Devoir Maison nº 12 : corrigé

MPSI Lycée Camille Jullian

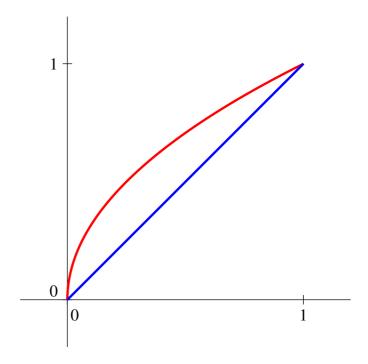
4 avril 2022

Transformée de Fenchel-Legendre.

I. Exemples.

- 1. (a) La fonction f étant de classe C^{∞} , on peut évidemment se contenter de la caractérisation via le signe de la dérivée seconde : f'(x) = x puis f''(x) = 1 > 0, donc f est convexe sur \mathbb{R} . On note donc $F_p(x) = px \frac{1}{2}x^2$. Cette fonction est elle-même dérivable sur \mathbb{R} , de dérivée $F'_p(x) = p x$, qui s'annule quand x = p. La fonction F_p est donc croissante puis décroissante et admet un maximum en p de valeur $F_p(p) = p^2 \frac{1}{2}p^2 = \frac{1}{2}p^2$.
 - (b) On a donc $J_f = \mathbb{R}$ et $f^* = f$ (la variable n'est pas la même mais la fonction l'est bien!). Pas besoin donc de refaire de calcul, on aura nécessairement $f^{**} = f^* = f$.
- 2. (a) Par définition, $F_p(x) = px e^x$. La fonction F_p est bien sûr dérivable sur \mathbb{R} et $F_p'(x) = p e^x$. Distinguons donc trois cas comme on nous le conseille gentiment :
 - si p < 0, F'_p est toujours négative, donc F_p est strictement décroissante. De plus, $\lim_{x \to -\infty} F_p(x) = +\infty$, et $\lim_{x \to +\infty} F_p(x) = -\infty$ (ça ce sera le cas quelle que soit la valeur de p par croissance comparée). La fonction F_p est donc bijective de \mathbb{R} dans \mathbb{R} .
 - si p = 0, on a simplement $F_0(x) = -e^x$, qui est décroissante, tend vers 0 en $-\infty$ (et vers $-\infty$ en $+\infty$).
 - enfin, si p > 0, F'_p s'annule en $x = \ln(p)$, la fonction F_p est alors croissante puis décroissante, admettant un maximum de valeur $F(\ln(p)) = p \ln(p) p = p(\ln(p) 1)$. De plus, $\lim_{x \to -\infty} F_p(x) = -\infty$ dans ce cas.
 - (b) C'est une conséquence immédiate des calculs précédents, F_p est majorée si et seulement si $p \geqslant 0$, et le maximum de F_p est égal à $p \ln(p) p$ si p > 0. Si p = 0, F_p n'a pas de maximum mais effectue une bijection de $\mathbb R$ vers $]-\infty,0[$, donc $f^*(0)=\sup(F_0)=0$.
 - (c) Oui, la fonction est continue en 0 puisque $\lim_{x\to 0} p \ln(p) = 0$ par croissance comparée. De plus, $\tau_0(h) = \frac{h \ln(h) h}{h} = \ln(h) 1$ a une limite infinie quand h tend vers 0. La fonction f^* n'est donc pas dérivable en 0 (on aura une tangente verticale à l'origine). Pour la convexité, on peut dériver deux fois sur \mathbb{R}^{+*} : $(f^*)'(p) = \ln(p) + 1 1 = \ln(p)$ puis $(f^*)''(p) = \frac{1}{p} > 0$, donc la fonction f^* est bien convexe.
 - (d) On a $F_x^*(p) = xp p\ln(p) + p$. Cette fonction est dérivable sur $]0, +\infty[$, de dérivée $(F_x^*)'(p) = x \ln(p)$, qui s'annule pour $p = e^x$. La fonction F_x^* est donc croissante sur $]0, e^x[$, puis décroissante sur $]e^x, +\infty[$, et admet pour maximum $F_x^*(e^x) = xe^x e^x x + e^x = e^x$. On en déduit que $J_{f^*} = \mathbb{R}$ et $f^{**} = f$.

- 3. (a) On pose $F_p(x) = px \sqrt{x}$, qui est définie sur [0,1] et dérivable sur]0,1], de dérivée $F_p'(x) = p \frac{1}{2\sqrt{x}} = \frac{2p\sqrt{x}-1}{2\sqrt{x}}$. Si $p \leqslant 0$, la fonction F_p est décroissante et admet donc un maximum en 0, de valeur $F_p(0) = 0$. Si p > 0, la dérivée s'annule en $\frac{1}{4p^2}$. Si $p \leqslant \frac{1}{2}$, cette valeur d'annulation est supérieure ou égale à 1 et la fonction F_p est donc toujours décroissante, avec maximum égal à 0 atteint en 0. Mais si $p \geqslant \frac{1}{2}$, la fonction sera décroissante puis croissante, et atteint donc son maximum soit en 0 soit en 1.
 - (b) On a donc $J_f = \mathbb{R}$, et $\forall p \leq \frac{1}{2}$, $f^*(p) = 0$. Si $p \geq \frac{1}{2}$, on calcule $F_p(1) = p 1$. Cette valeur devient bien sûr positive quand $p \geq 1$, donc on a en fait encore $f^*(p) = 0$ si $\frac{1}{2} \leq p \leq 1$, puis $f^*(p) = p 1$ si $p \geq 1$.
 - (c) D'après les calculs précédents, $F_x*(p)=xp$ si $p\leqslant 1$ et $F_x^*(p)=xp-p+1$ si $p\geqslant 1$. Si x<0, la fonction F_x^* ne peut pas être majorée puisqu'elle a une limite égale à $+\infty$ en $-\infty$. Si x=0, on a $F_x^*(p)=0$ sur $]-\infty,1[$ puis $F_x^*(p)=1-p\leqslant 0$ ensuite, donc $0\in J_{f^*}$ et $f^{**}(0)=0$. Si $0< x\leqslant 1$, F_x^* est croissante sur $]-\infty,1]$, puis $F_x^*(p)=1+(x-1)p$, donc F_x^* devient décroissante à partir de p=1 et a donc un maximum égal à $F_x^*(1)=x-1+1=x$. Enfin, si x>1, F_x^* reste croissante sur $[1,+\infty[$ (coefficient directeur égal à x-1) et admet une limite infinie en $+\infty$ donc ne peut pas être majorée. Finalement, on obtient $J_{f^*}=[0,1]$ et $\forall x\in [0,1], f^{**}(x)=x$.
 - (d) Comme annoncé dans l'énoncé, la droite y = x représente la courbe convexe située endessous de celle de f qui soit celle correspondant à la plus grand fonction possible.



II. Inégalité de Young.

- 1. Par définition, une borne supérieure est un majorant de l'ensemble considéré donc $\forall x \in I$, $\forall p \in J_f, F_p(x) = px f(x) \leqslant f^*(p)$, ce qui est exactement l'inégalité demandée.
- 2. On peut écrire l'inégalité précédente sous la forme $\forall x \in I, \forall p \in J_f, F_x^*(p) \leqslant f(x)$. Cela prouve à la fois que F_x^* est majorée quand $p \in J_f$, donc admet une borne supérieure (l'ensemble étant non vide puisqu'on a supposé $J_f \neq \emptyset$), et que cette borne supérieure est nécessairement inférieure ou égale à f(x) qui est un majorant de l'ensemble des valeurs prises par F_x^* sur J_f . On a donc bien $I \subset J_{f^*}$, et $f^{**}(x) \leqslant f(x)$.
- 3. Supposons p et q appartenant tous deux à J_f , donc vérifiant $\forall x \in I$, $px \leqslant f(x) + f^*(p)$ et $qx \leqslant f(x) + f^*(q)$, on peut alors écrire, $\forall t \in [0,1]$, $tpx + (1-t)qx \leqslant tf(x) + tf^*(p) + (1-t)f(x) + (1-t)f^*(q)$ (les facteurs t et 1-t étant tous les deux positifs, on peut additionner sans problème les inégalités), donc $(tp+(1-t)q)x f(x) \leqslant tf^*(p) + (1-t)f^*(q)$. En notant r = tp+(1-t)q, on a donc $F_r(x) \leqslant tf^*(p) + (1-t)f^*(q)$. Autrement dit, $r \in J_f$ (la fonction J_r étant majorée sur I), et $f^*(r) \leqslant tf^*(p) + (1-t)f^*(q)$ puisque cette valeur est un majorant des valeurs prises par la fonction F_r . Comme tout élément de l'intervalle [p,q] peut être écrit sous la forme tp+(1-t)q, cela prouve que $[p,q] \subset J_f$ dès que p et q appartiennent à J_f , et donc que J_f est un intervalle. De plus, on a bien prouvé en passant que $f^*(r) \leqslant tf^*(p) + (1-t)f^*(q)$, c'est-à-dire exactement la définition de la convexité de la fonction f^** .

III. Transformée de Fenchel-Legendre d'une fonction strictement convexe.

- 1. La fonction f étant supposée de classe C^1 , f' est continue. Comme on la suppose strictement croissante, elle est donc bijective, et sa réciproque sera elle aussi strictement croissante (théorème de la bijection).
- 2. C'est la définition même de la bijection!
- 3. On sait que $F_p(x) = px f(x)$, et que F_p est dérivable sur I, de dérivée $F'_p(x) = p f'(x)$. Comme f' est croissante, et $f'(x_p) = p$, on en déduit facilement que F_p est croissante sur $I \cap]-\infty, x_p]$ (notation peu lisible, mais qui désigne simplement la partie de l'intervalle I située à gauche de x_p) puis décroissante ensuite. Elle admet donc un maximum en x_p de valeur $F_p(x_p) = px_p f(x_p)$. On en déduit que $J \subset J_f$ et que, $\forall p \in J$, $f^*(p) = px_p f(x_p)$, avec $f'(x_p) = p$, donc $x_p = g(p)$. Autrement dit, $f^*(p) = pg(p) f(g(p))$. Il n'y a par contre aucune raison que J soit **égal** à J_f , encore une imprécision dans l'énoncé.
- 4. Appliquons donc l'inégalité de Young : $px \leq f(x) + f^*(p)$, donc $xp f^*(p) \leq f(x)$, pour x variant dans I et p dans J_f . En fait on n'a à nouveau strictement rien à faire dans cette question.
- 5. On sait déjà via le résultat de la question précédente que $x \in J_{f^*}$ et que $f^{**}(x) \leq f(x)$. Comme $p \in J \subset J_f$, on peut calculer l'expression $xp f^*(p)$ pour p = f'(x), ce qui donne xf'(x) f'(x)g(f'(x)) + f(g(f'(x))) en exploitant la formule obtenue précédemment. Mais comme g est la réciproque de f', cette expression vaut plus simplement xf'(x) f'(x)x + f(x) = f(x). Comme f(x) est un majorant de l'ensemble des valeurs $\{px f^*(p) \mid p \in J_f\}$, et qu'il est égal à une de ces valeurs, c'est donc qu'il en est en fait le maximum, et que $f^{**}(x) = f(x)$.

IV. Une dernière propriété.

1. On a déjà tout fait : $I \subset J_f$, puis $J_f \subset J_{f^*}$ (pour la même raison!) donc f^{**} est bien définie sur I. De plus, f^* est toujours une fonction convexe, donc f^{**} qui est la transformée de f^* également. Enfin, on a démontré dans la partie II que $f^{**}(x) \leq f(x)$.

- 2. (a) On sait que $p \in J_h$ si $\{px h(x)\}$ est majoré quand x parcourt I, autrement dit s'il existe un réel k tel que, $\forall x \in I$, $px h(x) \leq k$. On peut écrire cette inégalité sous la forme $px k \leq h(x)$, ce qui revient exactement à dire qu'il existe une droite de pente p minorant h sur I.
 - (b) Puisque h est convexe, sa courbe est située au-dessus de toutes ses tangentes. En particulier, si p correspond à la pente d'une de ces tangentes, on aura donc une droite de pente p minorant h, ce qui prouve que $J_f \neq \emptyset$ (au pire, J_f peut être réduit à une seule valeur si toutes les tangentes à \mathcal{C}_h ont la même pente, ce qui se produira si h est une fonction affine).
 - (c) C'est essentiellement évident : si k majore $\{px-h(x)\}$, alors il majore a fortiori $\{px-f(x)\}$ puisqu'on a supposé $h(x) \leq f(x)$. On a donc $J_h \subset J_f$, et tout majorant fonctionnant pour h étant aussi valable pour f, $f^*(p) \leq h^*(p)$ (autrement dit, $h^*(p)$ est un majorant de $\{px-f(x)\}$, donc supérieur à $f^*(p)$ qui est le plus petit de tous les majorants de cet ensemble).
 - (d) On peut appliquer aux fonctions f^* et h^* le même raisonnement que ci-dessus : $f^*(p) \leq h^*(p), J_{f^*} \neq \emptyset$ et même $I \subset J_{f^*}$, ce qui prouve que $J_{h^*} \neq \emptyset$ puisque $J_{f^*} \subset J_{h^*}$ (même raison que dans la question précédente!), on obtient alors l'inégalité valable sur I tout entier $h^{**}(x) \leq f^{**}(x)$, ce qui prouve bien que $h(x) \leq f^{**}(x)$ en admettant que $h^{**}(x) = h(x)$ pour toute fonction convexe. On a donc bien prouvé que f^{**} était la plus grande fonction convexe minorant f (au moins avec l'hypothèse \mathcal{C}^1 imposée en cours de route).