Devoir Surveillé nº 6

MPSI Lycée Camille Jullian

5 février 2022

Exercice 1: Calcul matriciel.

On considère dans tout cet exercice les matrices $A = \begin{pmatrix} -3 & -1 & -3 \\ 2 & 3 & 0 \\ 2 & 1 & 2 \end{pmatrix}$ et $P = \begin{pmatrix} 2 & -1 & -1 \\ -1 & 1 & 2 \\ -1 & 1 & 1 \end{pmatrix}$.

- 1. Calculer explicitement les matrices A^2 et A^3 .
- 2. Déterminer trois entiers a, b et c tels que $A^3 = aA^2 + bA + cI_3$ (on écrira explicitement la résolution du système nécessaire au calcul de ces coefficients).
- 3. Déterminer à l'aide de la question précédente si la matrice A est inversible, et le cas échéant, donner son inverse A^{-1} .
- 4. En notant Q le polynôme annulateur de A (donc $Q = X^3 aX^2 bX c$), déterminer les racines du polynôme Q.
- 5. Calculer l'inverse P^{-1} de la matrice P.
- 6. Calculer $P^{-1}AP$, matrice que l'on notera D par la suite (D doit être une matrice diagonale). Quel lien peut-on faire avec le polynôme Q de la question 4?
- 7. Donner l'expression de D^n , puis montrer que, $\forall n \in \mathbb{N}$, $A^n = PD^nP^{-1}$ (on ne demande pas de calculer explicitement A^n).
- 8. On définit trois suites (u_n) , (v_n) et (w_n) par les conditions suivantes : $u_0 = v_0 = 1$, $w_0 = 0$ et $\forall n \in \mathbb{N}$, $u_{n+1} = -3u_n v_n 3w_n$, $v_{n+1} = 2u_n + 3v_n$ et $w_{n+1} = 2u_n + v_n + 2w_n$. On notera de plus $X_n = \begin{pmatrix} u_n \\ v_n \\ w_n \end{pmatrix}$.
 - (a) Établir une relation entre X_{n+1} et X_n faisant intervenir la matrice A.
 - (b) En déduire une relation entre X_n et X_0 qu'on démontrera rigoureusement.
 - (c) Calculer explicitement u_n , v_n et w_n en fonction de n.

Exercice 2 : Polynômes de Legendre.

On définit, pour tout entier naturel n, les polynômes P_n par $P_n = (X+1)^n(X-1)^n$ (en particulier, $P_0 = 1$). Le n-ème polynôme de Legendre, noté L_n pour toute la suite de l'exercice, est le polynôme dérivé n-ème du polynôme $P_n : L_n = P_n^{(n)}$.

- 1. Calculer les valeurs de L_0 , L_1 , L_2 et L_3 .
- 2. Déterminer le degré et le coefficient dominant du polynôme L_n (on démontrera naturellement les résultats conjecturés).
- 3. Soit f une fonction paire et dérivable, que peut-on dire de la parité de la fonction f'? Et si f est impaire et dérivable? En déduire la parité du polynôme L_n .
- 4. Déterminer les valeurs de $P_n^{(k)}(-1)$ et de $P_n^{(k)}(1)$ pour tout entier naturel $k \leq n-1$.
- 5. Montrer que pour $n \ge 1$, le polynôme L_n est scindé à racines simples, et que ses racines appartiennent toutes à l'intervalle]-1,1[(on prouvera par récurrence que $P_n^{(k)}$ admet k racines dans]-1,1[en s'aidant du théorème de Rolle).
- 6. À l'aide de la formule de Leibniz, donner une expression explicite de L_n (on essaiera de simplifier au maximum l'écriture obtenue en utilisant des factorielles ou des coefficients binômiaux). En déduire la valeur de $L_n(1)$ et $L_n(-1)$.

- 7. Démontrer que $P'_{n+1} = 2(n+1)XP_n$. En déduire que $P''_{n+1} = 2(n+1)(2n+1)P_n + 4n(n+1)P_{n-1}$.
- 8. En dérivant n fois la première relation obtenue à la question précédente, et n-1 fois la deuxième relation, trouver une relation simple entre L_{n+1} , L_n et L_{n-1} .
- 9. En développant $(X^2 1)^n$ à l'aide de la formule du binôme de Newton, calculer les coefficients du polynôme L_n (on essaiera à nouveau de faire apparaître des coefficients binômiaux pour simplifier l'expression obtenue).

Problème : Analyse (inspiré d'un sujet de Petites Mines).

A. Étude d'une première fonction.

On définit une fonction f sur \mathbb{R}^* par $f(x) = \frac{\arctan(x)}{x}$.

- 1. Montrer qu'on peut prolonger la fonction f par continuité en 0 (penser à un taux d'accroissement). On continuera à noter f la fonction ainsi prolongée.
- 2. Quelle est la parité de la fonction f? En admettant que f est dérivable en 0, que vaut nécessairement f'(0)?
- 3. Calculer la dérivée f' de la fonction f.
- 4. À l'aide d'une intégration par parties, montrer que $\int_0^x \frac{t^2}{(1+t^2)^2} dt = -\frac{1}{2}x^2f'(x)$.
- 5. Étudier les variations de la fonction f, puis tracer une allure soignée de sa courbe représentative.

B. Étude d'une deuxième fonction.

On définit une nouvelle fonction g par $g(x) = \frac{1}{x} \int_0^x f(t) dt$ (cette fonction est naturellement définie sur \mathbb{R}^*).

- 1. Quelle est la parité de la fonction g?
- 2. Étudier la possibilité d'un prolongement par continuité de la fonction g en 0.
- 3. Montrer que, $\forall x \in \mathbb{R}, f(x) \leq g(x) \leq 1$.
- 4. Montrer que, $\forall x \neq 0, \ g'(x) = \frac{1}{x}(f(x) g(x))$. En déduire les variations de la fonction g.
- 5. Montrer que $\lim_{x\to +\infty} \frac{1}{x} \int_1^x f(t) dt = 0$ et en déduire la limite de la fonction g en $+\infty$.

C. Une suite récurrente.

On considère désormais une suite (u_n) vérifiant la relation de récurrence $u_{n+1} = g(u_n)$ (la valeur de u_0 étant un réel quelconque).

- 1. Montrer que, $\forall x \geqslant 0$, $0 \leqslant \frac{x}{1+x^2} \leqslant \frac{1}{2}$.
- 2. Montrer que, si x > 0, $|g'(x)| \le \frac{1}{x^2} \int_0^x \frac{t^2}{1+t^2} dt$, puis que $|g'(x)| \le \frac{1}{4}$. Montrer que cette inégalité reste vraie si x < 0 (on admettra pour la suite qu'elle serait également vraie pour x = 0, où g est en fait dérivable).
- 3. Montrer que la fonction g admet un unique point fixe qu'on notera désormais α , et que $\alpha \in]0,1]$.
- 4. Montrer que, $\forall n \in \mathbb{N}, |u_{n+1} \alpha| \leq |u_n \alpha|$, puis montrer la convergence de la suite (u_n) vers α .