Devoir Maison n°4 : corrigé

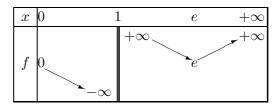
PTSI B Lycée Eiffel

24 janvier 2017

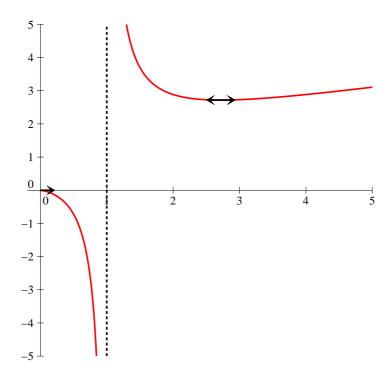
Problème 1

- 1. (a) Une fois ajoutée la valeur en 0, la seule valeur interdite reste x=1 (qui annule le dénomnateur), donc $\mathcal{D}_f = [0,1[\cup]1,+\infty[$.
 - (b) La limite en 0 ne pose aucun problème (pas de forme indéterminée) : $\lim_{x\to 0} \frac{x}{\ln(x)} = 0 = f(0)$, donc la fonction est continue en 0.
 - (c) La fonction f est certainement dérivable sur son domaine de définition privé de 0, de dérivée $f'(x) = \frac{\ln(x) 1}{\ln^2(x)}$. Notons d'ailleurs que f est en fait également dérivable en 0 car

son taux d'accroissement en 0, donné par la formule $\tau_0(h)=\frac{f(h)-f(0)}{h}=\frac{1}{\ln(h)}$ admet une limite finie (et nulle) quand h tend vers 0. On aura donc une tangente horizontale à la courbe représentative de f en 0. Le signe de f' ne pose guère de problème, elle s'annule pour x=e, et elle est positive sur l'intervalle $[e,+\infty[$. On calcule sans difficulté f(e)=e; $\lim_{x\to 1^-}f(x)=-\infty$; $\lim_{x\to 1^+}f(x)=+\infty$ et $\lim_{x\to +\infty}f(x)=+\infty$ (par croissance comparée pour cette dernière limite). On peut donc dresser le tableau suivant :



(d) Voici une allure:



- 2. (a) C'est une récurrence triviale : c'est vrai par hypothèse au rang 0, et si on suppose $v_n \ge e$, alors $v_{n+1} = f(v_n) \ge e$ puisque f effectue une bijection de $[e, +\infty[$ vers lui-même.
 - (b) Calculons donc $v_{n+1}-v_n=\frac{v_n}{\ln(v_n)}-v_n=\frac{v_n(1-\ln(v_n))}{\ln(v_n)}$. Comme $v_n\geq e$, on a $1-\ln(v_n)\leq 0$, et $v_{n+1}-v_n\leq 0$. La suite est donc décroissante. Étant de plus minorée, elle converge.
 - (c) Notons l la limite de la suite. Comme $v_{n+1}=f(v_n)$ (et que f est une fonction continue), on a nécessairement $\lim_{n\to +\infty} v_{n+1}=f(l)$, mais par ailleurs $\lim_{n\to +\infty} v_{n+1}=l$, donc on doit avoir f(l)=l, soit $\frac{l}{\ln(l)}=l$, ou encore $l=l\ln(l)$. Cette équation n'est vérifiée que par l=0 (valeur évidemment exclue pour la limite puisque la suite est minorée par e), et par l=e. La seule valeur possible pour la limite est donc e. Puisque la suite est convergente, on peut donc affirmer que $\lim_{n\to +\infty} v_n=e$.
 - (d) Pour simplifier le calcul, posons $X=\ln(x)$, et écrivons $g(X)=f'(x)=\frac{X-1}{X^2}=\frac{1}{X}-\frac{1}{X^2}$. La fonction g est dérivable sur \mathbb{R}^* , de dérivée $g'(X)=-\frac{1}{X^2}+\frac{2}{X^3}=\frac{2-X}{X^3}$. La fonction g est donc croissante sur]0;2] et décroissante ensuite, et admet pour maximum sur \mathbb{R}^{+*} la valeur $g(2)=\frac{1}{4}$. On en déduit donc que, $\forall X\in\mathbb{R}^*,\ g(X)\leq\frac{1}{4}$, et donc que $f'(x)\leq\frac{1}{4}$ lorsque $\ln(x)>0$, donc lorsque x>1 (et non $x\geq0$ comme indiqué par erreur dans l'énoncé. Ceci dit, la dérivée étant négative sur [0,1[, l'inégalité reste trivialement vraie).
 - (e) On souhaite donc avoir $|v_n-e| \le 10^{-12}$, ce qui est vrai dès que $\frac{1}{4^n} \le 10^{-12}$, soit $4^n \ge 10^{12}$. Cette inégalité est vérifiée lorsque $n \ln(4) \ge 12 \ln(10)$, soit $n \ge \frac{6 \ln(10)}{\ln(2)}$. On peut donc prendre $n = \operatorname{Ent}\left(\frac{6 \ln(10)}{\ln(2)}\right) + 1 = 20$ (oui, j'ai utilisé la calculatrice pour obtenir cette valeur!). Alternativement, on sait que $2^{10} = 1$ 024 $> 10^3$, donc $4^{10} = (2^{10})^2 > 10^6$, et $4^{20} > 10^{12}$.
- 3. (a) La fonction g est dérivable sur]0,1[et sur $]1,+\infty[$, et $g'(x)=\frac{2x^2\ln(x)+(1-x^2)(\ln(x)+1)}{x^2\ln^2(x)}=$

- $\frac{(x^2+1)\ln(x)+1-x^2}{x^2\ln^2(x)} = \frac{x^2+1}{x^2\ln^2(x)} \times \left(\ln(x)+\frac{1-x^2}{1+x^2}\right), \text{ qui est bien de la forme souhaitée en posant } h(x) = \ln(x)+\frac{1-x^2}{1+x^2}. \text{ La dérivée } g' \text{ étant du même signe que } h \text{ (le quotient en facteur est manifestement positif), on va étudier cette dernière fonction pour déterminer son signe : } h \text{ est dérivable sur } \mathbb{R}^{+*}, \text{ et } h'(x) = \frac{1}{x}+\frac{-2x(1+x^2)-2x(1-x^2)}{(1+x^2)^2} = \frac{1}{x}-\frac{4x}{(1+x^2)^2} = \frac{(1+x^2)^2-4x^2}{x(1+x^2)^2} = \frac{(1+x^2+2x)(1+x^2-2x)}{x(1+x^2)^2} = \frac{(1+x)^2(1-x)^2}{x(1+x^2)^2}. \text{ Cette dérivée est toujours positive (là où elle est définie), la fonction } h \text{ est donc strictement croissante sur }]0+\infty[. \text{ On constate aisément que } h(1)=0, \text{ donc } h \text{ (et } g' \text{ par la même occasion) est négative sur }]0,1[\text{ et positive sur }]1,+\infty[. \text{ On en déduit que } g \text{ est décroissante sur }]0,1[\text{ et croissante sur }]1,+\infty[.$
- (b) On peut écrire $g(x) = \frac{x+1}{x} \times \frac{x-1}{\ln(x)}$. Or, $\lim_{x \to 1} \frac{x-1}{\ln(x)} = \lim_{X \to 0} \frac{X}{\ln(X+1)} = 1$ en posant X = x-1 pour se ramener à une limite bien connue. Comme par ailleurs $\lim_{x \to 1} \frac{x+1}{x} = 2$, on en déduit que $\lim_{x \to 1} g(x) = 2$.
- (c) Caculons donc $f(x) g(x) = \frac{x}{\ln(x)} \frac{x^2 1}{x \ln(x)} = \frac{x^2 (x^2 1)}{x \ln(x)} = \frac{1}{x \ln(x)}$. La courbe de représentative de g est donc au-dessus de celle de f sur]0,1[(la différence calculée est alors négative) et c'est la courbe de f qui est au-dessus sur $]1,+\infty[$. Le calcul d'aire demandé revient exactement à calculer $I = \int_2^e f(x) g(x) \ dx = \int_2^e \frac{1}{x \ln(x)} \ dx = [\ln(\ln(x))]_2^e = -\ln(\ln(2))$ (qui est bien un nombre positif).
- 4. (a) On a donc $z(x) = \frac{1}{y(x)}$ (la fonction y ne peut pas s'annuler), d'où $z'(x) = -\frac{y'(x)}{y^2(x)}$. En remplaçant dans l'équation de départ, on trouve alors $\frac{x^2y'(x)}{y^2(x)} + \frac{x}{y(x)} = \frac{1}{y^2(x)}$. En multipliant tout par $y^2(x)$ (qui ne s'annule pas, on obtient donc une équation équivalente), on trouve $x^2y'(x) + xy(x) = 1$, qui est bien une équation linéaire.
 - (b) Puisqu'on est sur $]1,+\infty[$, on peut normaliser sans problème : $y'+\frac{1}{x}y=\frac{1}{x^2}$. L'équation homogène associée $y'+\frac{1}{x}y=0$ admet pour solutions les fonctions de la forme $y_p: x\mapsto Ke^{-\ln(x)}=\frac{K}{x}$, avec $K\in\mathbb{R}$. Pour déterminer une solution particulière, on va appliquer la méthode de variation de la constante en posant $y_p(x)=\frac{K(x)}{x}$, soit $y'_p(x)=\frac{xK'(x)-K(x)}{x^2}$. La fonction y_p est donc solution si $\frac{K'(x)}{x}-\frac{K(x)}{x^2}+\frac{K(x)}{x^2}=\frac{1}{x^2}$, soit $K'(x)=\frac{1}{x}$. On peut choisir $K(x)=\ln(x)$, soit $y_p(x)=\frac{\ln(x)}{x}$. Les solutions de l'équation complète sont toutes les fonctions de la forme $y:x\mapsto \frac{\ln(x)+K}{x}$, avec $K\in\mathbb{R}$. Pour que ces fonctions ne s'annulent pas sur $]1,+\infty[$, il faut que l'équation $\ln(x)=-K$ n'ait pas de solutions supérieure à 1, ce qui sera le cas si $K\geq 0$.
 - (c) Les solutions de l'équation (E) sont donc de la forme $z: x \mapsto \frac{x}{\ln(x) + K}$, avec $K \ge 0$. Si K = 0, on reconnait tout simplement la fonction f. Si K > 0, on peut l'écrire sous la forme $\ln(\alpha)$, avec $\alpha > 1$, pour obtenir $z(x) = \frac{x}{\ln(\alpha x)}$. Autrement dit, $z(x) = \frac{1}{\alpha} \times \frac{\alpha x}{\ln(\alpha x)} = \frac{1}{\alpha} f(\alpha x)$. La relation $f(\alpha x) = \alpha z(x)$ revient exactement à dire que la courbe C_f est image de la courbe représentative de la fonction z par une homothétie de centre O et de rapport

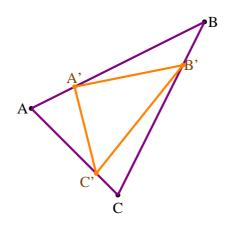
- α (en effet, si le point (x, y) est situé sur \mathcal{C}_z , donc si y = z(x), alors $f(\alpha x) = \alpha y$ et le point de coordonnées $(\alpha x, \alpha y)$, qui est l'image de (x, y) par cette homothétie, est situé sur \mathcal{C}_f). Inversement, les courbes intégrales de (E) sont donc obtenues à partir de \mathcal{C}_f en lui appliquant toutes les homothéties de centre O et de rapport $\lambda = \frac{1}{\alpha} \in]0,1[$.
- 5. (a) La fonction H ne peut être définie que pour des valeurs strictement positives de x (sinon on est en train d'intégrer f sur un intervalle sur lequel elle n'est pas définie!). Mais si $x \geq 1$, on va avoir également un problème puisque l'intervalle d'intégration [0,x] inclura la valeur 1 en laquelle f n'est pas définie. On en déduit que $\mathcal{D}_H =]0,1[$.
 - (b) En notant F une primitive de la fonction f sur l'intervalle [0,1[(la fonction f étant continue sur cet intervalle, elle y admet certainement des primitives), on a $H(x) = \frac{F(x) F(0)}{x}$, ce qui représente le taux d'accroissement de la fonction F en 0. Par définition de la dérivée, ce taux d'accroissement a une limite en 0 qui est égale à F'(0) = f(0) = 0.
 - (c) On sait que $\lim_{x\to 1} \frac{\ln(x)}{x-1} = 1$ (limite classique dont on s'est déjà servi plus haut, en posant X = x-1 en se ramenant à une limite bien connue en 0). La définition de la limite, appliquée pour $\varepsilon = \frac{1}{2}$, assure alors l'existence d'un réel $\eta > 0$ pour lequel $x \in [1-\eta, 1+\eta] \setminus \{1\} \Rightarrow \left|\frac{\ln(x)}{x-1} 1\right| \leq \frac{1}{2}$. En posant $a = 1-\eta$, on a en particulier, si $x \in [a,1[,\frac{1}{2} \leq \left|\frac{\ln(x)}{x-1}\right| \leq \frac{3}{2}$, soit $\frac{3}{2}(x-1) \leq \ln(x) \leq \frac{1}{2}(x-1)$ (sur l'intervalle considéré, x-1<0, il faut donc renverser le sens des inégalités). Par croissance de l'intégrale, on peut en déduire que, si $a \leq x < 1$ $\int_a^x f(t) \ dt \leq \frac{2}{3} \frac{t}{t-1} \ dt = \frac{2}{3} \int_a^x \frac{t-1+1}{t-1} \ dt = \frac{2}{3} [t+\ln(1-t)]_a^x = x + \ln(1-x) a \ln(1-a)$. Comme $\lim_{x\to 1^-} \ln(1-x) = -\infty$, on en déduit que $\lim_{x\to 1^-} \int_a^x f(t) \ dt = -\infty$ (l'inégalité de gauche de l'encadrement ne sert en fait à rien). Si on lui ajoute la constante $\int_0^a f(t) \ dt$, la limite de va pas changer : $\lim_{x\to 1^-} \int_0^x f(t) \ dt = -\infty$. La division par x, qui va tendre vers 1, ne changera rien non plus : $\lim_{x\to 1^-} H(x) = -\infty$.

Problème 2

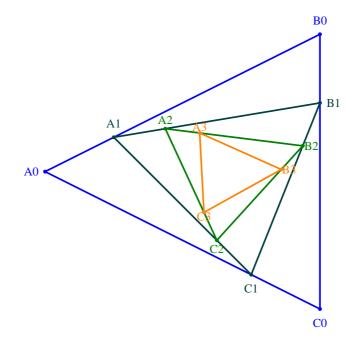
- 1. (a) Posons donc a=x+iy, la condition $|a|=\operatorname{Re}(a)$, soit $\sqrt{x^2+y^2}=x$ ne peut être vérifiée que si $x\in\mathbb{R}^+$ (puisque le membre de gauche de l'égalité est positif). Dans ce cas, puisque tout est positif, on peut tout élever au carré pour obtenir l'égalité équivalente $x^2+y^2=x^2$, qui donne trivialement y=0. On doit donc avoir $\operatorname{Im}(a)=0$ et $a=x\in\mathbb{R}^+$.
 - (b) Les notations du problèmes sont particulièrement pénibles, on va donc essayer d'éviter d'écrire les deux nombres complexes sous forme algébrique. À la place, calculons $|z+w|^2=(z+w)(\overline{z}+\overline{w})z\overline{z}+z\overline{w}+\overline{z}w+w\overline{w}=|z|^2+|w|^2+z\overline{w}+\overline{z}\overline{w}=|z|^2+|w|^2+2\operatorname{Re}(z\overline{w})$. On peut en déduire $(|z|+|w|)^2-|z+w|^2=|z|^2+2|z|\times|w|+|w|^2-|z|^2-|w|^2-2\operatorname{Re}(z\overline{w})=2|z|\times|\overline{w}|-2\operatorname{Re}(z\overline{w})=2(|z\overline{w}|-\operatorname{Re}(z\overline{w}))$.
 - (c) La partie réelle d'un nombre complexe est toujours inférieure à son module (en effet, $x \leq |x| = \sqrt{x^2} \leq \sqrt{x^2 + y^2}$), donc le membre de droite de l'égalité prouvée à la question précédente est positif. Autrement dit, $(|z| + |w|)^2 \geq |z + w|^2$, et comme tout est positif, c'est équivalent à l'inégalité triangulaire $|z| + |w| \geq |z + w|$. Il n'y aura égalité que si $\text{Re}(z\overline{w}) = |z\overline{w}|$, soit en utilisant la question a si $z\overline{w} \in \mathbb{R}^+$. Si $w \neq 0$ (cas où l'inégalité est trivialement une égalité), on peut alors écrire $z = \frac{\lambda}{\overline{w}} = \frac{\lambda}{|w|^2} \times w$, avec $\lambda \in \mathbb{R}^+$. Autrement dit, z est un multiple réel positif de w, ce qui revient à dire que les points d'affixes z et w

sont alignés dans le plan complexe sur une même de mi-droite d'origine ${\cal O}$ (la réciproque est évidente).

- 2. (a) Il suffit de résoudre l'équation : qz qa = pb pz, soit z(p+q) = pb + qa, ou encore $z = \frac{pb + aq}{p+q}$ (les réels p et q étant supposés strictement positifs, aucun risque que p+q s'annule). La solution est manifestement unique. Géométriquement, le point est toujours aligné avec A et B (puisque $\frac{z-a}{b-z}$ est un réel, en notant P le point d'affixe z, les vecteurs \overrightarrow{AP} et \overrightarrow{PB} sont colinéaires). La positivité de $\frac{p}{q}$ assure même que le point P appartient au segment [AB]. Techniquement, il s'agit du barycentre des deux points A et B affectés des poids p (sur le point B) et q (sur le point A).
 - (b) Dans ce cas, on a juste $z = \frac{a+b}{2}$, et le point correspondant est donc le milieu du segment [AB].
 - (c) C'est trivial, puisque la formule pour z est inchangée dans ce cas (le numérateur et le dénominateur sont tous les deux multipliés par α).
 - (d) En notant c l'affixe de C, le point X a pour affixe $x=\frac{pb+aq}{p+q}$ et le point Y a pour affixe $y=\frac{pc+aq}{p+q}$. On en déduit que l'affixe du vecteur \overrightarrow{XY} est $y-x=\frac{pc+aq-pb-aq}{p+q}=\frac{p}{p+q}(c-b)$, ce qui est proportionnel (avec un coefficient réel!) à c-b, l'affixe du vecteur \overrightarrow{BC} . Les vecteurs \overrightarrow{XY} et \overrightarrow{BC} sont donc colinéaires, et les droites (XY) et (BC) sont parallèles (remarquez qu'on vient brillamment de redémontrer le théorème de Thalès).
- 3. (a) Le (1:3) point de A vers B est par définition situé au quart du segment [AB] en partant du point A (il est trois fois plus près de A que de B. On obtient la figure suivante :



- (b) En reprenant les formules obtenues précédemment, les points A', B' et C' ont pour affixes respectives $\frac{pb+aq}{p+q}$, $\frac{pc+bq}{p+q}$ et $\frac{pa+cq}{p+q}$. Le centre de gravité du triangle a donc pour affixe $\frac{1}{3}\left(\frac{pb+aq}{p+q}+\frac{pc+bq}{p+q}+\frac{pa+cq}{p+q}\right)=\frac{p(a+b+c)+q(a+b+c)}{3(p+q)}=\frac{a+b+c}{3}$. Le centre de gravité de A'B'C' est donc le même que celui de ABC.
- 4. (a) Voici une figure possible :



- (b) Comme on l'a déjà quasiment vu plus haut, les (p:q) points du sous-triangle de $A_nB_nC_n$ ont des coordonnées égales à $a_{n+1}=\frac{qa_n+pb_n}{p+q}$; $b_{n+1}=\frac{qb_n+pc_n}{p+q}$ et $c_{n+1}=\frac{qc_n+pa_n}{p+q}$. Ce sont exactement les formules données par la relation matricielle de l'énoncé.
- (c) Calculons donc $\alpha_{n+1}=a_{n+1}+b_{n+1}+c_{n+1}=\frac{qa_n+pb_n+qb_n+pc_n+qc_n+pa_n}{p+q}=a_n+b_n+c_n=\alpha_n$ (c'est le même calcul que celui déjà effectué pour le centre de gravité un peu plus haut). La suite (α_n) est donc mieux que géométrique : elle est constante! Elle converge donc évidemment vers $\alpha_0=a+b+c$. Calculons maintenant $\beta_{n+1}=a_{n+1}+jb_{n+1}+j^2c_{n+1}=\frac{qa_n+pb_n+jqb_n+jpc_n+j^2qc_n+j^2pa_n}{p+q}=\frac{(q+j^2p)(a_n+jb_n+j^2c_n)}{p+q}=\frac{q+j^2p}{p+q}\beta_n$ en utilisant la relation $j^3=1$ (et $j^4=j$). La suite (β_n) est donc géométrique de raison (complexe) $r=\frac{q+j^2p}{p+q}$. Or, à l'aide de l'inégalité triangulaire, $|r|=\frac{|q+j^2p|}{p+q}\leq \frac{|q|+|j^2||p|}{q+p}\leq \frac{q+p}{p+q}=1$ (le nombre j ayant un module 1). Cette inégalité est en fait stricte car les nombres j^2p et q ne sont certainement pas proportionnels (q est réel et j^2p pas du tout), donc |r|<1. Cela suffit à affirmer que $\lim_{n\to+\infty}\beta_n=0$. De même, on calcule facilement $\gamma_{n+1}=\frac{q+jp}{p+q}\gamma_n$, et la limite de cette suite est également nulle.
- (d) Le produit à droite par Q échange les deux dernières colonnes de la matrice (si on tient à le prouver rigoureusement, on prend une matrice aux coefficients quelconques et on écrit le calcul explicite).
- (e) On calcule donc $V^2 = \begin{pmatrix} 3 & 1+j+j^2 & 1+j+j^2 \\ 1+j+j^2 & 1+j+j^2 & 3 \\ 1+j+j^2 & 3 & 1+j+j^2 \end{pmatrix}$. Or, $1+j+j^2=0$, et on trouve en fait $V^2=3Q$. Or, la matrice Q est elle-même inversible, et sa propre inverse (calcul vraiment idiot). La matrice V est donc elle-même inversible car son carré est inversible, et on peut écrire que $V^{-2}=\frac{1}{3}Q^{-1}=\frac{1}{3}Q$, soit $V^{-1}V^{-1}=\frac{1}{3}Q$. En multipliant

cette égalité à gauche par V, on trouve alors $V^{-1} = \frac{1}{3}VQ = \frac{1}{3}\begin{pmatrix} 1 & 1 & 1 \\ 1 & j^2 & j \\ 1 & j & j^2 \end{pmatrix}$

(f) On constate en effet l'égalité matricielle de l'énoncé, qui implique que $\begin{pmatrix} a_n \\ b_n \\ c_n \end{pmatrix} = V^{-1} \begin{pmatrix} \alpha_n \\ \beta_n \\ \gamma_n \end{pmatrix}$. Autrement dit, on a les relations $a_n = \frac{\alpha_n + \beta_n + \gamma_n}{3}$, $b_n = \frac{\alpha_n + j^2\beta_n + j\gamma_n}{3}$ et $c_n = \frac{\alpha_n + j\beta_n + j^2\gamma_n}{3}$. Les limites des trois suites découlent alors facilement de celles calculées plus haut : $\lim_{n \to +\infty} a_n = \lim_{n \to +\infty} b_n = \lim_{n \to +\infty} c_n = \frac{a+b+c}{3}$. Autrement dit, les sommets des sous-triangles convergent tous vers le centre de gravité du triangle initial.