Feuille d'exercices n° 14 : Espaces vectoriels

PTSI B Lycée Eiffel

20 février 2020

Vrai-Faux

- 1. Un sous-ensemble d'un espace vectoriel E qui est stable par somme et par produit par un réel est un sous-espace vectoriel de E.
- 2. L'intersection de deux sous-espaces vectoriels d'un espace E est toujours un sous-espace vectoriel de E.
- 3. Une famille de n vecteurs dans un espace de dimension n est libre si et seulement si elle est génératrice.
- 4. Deux sous-espaces F et G d'un même espace E sont supplémentaires si $F \cap G = \{0\}$ et $F \cup G = E$.
- 5. Les espaces vectoriels classiques \mathbb{R}^n , $\mathbb{R}_n[X]$ et $\mathcal{M}_n(\mathbb{R})$ sont de dimension n.

Exercice 1 (*)

On se place dans l'ensemble E des fonctions \mathcal{C}^{∞} de \mathbb{R} dans \mathbb{R} (il s'agit bien d'un espace vectoriel). Parmi les ensembles suivants, lesquels sont des sous-espaces vectoriels de E?

- fonctions paires
- fonctions admettant un minimum global
- ullet fonctions s'annulant une infinité de fois sur $\mathbb R$
- fonctions vérifiant $\forall x \in \mathbb{R}, f(2x) = f(x^2)$
- fonctions admettant une tangente horizontale en x=5
- fonctions vérifiant f''(x) = 3f'(x) 2f(x)
- fonctions admettant en $+\infty$ une asymptote (horizontale ou oblique)

Exercice 2 (*)

Parmi tous les sous-ensembles suivants de $E = \mathbb{R}_3[X]$, déterminer ceux qui sont des sous-espaces vectoriels, donner leur dimension ainsi qu'une base pour chacun d'eux.

- 1. $\{P \in E \mid P(2) = 0\}$
- 2. $\{P \in E \mid P(0) = 2\}$
- 3. $\{P \in E \mid P + P'' = 0\}$
- 4. $\{P \in E \mid P \in \mathbb{R}_1[X]\}$
- 5. $\{P \in E \mid P(1) = P(2) = P(3) = 0\}$
- 6. $\{P \in E \mid \int_0^2 P(x) \ dx = 0\}$
- 7. $\{P \in E \mid \int_0^2 P(x) \ dx = 0 \text{ et } P(1) = 0\}$
- 8. $\{P \in E \mid P(1) = P'(1) = 0\}$
- 9. $\{P \in E \mid P(X+1) = 2P(X)\}$

Exercice 3 (**)

Dans chacun des cas suivants, déterminer si la famille \mathcal{F} est une base de E, et déterminer si possible les coordonnées de x dans \mathcal{F} .

- 1. $E = \mathbb{R}^3$; $\mathcal{F} = ((-1, 1, 1); (1, -1, 1); (1, 1, -1))$ et x = (2, 3, 4).
- 2. $E = \mathbb{R}_3[X]$; $\mathcal{F} = (1; X; X(X-1); X(X-1)(X-2))$ et $x = X^3$.

3.
$$E = \mathcal{M}_2(\mathbb{R})$$
; $\mathcal{F} = \left(\begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}; \begin{pmatrix} 0 & 2 \\ 3 & -1 \end{pmatrix}; \begin{pmatrix} 2 & -2 \\ 1 & -1 \end{pmatrix}; \begin{pmatrix} 0 & -2 \\ -10 & 4 \end{pmatrix} \right)$ et $x = I_4$.

4. $E = \{(u_n)_{n \in \mathbb{N}} \mid \forall n \ge 4, \ u_n = 0\}; \ x = (-2, 3, 4, 1, 0, 0, \dots) \text{ (vous avez le choix pour } \mathcal{F}!)$

Exercice 4 (*)

On considère dans \mathbb{R}^3 les deux sous-ensembles $F=\{(x,y,z)\mid 2x+y-3z=0\}$ et $G=\{(2a+b,a-b,3a-b)\mid (a,b)\in\mathbb{R}^2\}$. Montrer qu'il s'agit de deux sous-espaces vectoriels de \mathbb{R}^3 , et déterminer leur intersection $F\cap G$.

Exercice 5 (*)

On considére les matrices suivantes de $\mathcal{M}_4(\mathbb{R})$: $I = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$; $J = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$;

$$K = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{pmatrix} \text{ et } L = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}. \text{ On note } E \text{ l'ensemble des matrices } M \text{ s'écrivant}$$

sous la forme M = aI + bJ + cK + dL, avec $a, b, c, d \in \mathbb{R}^4$.

- 1. Montrer que E est un espace vectoriel, et que (I, J, K, L) en forme une base.
- 2. Montrer, en les calculant explicitement, que J^2 , K^2 , L^2 , J^3 et L^3 appartiennent à E.
- 3. En déduire, sans aucun calcul matriciel, que JK, KJ, KL, LK, JL et LJ appartiennent aussi à E.
- 4. Établir enfin que le produit de deux matrices de E est encore une matrice de E.

Exercice 6 (**)

Dans chacun des cas suivants, montrer que les ensembles F et G sont des sous-espaces vectoriels de E, et qu'ils sont supplémentaires.

- $E = \mathbb{R}^2$; $F = \{(x, y) \mid x + y = 0\}$ et $G = \{(x, y) \mid x y = 0\}$.
- $E = \mathbb{R}^3$; $F = \{(x, y, z) \mid x y + z = 0\}$ et G = Vect((3, 2, 1)).
- $E = \mathbb{R}_2[X]$; $F = \text{Vect}(X, X^2)$ et $G = \{P \mid P' = 0\}$.
- $E = \mathbb{R}_6[X]$; $F = \{P \in E \mid P \text{ est une fonction paire}\}$ et $G = \{P \in E \mid P \text{ est une fonction impaire}\}$.
- $E = \mathbb{E}_{0}[[-1; 1], \mathbb{R}]$; $F = \{ f \in E \mid \int_{-1}^{1} f(t) \ dt = 0 \}$ et $G = \{ \text{fonctions constantes} \}$.
- $E = \{(u_n)_{n \in \mathbb{R}} \mid \forall n \in \mathbb{N}, \ u_{n+3} u_{n+2} u_{n+1} + u_n = 0\}; F = \{(u_n)_{n \in \mathbb{N}} \mid \forall n \in \mathbb{N}, \ u_{n+1} + u_n = 0\} \text{ et } G = \{(u_n)_{n \in \mathbb{R}} \mid \forall n \in \mathbb{N}, \ u_{n+2} 2u_{n+1} + u_n = 0\}.$

Exercice 7 (**)

Dans \mathbb{R}^4 , on considère la famille $\mathcal{F} = ((1, 2, 0, 1); (2, 1, 3, -1); (4, 5, 3, 1)).$

- 1. Déterminer si la famille \mathcal{F} est libre, et donner une base de $Vect(\mathcal{F})$.
- 2. Décrire \mathcal{F} comme ensemble des solutions d'un système d'équations à déterminer.
- 3. On note G l'ensemble des solutions du système $\left\{ \begin{array}{lll} 2x & + & y & + & z & + & t & = & 0 \\ x & & & + & z & & t & = & 0 \end{array} \right.$ Déterminer une base de G, ainsi que sa dimension.
- 4. Montrer que $\mathbb{R}^4 = \text{Vect}(\mathcal{F}) \oplus G$. Déterminer la décomposition dans $\text{Vect}(\mathcal{F}) \oplus G$ du vecteur (6, 10, 8, 2).

Exercice 8 (*)

On considère la matrice $A = \begin{pmatrix} 1 & 2 \\ -2 & -4 \end{pmatrix}$.

- 1. Montrer que $\{M \in \mathcal{M}_2(\mathbb{R}) \mid AM = 0\}$ est un sous-espace vectoriel de $\mathcal{M}_2(\mathbb{R})$, dont on précisera une base et la dimension.
- 2. Même question pour $\{M \in \mathcal{M}_2(\mathbb{R}) \mid AM = MA\}$.

Exercice 9 (***)

Soient F et G deux sous-espaces vectoriels d'un même espace E de dimension finie, qui vérifient $\dim(F) = \dim(G)$.

- 1. Montrer que $F \cap G$ admet un supplémentaire F' dans F et un supplémentaire G' dans G qui sont de même dimension.
- 2. Montrer que F' et G' ont une intersection réduite au vecteur nul.
- 3. En considérant des bases de F' et G', construire un supplémentaire commun à F et G dans F+G.
- 4. Montrer qu'il existe un supplémentaire commun à F et G dans E.

Exercice 10 (***)

On se place dans $\mathcal{M}_3(\mathbb{R})$, on note \mathcal{S} le sous-espace constitué des matrices symétriques et \mathcal{A} celui constitué des matrices antisymétriques.

- 1. Donner la dimension de S et celle de A, ainsi qu'une base de chacun de ces sous-espaces.
- 2. On note \mathcal{T} l'ensemble des matrices de trace nulle. Montrer que \mathcal{T} est un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$, donner sa dimension, ainsi qu'une base.
- 3. On note désormais M l'ensemble des matrices dont la somme des coefficients sur chaque ligne, chaque colonne et chaque diagonale est la même. Montrer qu'il s'agit d'un sous-espace vectoriel de $\mathcal{M}_3(\mathbb{R})$.
- 4. Déterminer la dimension et une base de M.
- 5. Déterminer la dimension de $M \cap S$, donner un exemple de matrice symétrique appartenant à M, dont le coefficient sur la première ligne, première colonne vaut 1.
- 6. Déterminer la dimension de $M \cap A$, donner un exemple de matrice antisymétrique appartenant à M, dont le coefficient sur la première ligne, troisième colonne vaut 1.
- 7. Montrer qu'il n'existe qu'une seule matrice dans M dont la première ligne est constituée des nombres 1, 2 et 3 (dans cet ordre), et donner cette matrice.

Exercice 11 (***)

On note dans tout cet exercice $E = \mathbb{R}_2[X]$ l'espace vectoriel des polynômes de degré inférieur ou égal à 2.

- 1. Déterminer un polynôme $P_1 \in E$ tel que $P_1(1) = 1$, $P_1(3) = 0$ et $P_1(5) = 0$ (on peut utiliser les polynômes de Lagrange, mais ce n'est pas une obligation).
- 2. Déterminer de même un polynôme P_3 vérifiant $P_3(1) = P_3(5) = 0$ et $P_3(3) = 1$, et un polynôme P_5 vérifiant $P_5(1) = P_5(3) = 0$, et $P_5(5) = 1$.
- 3. Démontrer que la famille (P_1, P_3, P_5) est une famille libre dans E.
- 4. Expliquer (sans refaire de calculs) pourquoi cette famille est en fait une base de E.
- 5. Déterminer les coordonnées du polynôme $Q = X^2 3X 1$ dans cette base.
- 6. Calculer Q(1), Q(3) et Q(5), les résultats sont-ils cohérents avec ce que vous avez obtenu à la question précédente?
- 7. On note désormais $P_0 = (X 1)(X 3)(X 5)$ et, pour tout polynôme $P \in \mathbb{R}[X]$, on note f(P) le reste de la division euclidienne de P par P_0 .
 - (a) Calculer $f(X^5)$.
 - (b) Expliquer pourquoi f(P) appartient toujours à E.
 - (c) Déterminer l'ensemble des polynômes $P \in \mathbb{R}_3[X]$ pour lesquels f(P) = 0 (aucun calcul nécessaire).
 - (d) Démontrer que, $\forall P \in \mathbb{R}[X], f(P) = P(1)P_1 + P(3)P_3 + P(5)P_5$.

Exercice 12 (**)

On se place dans l'espace vectoriel $E = \mathcal{M}_3(\mathbb{R})$, et on note $A = \begin{pmatrix} 5 & -10 & -4 \\ 3 & -6 & -2 \\ -3 & 5 & 1 \end{pmatrix}$.

- 1. En notant $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$, on note $G_1 = \{(x, y, z) \in \mathbb{R}^3 \mid AX = -X\}$. Vérifier que G_1 est un sous-espace vectoriel de \mathbb{R}^3 , dont on déterminera une base.
- 2. Même question pour $G_2 = \{(x, y, z) \in \mathbb{R}^3 \mid AX = 2X\}.$
- 3. Montrer que G_1 et G_2 sont supplémentaires dans \mathbb{R}^3 .
- 4. On note P la matrice carrée dont les colonnes sont constituées des coordonnées des vecteurs d'une base de G_1 et d'une base de G_2 (peu importe l'ordre). Vérifiez que P est une matrice inversible et calculez P^{-1} .
- 5. Calculez $P^{-1}AP$.
- 6. (question indépendante du reste de l'exercice, et assez brutale). On note F l'ensemble des matrices commutant avec A, montrer que F est un sous-espace vectoriel de E, en donner une base et préciser sa dimension. On donnera également les coordonnées de la matrice A (qui appartient évidemment à F) dans cette base.

Exercice 13 (bac C 1975)

On considère l'ensemble E de toutes les suites réelles, muni de sa structure d'espace vectoriel usuelle. Il est interdit dans tout l'exercice d'avoir recours à la moindre connaissance sur les suites récurrentes linéaires d'ordre 2.

- 1. Soit $p \in]0,1[$ un nombre réel fixé. On note F l'ensemble des suites (u_n) de E vérifiant la relation de récurrence $pu_{n+2} u_{n+1} + (1-p)u_n = 0$ pour tout entier naturel n.
 - (a) Montrer qu'une suite de F est définie par la donnée de ses deux premiers termes u_0 et u_1 .
 - (b) Montrer que F est un sous-espace vectoriel de E.
 - (c) Soit $v = (v_n)$ l'unique suite de F vérifient $v_0 = 1$ et $v_1 = 0$; et $w = (w_n)$ l'unique suite de F vérifiant $w_0 = 0$ et $w_1 = 1$. Vérifier que (v, w) est une famille libre de F, puis qu'elle est génératrice de F. En déduire la dimension de l'espace vectoriel F.
- 2. (a) Vérifier que, si $p = \frac{1}{2}$, les suites de F sont des suites arithmétiques.
 - (b) On suppose $p \neq \frac{1}{2}$. Montrer que la suite géométrique $t \mapsto t^k$ est dans F si et seulement si $pk^2 k + 1 p = 0$. En déduire l'existence d'une base de F formée de suites géométriques, et en déduire une expression générale de toutes les suites de F.
 - (c) Soit i un entier fixé supérieur ou égal à 1. On cherche à déterminer une suite $u = (u_n)$ de F vérifiant $u_0 = 1$ et $u_i = 0$. Dans le cas où $p = \frac{1}{2}$, exprimer le terme général de la suite u en fonction de n et de i.
 - (d) Dans le cas où $p \neq \frac{1}{2}$, exprimer de même le terme général de u en fonction de n, de i et de $x = \frac{1-p}{p}$.
- 3. On considère désormais l'ensemble G des suites de E vérifiant la relation de récurrence $4u_{n+3}-4u_{n+2}-u_{n+1}+u_n=0$.
 - (a) Démontrer que G est un sous-espace vectoriel de E de dimension 3 (on pourra s'inspirer de la première question de l'exercice).
 - (b) Déterminer les suites géométriques appartenant à G, et en déduire une base de G constituée de telles suites.
 - (c) En déduire la forme générale des suites appartenant à G. Déterminer l'unique suite (u_n) de G vérifiant $u_0 = 1$, $u_1 = \frac{5}{2}$ et $u_2 = \frac{7}{4}$.