Feuille d'exercices n°15 : corrigé

ECE3 Lycée Carnot

27 janvier 2010

Exercice 1 (**)

- 1. La fonction f est C^{∞} sur \mathbb{R} , de dérivée $f'(x) = 1 \frac{1}{2}x$. Elle admet donc un maximum en x = 2, de valeur $f(2) = 1 + \frac{1}{4}(2-4) = \frac{3}{2}$, et est croissante sur $]-\infty;2]$ et décroissante sur $[2;+\infty[$. Les points fixes sont déterminée en résolvant l'équation f(x) = x, c'est-à-dire $\frac{1}{4}(2-x^2) = 0$, d'où deux points fixes pour $x = \sqrt{2}$ et $x = -\sqrt{2}$.
- 2. En effet, si $1 \le x \le 2$, $-1 \le -\frac{1}{2}x \le -\frac{1}{2}$ et $0 \le f'(x) \le \frac{1}{2}$, donc $|f'(x)| \le \frac{1}{2}$. Quant à l'image de [1;2] par f, comme la fonction est croissante sur cette intervalle, elle vaut $[f(1);f(2)] = \left[\frac{5}{4};\frac{3}{2}\right] \subset [1;2]$.
- 3. C'est une récurrence tout simple : $u_0 = 1 \in [1; 2]$, et si $u_n \in [1; 2]$, on a d'après la question précédente $f(u_n) \in [1; 2]$, soit $u_{n+1} \in [1; 2]$. Comme $u_n \in [1; 2]$ et $\sqrt{2} \in [1; 2]$, et que $|f'(x)| \leq \frac{1}{2}$ sur cet intervalle, on peut appliquer l'IAF entre u_n et $\sqrt{2}$ et obtenir $|f(u_n) f(\sqrt{2})| \leq \frac{1}{2}|u_n \sqrt{2}|$. Comme $f(\sqrt{2}) = \sqrt{2}$ (c'est un point fixe de f) et $f(u_n) = u_{n+1}$ (par définition), on a bien $u_n \in [1; 2]$, et que $|u_{n+1} \sqrt{2}| \leq \frac{1}{2}|u_n \sqrt{2}|$.
- 4. Prouvons par récurrence $P_n: |u_n \sqrt{2}| \leq \frac{1}{2^n}$. Pour n = 0, la propriété P_0 stipule que $|1 \sqrt{2}| \leq 1$, ce qui est vrai. Supposons désormais P_n vraie, on a alors d'après la question précédente $|u_{n+1} \sqrt{2}| \leq \frac{1}{2}|u_n \sqrt{2}|$, et par ailleurs, par hypothèse de récurrence $|u_n \sqrt{2}| \leq \frac{1}{2^n}$. On peut combiner les deux inégalités pour obtenir $|u_{n+1} \sqrt{2}| \leq \frac{1}{2} \times \frac{1}{2^n} = \frac{1}{2^{n+1}}$. Cela prouve P_{n+1} et achève la récurrence.

 P_{n+1} et achève la récurrence. Comme $\lim_{n \to +\infty} \frac{1}{2^n} = 0$, et $0 \le |u_n - \sqrt{2}| \le \frac{1}{2^n}$, le théorème des gendarmes permet d'affirmer que $\lim_{n \to +\infty} |u_n - \sqrt{2}| = 0$, soit $\lim_{n \to +\infty} u_n = \sqrt{2}$.

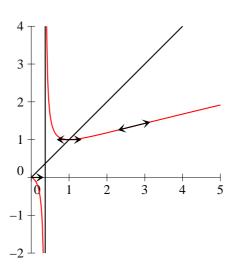
5. On sait que l'inégalité sera vérifiée dès que $\frac{1}{2^n} \le 10^{-9}$, soit en passant au logarithme $-n \ln 2 \le -9 \ln 10$, ou encore $n \ge \frac{9 \ln 10}{\ln 2} \simeq 30$. Il faut donc calculer le trentième terme de la suite pour être certain d'avoir une valeur approchée de $\sqrt{2}$ à 10^{-9} près. Remarque : en pratique, on constate que le u_{19} est déjà une valeur approchée à 10^{-9} près.

Exercice 2 (**)

1. En effet, on a $\lim_{x\to 0^+} f(x) = 0$ (pas de forme indéterminée). De plus, f est dérivable et C^1 sur $\left]0; \frac{1}{e}\right[$, de dérivée $f'(x) = \frac{\ln x + 1 - 1}{(\ln x + 1)^2} = \frac{\ln x}{(\ln x + 1)^2}$, qui a également pour limite 0 en 0 (c'est

pas exemple équivalent en 0 à $\frac{1}{\ln x}$). D'après le théorème de prolongement C^1 , la fonction f est donc dérivable en 0, et f'(0) = 0.

2. On a déjà calculé f', il est donc facile de constater que f est décroissante sur $\left[0;\frac{1}{e}\right]$ et sur $\left[\frac{1}{e};1\right]$, et croissante sur $\left[1;+\infty\right[$. On a par ailleurs $\lim_{x\to+\infty}f(x)=+\infty$ (croissance comparée), et $\lim_{x\to+\infty}\frac{f(x)}{x}=0$, donc il y a une branche parabolique de direction (Ox) en $+\infty$. Par ailleurs, $\lim_{x\to\frac{1}{e}^-}f(x)=-\infty$ et $\lim_{x\to\frac{1}{e}^+}f(x)=+\infty$ (pas de difficulté non plus, il suffit de constater que $\lim_{x\to\frac{1}{e}^+}f(x)=-\infty$ et positif à droite). Les plus courageux calculeront $f''(x)=\frac{1}{x(\ln x+1)^2}-\frac{2\ln(x)}{x(\ln x+1)^3}=\frac{1-\ln x}{x(\ln x+1)^3}$ (j'ai dérivé le quotient comme le produit de $\ln x$ et de $\frac{1}{(\ln x+1)^2}$ car c'est un peu plus facile à écrire), et en déduiront que la courbe admet un point d'inflexion pour x=e, de hauteur $f(e)=\frac{e}{2}$, et dont la tangente a pour pente $f'(e)=\frac{1}{4}$. On peut ainsi tracer la courbe suivante :



- 3. Résolvons f(x) = x. Si l'on élimine la valeur 0 (qui est effectivement un point fixe de f), on peut simplifier par x et obtenir $\frac{1}{\ln x + 1} = 1$, soit $\ln x + 1 = 1$, donc x = 1. Il y a donc deux points fixes : 0 et 1.
- 4. On définit une suite (x_n) par $x_0 = 2$ et $\forall n \in \mathbb{N}, x_{n+1} = f(x_n)$.
 - (a) La fonction g est C^{∞} sur \mathbb{R}_+ , de dérivée $g'(x) = \frac{(x+1)^2 2x(x+1)}{(x+1)^4} = \frac{1-x}{(x+1)^3}$. Elle admet donc un maximum en 1, de valeur $g(1) = \frac{1}{4}$. Comme g(0) = 0 et $\lim_{x \to +\infty} g(x) = 0$, on en déduit que $\forall x \geq 0$, $0 \leq g(x) \leq \frac{1}{4}$. Or, on a $f'(x) = g(\ln x)$. Si $x \geq 1$, $\ln x \geq 0$, et on peut lui appliquer l'inégalité précédente : $0 \leq g(\ln x) \leq \frac{1}{4}$, c'est-à-dire $0 \leq f'(x) \leq \frac{1}{4}$.
 - (b) Pour appliquer l'IAF, il faut d'abord vérifier que $\forall n \in \mathbb{N}, x_n \in [1; +\infty[$. En constatant que l'intervalle $[1; +\infty[$ est stable par f, on peut le prouver par une simple récurrence : $x_0 = 2 \ge 1$, et en supposant $x_n \ge 1$, on obtient, en utilisant la croissance de f sur $[1; +\infty[$, $f(x_n) \ge f(1) = 1$, donc $x_{n+1} \ge 1$, ce qui achève la récurrence.

On a donc $1 \in [1; +\infty[$ et $x_n \in [1; +\infty[$. De plus, $|f'(x)| \le \frac{1}{4}$ sur $[1; +\infty[$. En appliquant l'IAF, on obtient donc $|f(x_n) - f(1)| \le |x_n - 1|$, soit $|x_{n+1} - 1| \le \frac{1}{4}|x_n - 1|$.

Prouvons ensuite par récurrence la propriété $P_n: |x_n-1| \leq \frac{1}{4^n}$. Pour $n=0, P_0$ stipule que $|2-1| \leq 1$, ce qui est vrai. Supposons ensuite P_n vraie, on obtient alors $|x_{n+1}-1| \leq \frac{1}{4}|x_n-1|$ (cf plus haut) $\leq \frac{1}{4} \times \frac{1}{4^n}$ (hypothèse de récurrence), ce qui prouve P_{n+1} et achève la récurrence.

(c) Comme $\lim_{\substack{n \to +\infty \\ n \to +\infty}} \frac{1}{4^n} = 0$, et $0 \le |x_n - 1| \le \frac{1}{4^n}$, le théorème des gendarmes permet d'affirmer que $\lim_{\substack{n \to +\infty \\ n \to +\infty}} |x_n - 1| = 0$, soit $\lim_{\substack{n \to +\infty \\ n \to +\infty}} x_n = 1$.

Exercice 3 (**)

- 1. Posons $g(x) = e^x 3 2x$. Cette fonction est C^{∞} sur \mathbb{R} , de dérivée $g'(x) = e^x 2$. La fonction g est donc strictement décroissante sur \mathbb{R}_{-} (et même un peu au-delà). Comme g(0) = -2 et $\lim_{x \to -\infty} g(x) = +\infty$, elle est donc bijective de \mathbb{R}_{-} vers $[-2; +\infty[$. L'équation g(x) = 0 admet donc une unique solution négative α . Comme $e^{\alpha} 3 = 2\alpha$, on a bien $f(\alpha) = \alpha$.
- 2. La fonction f est strictement croissante sur \mathbb{R} et $f(0) = -\frac{1}{2}$, donc $\forall x \leq 0, f(x) \leq -\frac{1}{2}$, ce qui prouve la stabilité de la intervalle $]-\infty;0]$ par f.
- 3. On a $f'(x) = \frac{e^x}{2}$, donc $0 \le f'(x) \le \frac{1}{2}$ quand $x \le 0$, ce qui prouve l'inégalité demandée.
- 4. C'est vrai pour u_0 , et si on le suppose vrai pour u_n , alors $u_{n+1} = f(u_n) \le 0$ d'après la question 2. Par principe de récurrence, tous les termes de la suite sont donc négatifs.
- 5. Vous devez commencer à avoir l'habitude : $\alpha \leq 0$, $u_n \leq 0$ et $|f'(x)| \leq \frac{1}{2}$ quand $x \leq 0$, donc l'IAF nous donne $|f(u_n) f(\alpha)| \leq \frac{1}{2}|u_n \alpha|$, soit $|u_{n+1} \alpha| \leq \frac{1}{2}|u_n \alpha|$.
- 6. C'est la récurrence classique, on pose $P_n: |u_n-\alpha| \leq \frac{1}{2^n}$. La propriété P_0 prétend que $|-1-\alpha| \leq 1$, (pour une fois, ce n'est pas totalement évidemment), soit $\alpha \in [-2;0]$. On sait déjà que $\alpha \leq 0$. Pour prouver l'autre inégalité, revenons à la question 1 et calculons $g(-2) = e^{-2} 3 + 4 = 1 + e^{-2} > 0$. Comme $g(-2) > g(\alpha)$ (qui vaut 0 par hypothèse), la décroissante de la fonction g nous donne bien $\alpha \geq -2$. Supposons désormais P_n vérifiée, on a alors $|u_{n+1}-\alpha| \leq \frac{1}{2}|u_n-\alpha| \leq \frac{1}{2} \times \frac{1}{2^n}$, ce qui prouve P_{n+1} (plus de détails sur ce genre de récurrence dans le corrigé de l'exercice 1).
- 7. Cf exercice 1 : par théorème des gendarmes, $\lim_{n\to+\infty} |u_n-\alpha|=0$, donc $\lim_{n\to+\infty} u_n=\alpha$.
- 8. PROGRAM alpha;

USES wincrt;

VAR u,a,e : real;

BEGIN

WriteLn('Choisissez la précision de la valeur approchée');

ReadLn(e);

u := -1; a := 1;

REPEAT

 $u := (\exp(u)-3)/2;$

a := a/2;

UNTIL a<e;

WriteLn('Une valeur approchée de alpha à ',e,' près est ',u);

END.

Pour les curieux, on obtient $\alpha \simeq -1.373$.

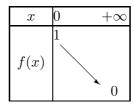
Exercice 4 (d'après ESCL 2001) (***)

- 1. (a) La fonction f est C^{∞} sur \mathbb{R}_{+}^{*} comme quotient de fonctions usuelles, et de plus on sait que $\lim_{x\to 0}\frac{e^{x}-1}{x}=1$, donc $\lim_{x\to 0}\frac{x}{e^{x}-1}=1$. La fonction est donc également continue en 0, donc sur \mathbb{R}_{+} tout entier.
 - (b) Pour le caractère C^1 , cf la question précédente. De plus, $f'(x) = \frac{e^x 1 xe^x}{(e^x 1)^2}$.
 - (c) On ne peut en fait pas traiter cette question sans avoir recours aux développements limités. Avec nos connaissances actuelles, on peut traiter le dénominateur : $(e^x 1)^2 \sim x^2$, en utilisant la limite classique déjà reprise au 1, mais le numérateur ne se simplifie pas vraiment. Pour s'en sortir, on a besoin du résultat suivant (que vous verrez en deuxième année) : $e^x = 1 + x + \frac{x^2}{2} + o(x^2)$, ce qui donne ensuite $e^x 1 xe^x = 1 + x + \frac{x^2}{2} 1 x x^2 o(x^2)$ (pour xe^x , on a multiplié le développement limité précédent par x, en supprimant le terme $\frac{x^3}{2}$ qui est un $o(x^2)$), soit $e^x 1 x^2 = -\frac{x^2}{2} + o(x^2) \sim -\frac{x^2}{2}$. on a donc $f'(x) \sim -\frac{1}{2}$, c'est-à-dire que $\lim_{x\to 0} f'(x) = -\frac{1}{2}$.
 - (d) En appliquant le théorème de prolongement C^1 , on peut en déduire que f est dérivable en 0, et que $f'(0) = -\frac{1}{2}$. La fonction f est donc C^1 sur \mathbb{R}_+ tout entier.
 - (e) Ca, on peut le faire sans problème; $f'(x) = \frac{e^x 1 xe^x}{e^{2x} 2e^x + 1} \sim \frac{-xe^x}{e^{2x}} \sim -\frac{x}{e^x}$, donc par croissance comparée, $\lim_{x \to +\infty} f'(x) = 0^-$.
- 2. (a) On a déjà prouvé le caractère C^2 , et de plus $f' = u \times \frac{1}{v^2}$, avec $u(x) = e^x 1 xe^x$ et $v(x) = e^x 1$. En dérivant f' comme un produit, on a donc $f'' = \frac{u'}{v^2} \frac{2uv'}{v^3}$, soit $f''(x) = \frac{e^x e^x xe^x}{(e^x 1)^2} \frac{2(e^x 1 xe^x)e^x}{(e^x 1)^3} = \frac{-xe^x(e^x 1) 2e^x(e^x 1 xe^x)}{(e^x 1)^3} = \frac{e^x(-xe^x + x 2e^x + 2 + 2xe^x)}{(e^x 1)^3} = \frac{e^x(xe^x 2e^x + x + 2)}{(e^x 1)^3}$.
 - (b) La fonction g est C^2 sur \mathbb{R}_+ , et $g'(x) = e^x + xe^x 2e^x + 1 = xe^x e^x + 1$; $g''(x) = e^x + xe^x e^x = xe^x$, donc $g'' \ge 0$ sur \mathbb{R}_+ , d'où le tableau de variations suivant :

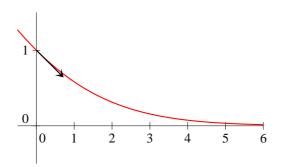
x	$0 + \infty$
g''(x)	+
g'(x)	+∞ 0
g'(x)	+
g(x)	+∞

La fonction g est donc positive sur \mathbb{R}_+ . Comme les autres facteurs intervenant dans f'' sont aussi positifs (sur \mathbb{R}_+ , $e^x \ge 1$, donc $(e^x - 1)^3 \ge 0$), la fonction f'' est positive sur \mathbb{R}_+ .

(c) D'après la question précédente, la fontion f' est croissante, comme elle tend vers 0^- en $+\infty$, elle est donc négative sur \mathbb{R}_+ , et f est donc décroissante. De plus, $f(x) \underset{+\infty}{\sim} \frac{x}{e^x}$, donc $\lim_{x \to +\infty} f(x) = 0$.



(d) L'allure de la courbe est la suivante :



3. (a) Il suffit de reprendre la tableau de variations de f' pour constater que $\forall x \geq 0, 0 \geq f'(x) \geq f'(0) = -\frac{1}{2}$, donc $|f'(x)| \leq \frac{1}{2}$, et que $0 \leq f(x) \leq f(0) = 1$.

(b) L'équation donne $x = x(e^x - 1)$, soit $x(e^x - 2) = 0$, donc $e^x = 2$ (puisque x = 0 n'est pas un point fixe), et le seul point fixe de f est donc $x = \ln 2$.

(c) En utilisant les résultats des deux questions précédentes, on peut appliquer l'IAF à f sur \mathbb{R}_+ et obtenir que, $\forall (x,y) \geq 0$, $|f(x)-f(y)| \leq \frac{1}{2}|x-y|$. On peut prendre $y=\ln 2$ et $x=u_n$ car u_n est toujours positif (c'est vrai pour u_0 , et $u_{n+1}=f(u_n)$ est positif car f ne prend que des valeurs positives), donc, comme $f(u_n)=u_{n+1}$ et $f(\ln 2)=\ln 2$, on a $|u_{n+1}-\ln 2|\leq \frac{1}{2}|u_n-\ln 2|$.

(d) Montrons par récurrence que $\forall n \in \mathbb{N}$, $|u_n - \ln 2| \leq \frac{1}{2^n}$. C'est vrai pour u_0 car $\ln 2 \leq 1$, et en supposant le résultat vrai pour u_n , on a $|u_{n+1} - \ln 2| \leq \frac{1}{2} |u_n - \ln 2| \leq \frac{1}{2} \times \frac{1}{2^n} \leq \frac{1}{2^{n+1}}$, ce qui prouve l'hérédité. Comme $\lim_{n \to +\infty} \frac{1}{2^n} = 0$, on en déduit par le théorème des gendarmes que $\lim_{n \to +\infty} |u_n - \ln 2| = 0$, donc $\lim_{n \to +\infty} u_n = \ln 2$.

Exercice 5 (***)

Commençons par étudier la fonction f: elle est C^{∞} , impaire, et $f'(x) = \frac{(3x^2+3)(3x^2+1)-6x(x^3+3x)}{(3x^2+1)^2} = \frac{3x^4-6x^2+3}{(3x^2+1)^2} = \frac{3(x^2-1)^2}{(3x^2+1)^2}$. La fonction f est donc strictement croissante sur \mathbb{R} . Cherchons ses points fixes: f(x) = x se ramène, en simplifiant par x (et en notant au passage que 0 est un point fixe), à $\frac{x^2+3}{3x^2+1} = 1$, soit $x^2+3=3x^2+1$, donc $2x^2=2$, ce qui se produit pour x=1 et x=-1. Il y a donc trois points fixes: x=-1, x=0 et x=1. Chacun des quatre intervalles x=1.

[-1;0]; [0;1] et $[1;+\infty[$ est donc stable par f. De plus, la courbe représentative de la fonction f est située au-dessus de la droite d'équation y=x sur $]-\infty;-1]$ et sur [0;1], et en-dessous sur les deux autres intervalles.

On peut alors deviner le comportement de (u_n) selon les valeurs de u_0 :

- si $u_0 < -1$, la suite sera croissante, majorée par -1, donc convergera. Le seul point fixe de l'intervalle étant -1, on aura u = -1.
- si $u_0 = -1$, la suite est constante égale à -1.
- si $-1 < u_0 < 0$, la suite sera décroissante, minorée par -1, et convergera nécessairement vers -1.
- si $u_0 = 0$, la suite est nulle.
- si $0 < u_0 < 1$, la suite sera croissante, majorée par 1, et convergera vers 1.
- si $u_0 = 1$, la suite est constante égale à 1.
- si $u_0 > 1$, la suite est décroissante, minorée par 1, elle converge vers 1.

Prouvons par exemple la convergence dans le cas où $u_0 \in]0;1[$ (les autres sont très similaires). La fonction f étant strictement croissante sur]0;1[, on a $\forall x \in]0;1[$, $f(x) \in]f(0);f(1)[=]0;1[$. Une récurrence élémentaire permet alors de prouver que tous les termes de la suite sont dans l'intervalle]0;1[: c'est vrai pour u_0 par hypothèse, et si $u_n \in]0;1[$, $f(u_n) \in]0;1[$, soit $u_{n+1} \in]0;1[$, ce qui achève la récurrence.

Par ailleurs, on a $f(x) = x \frac{x^2 + 3}{3x^2 + 1}$. Quand 0 < x < 1, $0 < x^2 < 1$, donc $0 < 2x^2 < 2$ puis en ajoutant $x^2 + 1$ de chaque côté, $3x^2 + 1 < x^2 + 3$. Tous ces nombres étant par ailleurs positifs, on a alors $\frac{x^2 + 3}{3x^2 + 1} > 1$, d'où f(x) > x. On en déduit que $u_{n+1} - u_n = f(u_n) - u_n > 0$, donc la suite (u_n) est strictement croissante. Étant majorée par 1, elle converge vers un point fixe de la fonction. Sa limite appartient par ailleurs à l'intervalle [0;1], donc ne peut être égale qu'à 0 ou 1. On peut exclure 0 car, la suite étant croissante, $u_n \ge u_0$, donc la limite de la suite est supérieure ou égale à u_0 et ne peut donc être nulle. Conclusion : $\lim_{n \to +\infty} u_n = 1$.

Remarque : ici, appliquer l'IAF est assez peu intéressant...