Microbial growth control in changing environments

Theoretical and experimental study of resource allocation in *Escherichia coli*

presented by Nils Giordano^{1,2}

supervized by Prof. Johannes Geiselmann^{1,2} and Dr. Hidde de Jong²

¹LIPhy, Université Grenoble Alpes, team BIOP ²Inria Grenoble – Rhône-Alpes, project-team Ibis

> PhD Thesis Defense March 23rd 2017

MICROBIAL GROWTH

Cell composition is a resource allocation problem

Blount, eLife 2015

RESOURCE ALLOCATION OBEYS GROWTH LAWS

Molenaar et al, Mol. Syst. Biol. 2009

RESOURCE ALLOCATION OBEYS GROWTH LAWS

Why such regularities?

Molenaar *et al*, *Mol. Syst. Biol.* 2009 Scott *et al*, *Science* 2010

GROWTH LAWS ARE EXPLAINED IF MICROORGANISMS MAXIMIZE THEIR GROWTH RATE

Growth laws result from a balance between supply and demand of precursors

Scott et al, Mol. Syst. Biol. 2014

GROWTH LAWS WERE ESTABLISHED AT BALANCED GROWTH

(B) Balanced growth

- Exponential growth $\left(\frac{dB}{dt} = \mu B\right)$
- Steady state $\left(\frac{dx}{dt} = 0\right)$
- Experimentally and theoretically convenient

GROWTH LAWS WERE ESTABLISHED AT BALANCED GROWTH

(B) Balanced growth

- Exponential growth $\left(\frac{dB}{dt} = \mu B\right)$
- Steady state $\left(\frac{dx}{dt} = 0\right)$
- Experimentally and theoretically convenient

Growth laws were established for laboratory conditions that are seldom encountered in nature

NO GROWTH LAWS FOR CHANGING CONDITIONS

NO GROWTH LAWS FOR CHANGING CONDITIONS

NO GROWTH LAWS FOR CHANGING CONDITIONS

Transitions are more difficult to study

PROBLEM STATEMENT

How do microorganisms dynamically reallocate their resources after a change in the environment?

Approach

Theoretical approach

What is the optimal way to dynamically allocate resources during a growth transition?

- What is the optimal resource allocation strategy?
- Can the strategy be linked to known molecular mechanisms?

Experimental approach

Do bacteria implement the theoretically optimal strategy of resource allocation?

- Measure resource allocation during a transition
- Compare with the optimal strategy

THEORETICAL APPROACH

Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies

Collaborators

- Francis Mairet (Inria Sophia-Antipolis Méditerranée, project-team Biocore)
- Jean-Luc Gouzé (Inria Sophia-Antipolis Méditerranée, project-team Biocore)

Published in Giordano et al, PLoS Comput Biol 2016

Self-replicator model of resource allocation

Two biochemical (macro)reactions:

Metabolism:
$$S \xrightarrow{V_M} P$$

Macromolecule synthesis: $P \xrightarrow{V_R} \alpha R + (1 - \alpha)M$

TWO-DIMENSIONAL DYNAMICAL SYSTEM

Precursors:
$$\frac{dP}{dt} = V_M - V_R$$

GEM: $\frac{dR}{dt} = \alpha \cdot V_R$

TWO-DIMENSIONAL DYNAMICAL SYSTEM

Precursors:
$$\frac{dp}{dt} = v_M - v_R - \mu \cdot p$$

GEM: $\frac{dr}{dt} = \alpha \cdot v_R - \mu \cdot r$

Assuming...

Volume: $Vol = \beta(M + R) \Rightarrow Growth rate: \mu = \beta \frac{V_R}{Vol} = \beta v_R$ Michaelis-Menten kinetics $\Rightarrow v_R = \frac{k_R \cdot p}{K_R + p} \cdot r$ $v_M = e_M \cdot (1/\beta - r)$

How does the cell choose the resource allocation parameter α ?

Data from Scott et al, Science, 2010

Data from Scott et al, Science, 2010

Data from Scott et al, Science, 2010

Choosing the optimal α for each environment predicts the empirical growth laws

Data from Scott et al, Science, 2010

GROWTH MAXIMIZATION DURING TRANSITIONS

New objective: maximize biomass produced during an environmental transition

$$J(\alpha) = \int_0^\tau \mu(t, \hat{p}, \hat{r}, \alpha) \, dt$$

GROWTH MAXIMIZATION DURING TRANSITIONS

New objective: maximize biomass produced during an environmental transition

$$J(\alpha) = \int_0^\tau \mu(t, \hat{p}, \hat{r}, \alpha) \, dt$$

Optimal solution: bang-bang-singular strategy

DIFFERENT CLOSED-LOOP CONTROL STRATEGIES FOR RESOURCE ALLOCATION

All closed-loop control strategies are optimal at steady state

PERFORMANCE OF CONTROL STRATEGIES DURING GROWTH TRANSITION

Equivalent strategies at steady state produce different outcomes in dynamical conditions

WHICH STRATEGY IS CLOSER TO THE ACTUAL REGULATORY MECHANISMS?

The ppGpp regulatory system in *E. coli* (Bosdriesz et al, 2015)...

... is a likely candidate

WHAT WE HAVE LEARNED SO FAR

- Bang-bang resource allocation maximizes the biomass produced during a nutrient upshift
- A dynamical study uncovers differences between regulatory strategies that are equivalent at steady state
- Complex regulations are beneficial during transitions
- The ppGpp system might be an efficient way for the cell to achieve quasi-optimal resource allocation

EXPERIMENTAL APPROACH

Dynamics of Resource Allocation in *E. coli* During an Acetate-Glucose Upshift

Collaborators

- ► Irina Mihalcescu (LIPhy, Université Grenoble Alpes, team BIOP)
- Eugenio Cinquemani (Inria Grenoble Rhône-Alpes, project-team Ibis)

EXPECTED OPTIMAL BEHAVIOR

EXPECTED OPTIMAL BEHAVIOR

- Rapid regulatory switches
 - \rightarrow high temporal resolution
- Probably not that stiff
 - \rightarrow extended observation times
- ► No reason bacteria will be synchronized
 - \rightarrow single-cell measurements

EXPERIMENTAL SETUP

Quantification of gene expression machinery

► Fluorescent labeling of the RpsB subunit of the ribosome

- Isolated on the chromosome
- Growth not affected
- Integrated into ribosomes

Monitoring of single-cells during growth transition

Microscopy and microfluidics (mother machine)

Bakshi et al, Mol. Microb. 2012; Wang et al, Curr. Biol. 2010

STRAIN CONSTRUCTION

Only *rpsB* is modified

PILOT EXPERIMENT

IMAGE ANALYSIS

- ► 6 fields, 15 channels = 90 lineages (68 exploitable)
- Segmentation of the cells at the bottom of the wells only (present for the entire experiment)
- Manual segmentation (selection of the 2 poles on the fluorescence images)

Raw image

Segmented image

Results of the image analysis

RECONSTRUCTION OF THE GROWTH RATE AND RESOURCE ALLOCATION

Dynamical system

$$\dot{r}(t) = \mu(t) \cdot \frac{\alpha(t)}{\beta} - \mu(t) \cdot r(t), \qquad (1)$$

$$\dot{V}(t) = \mu(t) \cdot V(t), \qquad (2)$$

with initial conditions $r(0) = r_0$, $V(0) = V_0$

Measurement model

$$L(t_k) = \lambda \cdot V(t_k) + \epsilon_k, \tag{3}$$

$$F(t_k) = \gamma \cdot r(t_k) + \eta_k, \qquad (4)$$

at each time-point t_k , $0 \le k \le N - 1$

Problem: reconstructing $\gamma \alpha(\cdot)/\beta$ and $\mu(\cdot)$ from measurements $\{F(t_0), ..., F(t_{N-1})\}$ and $\{L(t_0), ..., L(t_{N-1})\}$

RESULTS OF THE GROWTH-RATE RECONSTRUCTION

RESULTS OF THE GROWTH-RATE RECONSTRUCTION

RECONSTRUCTION OF RESOURCE ALLOCATION ON SYNTHETIC DATA

Results of the reconstruction of $\alpha(\cdot)$

Results of the reconstruction of $\alpha(\cdot)$

Heatmap of the $\alpha(\cdot)$ reconstruction

The first oscillation in the resource allocation profile is conserved in all cells

STILL A LOT TO DO...

We showed that:

- Dynamical resource allocation can be reconstructed via ribosome tagging and live imaging
- ► Kalman smoothing is convenient for such a reconstruction
- Oscillatory features are visible, but need to be confirmed

Further work should focus on:

- ► Long steady states before and after the upshift → crucial for calibrating the reconstruction algorithm
- ► More cells
 - \rightarrow for statistics, but automatic image analysis needed
- Other environmental changes, cross-validation, etc.

CONCLUSION

- Simple models are valuable for understanding fundamental principles of microbial growth
- Bang-bang regulatory scheme maximize biomass in dynamical conditions
- Complex regulation is only beneficial for unbalanced growth
- Known mechanisms of ribosome synthesis regulation (ppGpp) suggest bang-bang resource allocation during transitions
- Difficult to confirm experimentally, but preliminary results are encouraging

PERSPECTIVE

- ► Is there a fundamental relationship between the dynamics of the environment and the complexity of regulations?
- Can we apply this approach to maximize industrial production yields?

Thank you

CONTROL STRATEGIES CAN BE APPROXIMATED BY BIOLOGICALLY RELEVANT FUNCTIONS

The on-off strategy

$$\alpha = h(\hat{p}, \hat{r}) = \begin{cases} 0, \text{ if } \hat{r} > g(\hat{p}), \\ 1, \text{ if } \hat{r} < g(\hat{p}), \\ \alpha_{opt}^*, \text{ if } (\hat{p}, \hat{r}) = (\hat{p}_{opt}^*, \hat{r}_{opt}^*). \end{cases}$$
with $g(\hat{p}) = \frac{\hat{p}}{\hat{p} + \frac{K}{K + \hat{p}}(1 + \hat{p})}$

Choosing the optimal α for each environment predicts the empirical growth laws

From data in Scott et al, Science, 2010

RESULTS OF THE GROWTH-RATE RECONSTRUCTION (68 CELLS)

Cell categories identified in the analysis

ROBUST STATISTICS FOR THE CELL CATEGORIES (GROWTH RATE)

Noise estimation (1/2)

Noise estimation (2/2)

NO GROWTH DIFFERENCE BETWEEN WT AND RPSB-TAGGED STRAINS

MATURATION / DEGRADATION

