n, $f_n(x) = x^n e^{-x}$, et $h_n(x) = e^x f^{(n)}(x)$.

1. Calculer h_0 , h_1 , h_2 , h_3 et représenter dans un même repère l'allure des courbes représentatives de ces polynômes sur l'intervalle [0,1].

3

- 2. Justifier que h_n est toujours une fonction polynômiale, et calculer explicitement ses coefficients.
- 3. Vérifier que φ définit un produit scalaire sur E.
- 4. Montrer que la famille (h_0, \ldots, h_n) est toujours une famille orthogonale.
- 5. Calculer $||h_n||$, en déduire une base orthonormale de $\mathbb{R}_n[X]$ pour le produit scalaire φ .
- 6. Calculer $d(X^3, \mathbb{R}_2[X])$ (on précisera le projeté orthogonal de X^3 sur $\mathbb{R}_2[X]$ lors du calcul).

Exercice 16 (*)

Soit
$$A = \frac{1}{7} \begin{pmatrix} 3 & 2 & b \\ -2 & -6 & c \\ 6 & a & d \end{pmatrix}$$
. Déterminer des valeurs de a, b, c et d telles que $A \in SO_3(\mathbb{R})$.

Exercice 17 (**)

Déterminer la nature géométrique et les éléments caractéristiques des deux endormorphismes de \mathbb{R}^3 dont les matrices dans la base canonique sont les suivantes :

a)
$$A = \frac{1}{4} \begin{pmatrix} 3 & 1 & \sqrt{6} \\ 1 & 3 & -\sqrt{6} \\ -\sqrt{6} & \sqrt{6} & 2 \end{pmatrix}$$
 b) $B = -\frac{1}{9} \begin{pmatrix} -8 & 4 & 1 \\ 4 & 7 & 4 \\ 1 & 4 & -8 \end{pmatrix}$

Exercice 18 (***)

Soit
$$A = (a_{i,j}) \in \mathcal{O}_n(\mathbb{R})$$
, montrer que $\sum_{i=1}^n \sum_{j=1}^n |a_{i,j}| \leq n\sqrt{n}$.

Problème (***)

On s'intéresse dans cet exercice à une famille célèbre de polynômes, les polynômes de Legendre, définis de la façon suivante : pour tout entier naturel n, on pose $P_n = (X^2 - 1)^n$, puis $L_n = \frac{1}{2^n n!} P_n^{(n)}$ (ce sont les polynômes L_n qui sont appelés polynômes de Legendre). On notera par ailleurs, pour tout polynôme P, $f(P) = ((X^2 - 1)P')'$.

- 1. Calculer explicitement L_0 , L_1 , L_2 et L_3 .
- 2. Déterminer le degré et le coefficient dominant des polynômes L_n , et vérifier que (L_0, \ldots, L_n) est une base de $\mathbb{R}_n[X]$.
- 3. Déterminer la parité des polynômes L_n .
- 4. Montrer que $L_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (X-1)^k (X+1)^{n-k}$, en déduire la valeur de $L_n(1)$ et $L_n(-1)$.
- 5. Montrer que $P'_{n+1} 2(n+1)XP_n = 0$, puis que $(X^2 1)P'_n 2nXP_n = 0$.
- 6. En déduire que $L'_{n+1} = XL'_n + (n+1)L_n$, et que $f(L_n) = n(n+1)L_n$. Donner la matrice de $f_{|\mathbb{R}_n[X]}$ dans la base (L_0, \ldots, L_n) .

4

- 7. On pose désormais, $\forall (P,Q) \in \mathbb{R}[X]^2$, $\varphi(P,Q) = \int_{-1}^1 P(t)Q(t) \ dt$.
 - (a) Montrer que φ définit un produit scalaire sur $\mathbb{R}[X]$.
 - (b) Montrer que $\varphi(f(P), Q) = \varphi(P, f(Q))$.
 - (c) Montrer que la famille (L_0, \ldots, L_n) est orthogonale pour φ .
 - (d) Montrer que $||L_n||^2 = \frac{2}{2n+1}$
 - (e) Calculer la distance de X^{n+1} à $\mathbb{R}_n[X]$.