Microbial growth control in changing environments

Theoretical and experimental study of resource allocation in *Escherichia coli*

presented by **Nils Giordano**1,2

supervised by Prof. Johannes Geiselmann1,2 and Dr. Hidde de Jong2

1LIPhy, Université Grenoble Alpes, team BIOP
2Inria Grenoble – Rhône-Alpes, project-team Ibis

PhD Thesis Defense
March 23rd 2017
Microbial growth

Cell composition is a resource allocation problem

Blount, *eLife* 2015
RESOURCE ALLOCATION OBEYS GROWTH LAWS

RESOURCE ALLOCATION OBEYS GROWTH LAWS

Why such regularities?

Scott et al, Science 2010
Growth laws are explained if microorganisms maximize their growth rate.

Growth laws result from a balance between supply and demand of precursors.

GROWTH LAWS WERE ESTABLISHED AT BALANCED GROWTH

(B) Balanced growth

- Exponential growth \(\left(\frac{dB}{dt} = \mu B \right) \)
- Steady state \(\left(\frac{dx}{dt} = 0 \right) \)
- Experimentally and theoretically convenient
Growth laws were established at balanced growth

(B) Balanced growth

- Exponential growth \(\left(\frac{dB}{dt} = \mu B \right) \)
- Steady state \(\left(\frac{dx}{dt} = 0 \right) \)
- Experimentally and theoretically convenient

Growth laws were established for laboratory conditions that are seldom encountered in nature
No growth laws for changing conditions

Steady-state conditions

Environment

Resource allocation

poor rich
No growth laws for changing conditions

Steady-state conditions
- Poor environment
- Rich environment

Dynamical conditions
- Poor environment
- Rich environment
No growth laws for changing conditions

Transitions are more difficult to study
Problem Statement

How do microorganisms dynamically reallocate their resources after a change in the environment?
APPROACH

Theoretical approach
What is the optimal way to dynamically allocate resources during a growth transition?
- What is the optimal resource allocation strategy?
- Can the strategy be linked to known molecular mechanisms?

Experimental approach
Do bacteria implement the theoretically optimal strategy of resource allocation?
- Measure resource allocation during a transition
- Compare with the optimal strategy
THEORETICAL APPROACH

Dynamical Allocation of Cellular Resources as an Optimal Control Problem: Novel Insights into Microbial Growth Strategies

Collaborators

► Francis Mairet (Inria Sophia-Antipolis Méditerranée, project-team Biocore)
► Jean-Luc Gouzé (Inria Sophia-Antipolis Méditerranée, project-team Biocore)

Published in Giordano et al, PLoS Comput Biol 2016
SELF-REPLICATOR MODEL OF RESOURCE ALLOCATION

Two biochemical (macro)reactions:

Metabolism: \(S \xrightarrow{V_M} P \)

Macromolecule synthesis: \(P \xrightarrow{V_R} \alpha R + (1 - \alpha)M \)
TWO-DIMENSIONAL DYNAMICAL SYSTEM

Precursors: \[
\frac{dP}{dt} = V_M - V_R
\]

GEM: \[
\frac{dR}{dt} = \alpha \cdot V_R
\]
Two-dimensional dynamical system

Precursors: \[\frac{dp}{dt} = \nu_M - \nu_R - \mu \cdot p \]

GEM: \[\frac{dr}{dt} = \alpha \cdot \nu_R - \mu \cdot r \]

Assuming...

Volume: \(V_{\text{ol}} = \beta (M + R) \) \Rightarrow Growth rate: \(\mu = \beta \frac{V_R}{V_{\text{ol}}} = \beta \nu_R \)

Michaelis-Menten kinetics \Rightarrow \(\nu_R = \frac{k_R \cdot p}{K_R + p} \cdot r \)

\(\nu_M = e_M \cdot (1/\beta - r) \)

How does the cell choose the resource allocation parameter \(\alpha \)?
MODEL PREDICTS THE STEADY-STATE GROWTH LAWS

Data from Scott et al, Science, 2010
MODEL PREDICTS THE STEADY-STATE GROWTH LAWS

Data from Scott et al, Science, 2010
MODEL PREDICTS THE STEADY-STATE GROWTH LAWS

![Graph showing the relationship between α and μ* for different values of e_M (h⁻¹). The graph includes data points for e_M = 0.59, 0.87, 1.07, 1.57, 3.48, and 4.76.]

Data from Scott et al, Science, 2010
MODEL PREDICTS THE STEADY-STATE GROWTH LAWS

Choosing the optimal α for each environment predicts the empirical growth laws

Data from Scott et al, Science, 2010
GROWTH MAXIMIZATION DURING TRANSITIONS

New objective: maximize biomass produced during an environmental transition

\[J(\alpha) = \int_0^\tau \mu(t, \hat{p}, \hat{r}, \alpha) \, dt \]

[Diagram A: \(\hat{r} \) vs. \(\hat{p} \) with an optimal point marked.]

[Diagram B: \(t \) vs. \(E_M \) with a transition phase highlighted.]
GROWTH MAXIMIZATION DURING TRANSITIONS

New objective: maximize biomass produced during an environmental transition

\[J(\alpha) = \int_{0}^{\tau} \mu(t, \hat{p}, \hat{r}, \alpha) \, dt \]

Optimal solution: bang-bang-singular strategy
DIFFERENT CLOSED-LOOP CONTROL STRATEGIES FOR RESOURCE ALLOCATION

All closed-loop control strategies are optimal at steady state.
Performance of control strategies during growth transition

Equivalent strategies at steady state produce different outcomes in dynamical conditions
Which strategy is closer to the actual regulatory mechanisms?

The ppGpp regulatory system in *E. coli* (Bosdriesz et al, 2015)...

... is a likely candidate
WHAT WE HAVE LEARNED SO FAR

- Bang-bang resource allocation maximizes the biomass produced during a nutrient upshift
- A dynamical study uncovers differences between regulatory strategies that are equivalent at steady state
- Complex regulations are beneficial during transitions
- The ppGpp system might be an efficient way for the cell to achieve quasi-optimal resource allocation
EXPERIMENTAL APPROACH

Dynamics of Resource Allocation in *E. coli* During an Acetate-Glucose Upshift

Collaborators

- Irina Mihalcescu (LIPhy, Université Grenoble Alpes, team BIOP)
- Eugenio Cinquemani (Inria Grenoble – Rhône-Alpes, project-team Ibis)
EXPECTED OPTIMAL BEHAVIOR

Steady-state conditions

Dynamical conditions

Resource allocation

Environment

poor rich

poor environment rich environment

Time

▶ Rapid regulatory switches
→ high temporal resolution
▶ Probably not that stiff
→ extended observation times
▶ No reason bacteria will be synchronized
→ single-cell measurements
EXPECTED OPTIMAL BEHAVIOR

- Rapid regulatory switches
 → high temporal resolution
- Probably not that stiff
 → extended observation times
- No reason bacteria will be synchronized
 → single-cell measurements
EXPERIMENTAL SETUP

Quantification of gene expression machinery

- Fluorescent labeling of the RpsB subunit of the ribosome

- Isolated on the chromosome

- Growth not affected

- Integrated into ribosomes

Monitoring of single-cells during growth transition

- Microscopy and microfluidics (mother machine)

Strain construction

Only *rpsB* is modified.
Pilot Experiment

- Acetate: 2.5 days (preculture)
- Acetate: 20 hours
- Glucose: 20 hours

Growth rate vs. Time [min]

Microscopy

Acetate

00:00
IMAGE ANALYSIS

- 6 fields, 15 channels = 90 lineages (68 exploitable)
- Segmentation of the cells at the bottom of the wells only (present for the entire experiment)
- Manual segmentation (selection of the 2 poles on the fluorescence images)

Raw image

Segmented image
RESULTS OF THE IMAGE ANALYSIS

Raw image

Segmented image

RFU/pixel/cell [a.u.]

Time [min]

Bacteria length [pixel]

X3Y2,W2

X3Y2,W2
RECONSTRUCTION OF THE GROWTH RATE AND RESOURCE ALLOCATION

Dynamical system

\[\dot{r}(t) = \mu(t) \cdot \frac{\alpha(t)}{\beta} - \mu(t) \cdot r(t), \quad (1) \]
\[\dot{V}(t) = \mu(t) \cdot V(t), \quad (2) \]

with initial conditions \(r(0) = r_0, V(0) = V_0 \)

Measurement model

\[L(t_k) = \lambda \cdot V(t_k) + \epsilon_k, \quad (3) \]
\[F(t_k) = \gamma \cdot r(t_k) + \eta_k, \quad (4) \]

at each time-point \(t_k, 0 \leq k \leq N - 1 \)

Problem: reconstructing \(\gamma \alpha(\cdot)/\beta \) and \(\mu(\cdot) \) from measurements \(\{F(t_0), ..., F(t_{N-1})\} \) and \(\{L(t_0), ..., L(t_{N-1})\} \)
RESULTS OF THE GROWTH-RATE RECONSTRUCTION

![Graphs showing bacterial length and growth rate over time.](image-url)
RESULTS OF THE GROWTH-RATE RECONSTRUCTION

[Diagram showing bacterial growth over time with data points and a trend line]
RECONSTRUCTION OF RESOURCE ALLOCATION ON SYNTHETIC DATA
RESULTS OF THE RECONSTRUCTION OF $\alpha(\cdot)$
RESULTS OF THE RECONSTRUCTION OF $\alpha(\cdot)$
The first oscillation in the resource allocation profile is conserved in all cells.
Still a lot to do...

We showed that:

- Dynamical resource allocation can be reconstructed via ribosome tagging and live imaging
- Kalman smoothing is convenient for such a reconstruction
- Oscillatory features are visible, but need to be confirmed

Further work should focus on:

- Long steady states before and after the upshift → crucial for calibrating the reconstruction algorithm
- More cells → for statistics, but automatic image analysis needed
- Other environmental changes, cross-validation, etc.
CONCLUSION

- Simple models are valuable for understanding fundamental principles of microbial growth
- Bang-bang regulatory scheme maximize biomass in dynamical conditions
- Complex regulation is only beneficial for unbalanced growth
- Known mechanisms of ribosome synthesis regulation (ppGpp) suggest bang-bang resource allocation during transitions
- Difficult to confirm experimentally, but preliminary results are encouraging
PERSPECTIVE

- Is there a fundamental relationship between the dynamics of the environment and the complexity of regulations?
- Can we apply this approach to maximize industrial production yields?
Thank you
CONTROL STRATEGIES CAN BE APPROXIMATED BY BIOLOGICALLY RELEVANT FUNCTIONS

\[f(E_M) = \frac{E_M + \sqrt{K E_M}}{E_M + 2\sqrt{K E_M} + 1} \]

\[g(\hat{p}) = \frac{\hat{p}^2}{0.06^2 + \hat{p}^2} \]

\[g(\hat{p}) = \frac{\hat{p}}{\hat{p} + \frac{K}{K + \hat{p}}(1 + \hat{p})} \]
THE ON-OFF STRATEGY

\[\alpha = h(\hat{p}, \hat{r}) = \begin{cases}
0, & \text{if } \hat{r} > g(\hat{p}), \\
1, & \text{if } \hat{r} < g(\hat{p}), \\
\alpha_{opt}, & \text{if } (\hat{p}, \hat{r}) = (\hat{p}_{opt}, \hat{r}_{opt}).
\end{cases} \]

with \[g(\hat{p}) = \frac{\hat{p}}{\hat{p} + \frac{K}{K+\hat{p}} (1 + \hat{p})}. \]
Model predicts the steady-state growth laws

Choosing the optimal α for each environment predicts the empirical growth laws

From data in Scott et al, Science, 2010
RESULTS OF THE GROWTH-RATE RECONSTRUCTION (68 CELLS)
CELL CATEGORIES IDENTIFIED IN THE ANALYSIS

- Normal cells (N=45)
 - Growth rate for X3Y2,W2
- Pausing cells (N=11)
 - Growth rate for X1Y2,W2
- Dying cells (N=12)
 - Growth rate for X1Y1,W0
ROBUST STATISTICS FOR THE CELL CATEGORIES (GROWTH RATE)

[Graphs showing growth rate distributions for Normal, Pausing, and Dying cells over time.]
NOISE ESTIMATION (1/2)
Noise estimation (2/2)
NO GROWTH DIFFERENCE BETWEEN WT AND rpsB-TAGGED STRAINS
MATURATION / DEGRADATION

Data for rpsB-gfp

Best fit

Data for rpsB-mCherry

Best fit

Time after Cm addition [min]
COMPLETE ANALYSIS CELL 1

![Graphs showing data analysis](image)

- **Length [pixels]**
- **Growth rate [min⁻¹]**
- **RFU/pixel/cell [a.u.]**
- **γα/β [a.u.]**

The graphs illustrate the analysis of cell 1 over time, showing changes in length, growth rate, RFU/pixel/cell, and γα/β values.
COMPLETE ANALYSIS CELL 2

![Graphs showing changes in Length, Growth rate, RFU/pixel/cell, and γα/β over time.](image)
COMPLETE ANALYSIS CELL 3
COMPLETE ANALYSIS CELL 4

[Graphs showing different measurements over time: Length [pixels], Growth rate [min^-1], RFU/pixel/cell [a.u.], and γα/β [a.u.]].
COMPLETE ANALYSIS CELL 5