Devoir Maison n°1 : corrigé

PTSI B Lycée Eiffel

20 septembre 2016

Exercice 1

- 1. (a) $\forall x \in \mathbb{R}, \cos(x) \in [-1, 1].$
 - (b) $\exists T \in \mathbb{R}^*, \forall x \in \mathbb{R}, \cos(x+T) = \cos(x)$ (mieux vaut enlever la valeur 0 pour la période).
 - (c) $\forall z \in \mathbb{C}, \exists z' \in \mathbb{C}, (z')^2 = z.$
 - (d) $\forall n \in \mathbb{N}, u_n < u_{n+1}$.
- 2. (a) Démonstration technique : $(A \cup B) \setminus C = (A \cup B) \cap \overline{C} = (A \cap \overline{C}) \cup (B \cap \overline{C}) = (A \setminus C) \cup (B \setminus C)$. Démonstration « avec les mains » : un élément appartenant à $(A \cup B) \cap \overline{C}$ appartient soit à A, soit à B (éventuellement aux deux) et dans les deux cas n'appartient pas à C. On a donc deux possibilités : soit l'élément appartient à A et pas à C, soit à B et pas à C, ce qui correspond bien à l'ensemble $(A \setminus C) \cup (B \setminus C)$ (la réciproque est tout aussi simple).
 - (b) Dans le sens indirect, si $B \subset A \subset C$, on aura simplement $A \cup B = A$ et $A \cap C = A$, donc on a bien $A \cup B = A \cap C$. Dans l'autre sens, si on suppose que $A \cup B = A \cap C$, il suffit en fait de constater qu'on a toujours $A \cup B \subset A$, et $A \subset A \cap C$. L'égalité n'est donc possible que si tous ces ensembles sont égaux, et en particulier si $A \cup B = A$, et $A \cap C = A$. Ceci ne se produit que si $B \subset A$ (on peut détailler cette démonstration si on le souhaite), et si $A \subset C$.
 - (c) Supposons donc dans un premier temps $B \subset A$. Soit X un ensemble quelconque, alors $A \cap (X \cup B) = (A \cap X) \cup (A \cap B)$. Or, $A \cap B = B$ lorsque $B \subset A!$ L'union se résume donc à $(A \cap X) \cup B$, exactement ce qu'on voulait. Dans l'autre sens, on va passer par la contraposée. Supposons donc que B n'est pas inclus dans A. Cela signifie exactement la chose suivante : il existe (au moins) un élément x appartenant à l'ensemble B mais pas à l'ensemble A. Posons alors $X = \{x\}$ (ensemble contenant uniquement l'élément x). L'ensemble $(A \cap X) \cup B$ contient certainement l'élément x puisque celui-ci appartient à B. D'un autre côté, l'ensemble $A \cap (X \cup B)$ ne peut pas contenir x puisque ce dernier n'appartient pas à A. On ne peut donc pas avoir $(A \cap X) \cup B = A \cap (X \cup B)$ (en fait, on pouvait prendre absolument n'importe quoi pour l'ensemble X, ça ne marche jamais dans ce cas!). On a bien prouvé la réciproque de notre propriété, qui est donc une équivalence.

Exercice 2

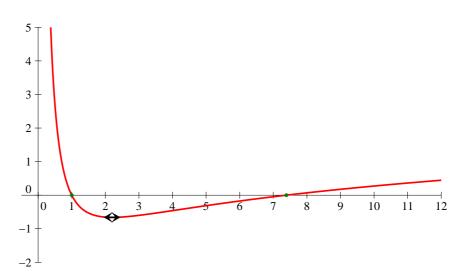
Partie A : Étude d'une fonction f et de sa courbe représentative \mathcal{C} .

- 1. Puisque $\lim_{x \to +\infty} 1 \frac{1}{x} = 1$ et $\lim_{x \to +\infty} \ln(x) 2 = +\infty$, on a facilement $\lim_{x \to +\infty} f(x) = +\infty$. Ce n'est pas plus compliqué en 0: $\lim_{x \to 0^+} 1 \frac{1}{x} = -\infty$, et $\lim_{x \to 0^+} \ln(x) 2 = -\infty$, donc $\lim_{x \to 0^+} f(x) = +\infty$.
- 2. La fonction f est dérivable comme produit et somme de fonctions usuelles, et $f'(x) = \frac{1}{x^2}(\ln(x) 2) + \frac{1}{x}\left(1 \frac{1}{x}\right) = \frac{\ln(x) 2 + x 1}{x^2} = \frac{u(x)}{x^2}$, où u est la fonction définie à la question suivante.

- 3. (a) La fonction u est elle-même dérivable sur \mathbb{R}^{+*} , et $u'(x) = \frac{1}{x} + 1$, quantité manifestement positive sur notre intervalle d'étude (même pas besoin de mettre au même dénominateur!).
 - (b) Comme $\lim_{x\to 0^+} u(x) = -\infty$ (pas de forme indéterminée), et $\lim_{x\to +\infty} u(x) = +\infty$ (pas de forme indéterminée non plus), la fonction u, étant continue et strictement croissante, effectue une bijection de \mathbb{R}^{+*} vers \mathbb{R} . En particulier, l'équation u(x) = 0 admet une unique solution α . Comme $u(2) = \ln(2) 1 < 0$ (rappelons que $\ln(2) \simeq 0.7$), et $u(3) = \ln(3) > 0$, on a bien $\alpha \in [2,3]$. On sort l'engin du diable pour la fin de la question : $u(2.2) \simeq -0.01 < 0$ et $u(2.21) \simeq 0.003 > 0$. Ça marche!
 - (c) La fonction étant croissante, $u(x) \le 0$ sur $[0, \alpha]$, et $u(x) \ge 0$ sur $[\alpha, +\infty[$.
- 4. (a) Puisque f'(x) est du même signe que u(x), la fonction f est donc décroissante sur $]0, \alpha]$ et croissante sur $[\alpha, +\infty[$.
 - (b) Par définition, $u(\alpha)=0$, donc $\ln(\alpha)+\alpha-3=0$. Autrement dit, $\ln(\alpha)=3-\alpha$. On peut donc écrire $f(\alpha)=\left(1-\frac{1}{\alpha}\right)(3-\alpha-2)=\frac{(\alpha-1)(1-\alpha)}{\alpha}=-\frac{(\alpha-1)^2}{\alpha}$. Or, on sait que $2.2 \le \alpha \le 2.21$, donc $1.2 \le \alpha-1 \le 1.21$, puis $1.44 \le (\alpha-1)^2 \le 1.4641$. Par ailleurs, $0.452 \le \frac{1}{2.21} \le \frac{1}{\alpha} \le \frac{1}{2.2} \le 0.455$. On peut tout multiplier (tout est positif) pour obtenir (en arrondissant un peu, par défaut à gauche et pas excès à droite) $0.65 \le \frac{(\alpha-1)^2}{\alpha} \le 0.67$. En passant à l'opposé, on peut donc écrire l'encadrement suivant : $-0.67 \le f(\alpha) \le -0.65$.
- 5. (a) Le réel f(x) est du même signe que $(x-1)(\ln(x)-2)$ (le x du dénominateur étant positif), on peut faire un petit tableau :

x	0		1		e^2		$+\infty$
x-1		_	0	+		+	
$\ln(x) - 2$		_		_	0	+	
f(x)		+	0	_	0	+	

(b) On place bien entendu tous les éléments issus des calculs précédents sur la courbe :



Partie B : Étude d'une primitive de f sur $]0;+\infty[$.

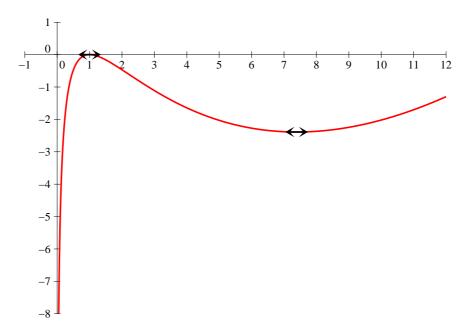
1. (a) Puisque F a par définition pour dérivée f, on peut dresser son tableau de variations :

x	0	1	e^2		$+\infty$
f(x)	+	0	- 0	+	
\overline{F}					
			` ,		

- (b) Elles sont horizontales.
- 2. (a) En effet, la dérivée de la fonction proposée (appelons-la g) vaut $g'(x) = \ln(x) + 1 1 = \ln(x)$, et $g(e) = e \ln(e) e = e e = 0$.
 - (b) Non, là ça suffit, je ne rédige pas cette question, il suffit de développer!
 - (c) Un primitive de la fonction $x\mapsto \frac{\ln(x)}{x}$, qui est de la forme u'u, est de la forme $\frac{u^2}{2}$, soit ici $\frac{\ln(x)^2}{2}$. Une primitive de la fonction f peut alors s'écrire sous la forme $F(x)=x\ln(x)-x-\frac{1}{2}\ln(x)^2+2\ln(x)-2x+k$, où k est une constante restant à déterminer. On calcule pour cela F(1)=0-1-0+0-2+k, ce qui permet de conclure assez facilement que k=3. Finalement, $F(x)=x\ln(x)-3x-\frac{1}{2}\ln(x)^2+2\ln(x)+3$.
- 3. (a) Á part la limite donnée dans l'énoncé, seul le terme en $2\ln(x) \frac{1}{2}\ln(x)^2 = \ln(x)\left(2 \frac{1}{2}\ln(x)\right)$ a une limite infinie, donc $\lim_{x\to 0^+} F(x) = -\infty$.
 - (b) Il suffit de tout factoriser par $x\ln(x)$, ce qui donne bien $F(x) = x\ln(x)\left(1-\frac{3}{\ln(x)}-\frac{\ln(x)}{2x}+\frac{2}{x}+\frac{3}{x\ln(x)}\right).$ Tout ce qui se trouve dans la parenthèse tend vers 1 (le seul petit problème étant le $\frac{\ln(x)}{x}$ qui tend vers 0 par croissance comparée), donc $\lim_{x\to +\infty} F(x) = +\infty$.
 - (c) Pour compléter le tableau, on calcule F(1)=-3+3=0. Ah ben oui, ce n'est pas une surprise puisque par définition F s'annule en 1. Par contre, on doit vraiment calculer $F(e^2)=2e^2-3e^2-\frac{4}{2}+4+3=5-e^2$. Voici le tableau complet :

x	0	1	-	e^2	$+\infty$
f(x)		+ () —	0	+
F	$-\infty$			$5 - e^2$	$+\infty$

(d) Bon, je ne vais pas respecter l'énoncé (c'est mal) et tracer la courbe indépendamment de la précédente :



4. Cette aire est par définition égale à $\int_{1}^{e^{2}} f(x) dx = [F(x)]_{1}^{e^{2}} = F(e^{2}) - F(1) = 5 - e^{2}$.