Devoir Surveillé nº 6

PTSI B Lycée Eiffel

13 février 2020

Exercice 1

Factoriser dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$ les deux polynômes suivants (questions indépendantes) :

- 1. $P = X^4 + 4$
- 2. $Q = X^6 + 4X^5 + 4X^4 4X^3 11X^2 8X 2$ (sachant que Q admet une racine évidente dont la multiplicité est assez élevée)

Exercice 2

On définit pour cet exercice une fonction f par $f(x) = \frac{x}{\sqrt{x^2 + x + 1} - 1}$.

- 1. Déterminer le domaine de définition de la fonction f.
- 2. Étudier les possibilités de prolongement par continuité de la fonction f (on ne demande **pas** d'étudier la dérivabilité de la fonction obtenue après prolongement par continuité).

Problème

On s'intéresse dans cet exercice à la fonction f définie par $f(x) = x + \frac{1}{16} - \frac{1}{2}x^3$.

- 1. Étudier les variations de la fonction f (on dressera un tableau de variations complet).
- 2. Étudier le signe de f(x) x. On donnera en particulier la valeur du ou des points fixes éventuels de la fonction f.
- 3. Tracer dans un même repère une allure de la courbe représentative de f, ainsi que la droite d'équation y=x (on donne la valeur approchée $\sqrt{\frac{2}{3}}\simeq 0.8$).
- 4. On s'intéresse dans cette question à la suite (u_n) définie par $u_0 = 1$ et $\forall n \in \mathbb{N}$, $u_{n+1} = f(u_n)$.
 - (a) Représenter sur le graphe de la question 3 les premiers termes de la suite (u_n) . Que peut-on conjecturer?
 - (b) Montrer que l'intervalle $\left[\frac{1}{2},1\right]$ est un intervalle stable par la fonction f.

1

- (c) En déduire que, $\forall n \in \mathbb{N}, u_n \in \left[\frac{1}{2}, 1\right]$, puis que la suite (u_n) est décroissante (presque aucun calcul nécessaire).
- (d) Montrer que la suite converge vers $\frac{1}{2}$ (sans utiliser l'IAF qui interviendra à la question suivante).
- 5. On souhaite déterminer plus précisément la vitesse de convergence de la suite (u_n) définie à la question 4.
 - (a) Étudier les variations de la fonction f' sur l'intervalle $\left[\frac{1}{2},1\right]$, et en déduire que, $\forall x \in \left[\frac{1}{2},1\right]$, $|f'(x)| \leqslant \frac{5}{8}$.
 - (b) Montrer que, $\forall n \in \mathbb{N}, \left| u_{n+1} \frac{1}{2} \right| \leqslant \frac{5}{8} \left| u_n \frac{1}{2} \right|.$
 - (c) En déduire que, $\forall n \in \mathbb{N}, \left| u_n \frac{1}{2} \right| \leq \left(\frac{5}{8} \right)^n$, et retrouver la valeur de la limite de (u_n) .
 - (d) Pour quelle valeur de n peut-on affirmer que u_n est une valeur approchée de sa limite à 10^{-3} près (on ne demande qu'une formule théorique, et pas l'application numérique)?
- 6. On définit désormais une suite (v_n) par $v_0 = \frac{1}{4}$ et, $\forall n \in \mathbb{N}, v_{n+1} = f(v_n)$.
 - (a) Montrer que l'intervalle $\left[\frac{1}{4},\frac{1}{2}\right]$ est stable par f, et majorer |f'(x)| lorsque x appartient à $\left[\frac{1}{4},\frac{1}{2}\right]$.
 - (b) Expliquer quelles étapes permettraient de prouver la convergenre de (v_n) vers $\frac{1}{2}$, sans détailler les démonstrations.
 - (c) Avec les informations dont on dispose, laquelle des deux suites (u_n) et (v_n) semble converger le plus vite vers $\frac{1}{2}$ (on donnera des éléments de justification)?