Devoir Maison no 13

MPSI Lycée Camille Jullian

pour le 3 mai 2022

Problème : étude théorique de la diagonalisabilité.

Dans tout ce problème, f désigne un endomorphisme d'un espace vectoriel E, supposé de dimension finie n. On notera comme d'habitude f^n l'endomorphisme obtenu en composant f par lui-même

$$n$$
 fois (avec $f^0 = \mathrm{id}_E$), et pour tout polynôme $P = \sum_{k=0}^n a_k X^k$, on posera $P(f) = \sum_{k=0}^n a_k f^k$.

I. Polynômes annulateurs d'un endomorphisme.

Un polynôme P est appelé **polynôme annulateur** de f si P(f) est l'application nulle.

- 1. Donner un polynôme annulateur de f dans chacun des cas suivants (en expliquement rapidement votre choix):
 - (a) f est l'endormorphisme nul.
 - (b) $f: M \mapsto M^{\top}$ défini sur $E = \mathcal{M}_n(\mathbb{R})$.
 - (c) $f = id_E$.
 - (d) f est une projection (quelconque) de E.
 - (e) f est un endomorphisme nilpotent.
- 2. Expliquer pourquoi, si M est la matrice représentative de f dans une base quelconque de E, tout polynôme annulateur de M est aussi un polynôme annulateur de f.
- 3. Expliquer pourquoi la famille d'applications linéaires $(id_E, f, f^2, \dots, f^{n^2})$ est nécessairement liée dans l'espace vectoriel $\mathcal{L}(E)$. En déduire qu'il existe nécessairement un polynôme annulateur de f.
- 4. On note I_f l'ensemble des polynômes annulateurs de f, qui est donc un sous-ensemble non vide de $\mathbb{K}[X]$.
 - (a) Montrer que I_f est stable par somme : $\forall (P,Q) \in I_f^2$, alors $P+Q \in I_f$.
 - (b) Montrer que $\forall P \in I_f, \forall R \in \mathbb{K}[X], RP \in I_f$.
 - (c) Un sous-ensemble « stable par somme et par produit par n'importe quel polynôme » est appelé **idéal** de $\mathbb{K}[X]$. On admet que, pour tout idéal I de $\mathbb{K}[X]$, il existe toujours un polynôme $P \in I$ tel que $I = \{PQ \mid Q \in \mathbb{K}[X]\}$. Montrer alors, que pour $I = I_f$, il existe un unique polynôme P_f unitaire qui vérifie $I_f = \{P_fQ \mid Q \in \mathbb{K}[X]\}$. Ce polynôme P_f sera alors appelé **polynôme minimal** de f.

1

II. Sous-espaces propres d'un endomorphisme.

Soit $\lambda \in \mathbb{K}$ une valeur propre de f, on appelle **sous-espace propre associé à** λ le sous-ensemble $\{u \in E \mid f(u) = \lambda u\}$. On le notera pour la suite E_{λ} ce sous-espace propre. On rappelle que, par définition, λ valeur propre de f implique $E_{\lambda} \neq \{0\}$.

- 1. Montrer que $E_{\lambda} = \ker(f \lambda \operatorname{id}_{E})$.
- 2. Montrer que E_{λ} est un sev de E stable par l'application f.
- 3. Montrer plus généralement que, si $\lambda_1, \ldots, \lambda_k$ sont des valeurs propres de f, alors $E_{\lambda_1} + \cdots + E_{\lambda_k}$ est un sev de E stable par f.
- 4. On veut désormais faire le lien entre le polynôme minimal P_f défini dans la première partie, et les valeurs propres de f.
 - (a) En considérant un vecteur propre associé à λ , montrer que toute valeur propre de f est racine de tout polynôme annulateur de f, et donc de P_f .
 - (b) Réciproquement, si α est racine de P_f , en factorisant sous la forme $P_f = (X \alpha)Q$, montrer que α est nécessairement valeur propre de f.
 - (c) En déduire que le spectre de f est constitué des racines de P_f , et qu'il contient donc un nombre fini de valeurs propres.
- 5. Montrer que les sous-espaces propres E_{λ_i} associés aux différentes valeurs propres de f sont en somme directe (notion non définie en cours pour plus de deux espaces), c'est-à-dire que la réunion de bases de ces sous-espaces propres forme une base de leur somme.
- 6. Montrer que f est diagonalisable si et seulement si $E = \bigoplus_{\lambda \in Sp(f)} E_{\lambda}$, où Sp(f) désigne le spectre de f, et la notation \oplus désigne une somme directe telle que décrite à la question précédente.