Devoir Surveillé nº 2

MPSI Lycée Camille Jullian

9 octobre 2021

Exercice 1

On note dans tout cet exercice E l'ensemble de toutes les applications $f: \mathbb{R} \to \mathbb{R}$ et F le sous-ensemble de E constitué des applications bijectives. Dans tout l'exercice on considèrera qu'une application est nécessairement définie sur \mathbb{R} tout entier (pas de valeur interdite). On définit enfin une relation binaire \sim sur l'ensemble E de la façon suivante : $f \sim g$ si et seulement si $\exists h \in F$, $g = h^{-1} \circ f \circ h$.

- 1. Montrer que la relation \sim est une relation d'équivalence sur l'ensemble E.
- 2. Quelle est la classe d'équivalence de la fonction f constante égale à 0 pour cette relation?
- 3. Quelle est la classe d'équivalence de l'application id pour cette relation?
- 4. On suppose que f est une application injective. Montrer que, si $f \sim g$, alors g est aussi injective.
- 5. On suppose que f est une application surjective. Montrer que, si $f \sim g$, alors g est aussi surjective.
- 6. Deux applications bijectives appartiennent-elles nécessairement à la même classe d'équivalence?
- 7. Montrer que, si $f \in F$ et $f \sim g$, alors $g \in F$, et $f^{-1} \sim g^{-1}$.
- 8. En notant $f^n = f \circ f \circ \cdots \circ f$, montrer que $f \sim g \Rightarrow f^n \sim g^n$.
- 9. Montrer que la fonction $h: x \mapsto \ln(x + \sqrt{1 + x^2})$ est réciproque de la fonction sh.
- 10. À l'aide de la question précédente, montrer que les fonctions f et g définies par f(x) = 2x et $g(x) = 2x\sqrt{1+x^2}$ appartiennent à la même classe d'équivalence pour la relation \sim .

Exercice 2

On considère dans cet exercice la fonction définie par $f(x) = \left| \frac{x+2}{x^2 - x - 2} \right|$.

- 1. Déterminer le domaine de définition de la fonction f.
- 2. Calculer l'image par f du réel $\frac{1}{2}$, puis celle de $2\sqrt{2}$ (on simplifiera ce qui peut l'être).
- 3. Déterminer les antécédents éventuels par f de 1, puis de -1.
- 4. Résoudre l'inéquation $f(x) \ge 1$.
- 5. Déterminer les limites de f aux bornes de son domaine de définition.
- 6. Étudier les variations de la fonction f, puis dresser son tableau de variations complet.
- 7. Tracer une allure de la courbe représentative de la fonction f.

Exercice 3

On cherche à étudier dans cet exercice la fonction f définie par $f(x) = \frac{e^x - 1}{e^x - x}$. On notera \mathcal{C} la courbe représentative de la fonction f.

- 1. Pour tout réel x, on pose $g(x) = e^x x 1$.
 - (a) Étudier les variations de g en calculant sa dérivée, et en déduire le signe de g(x).
 - (b) Rappeler précisément quel résultat du cours aurait pu permettre d'obtenir ce signe sans recourir à une étude de variations.
- 2. On pose dans cette question $h(x) = (2-x)e^x 1$.
 - (a) Étudier la fonction h et dresser son tableau de variations complet.
 - (b) Montrer rigoureusement que l'équation h(x) = 0 admet une unique solution α , et que $\alpha > 1$.
 - (c) En déduire, en fonction de la valeur de x, le signe de h(x).
- 3. Justifier que $\mathcal{D}_f = \mathbb{R}$.
- 4. Déterminer les limites de f aux bornes de son ensemble de définition, et préciser les éventuelles asymptotes à la courbe C.
- 5. Étudier les variations de la fonction f, puis dresser son tableau de variations complet.
- 6. Étudier la position relative de la courbe \mathcal{C} et de la droite (D) d'équation y = x (on pourra exploiter des résultats obtenus dans les premières questions de l'exercice).
- 7. Donner une équation de la tangente à \mathcal{C} en son point d'abscisse 0.
- 8. Tracer une allure soignée de la courbe C, en faisant apparaître tous les éléments étudiés dans les questions précédentes.
- 9. Déterminer une primitive de la fonction f (on doit normalement reconnaître une forme particulière permettant de calculer directement cette primitive), en déduire la valeur de l'intégrale $I = \int_0^1 f(t) \ dt.$
- 10. On pose $u_n = \int_0^n (f(t) 1) dt$, calculer u_n en fonction de n, puis déterminer $\lim_{n \to +\infty} u_n$.
- 11. Donner une interprétation graphique du nombre $u_n u_1$, puis interpréter géométriquement la limite de cette valeur quand n tend vers $+\infty$.

Exercice 4

Effectuer une étude la plus complète possible de la fonction $f: x \mapsto \sqrt{1 - 2x\sqrt{1 - x^2}}$. Plus il y a d'éléments apportés sur la courbe qui conclura bien entendu votre étude, mieux ce sera!