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MOLECULAR COMPOSITION OF A MICROORGANISM

Molenaar et al, MSB 2009 ; from data in Gausing, JMB 1977
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DO MICROORGANISMS LIVE IN CONSTANT

ENVIRONMENTS?

Mostly, not.
Savageau (1998), Am. Natural., 122(6):732-44
Felix Andrews, CC BY-SA 3.0
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OUR PROJECT: A DYNAMICAL PERSPECTIVE ON

GROWTH CONTROL STRATEGIES

I Is considering balanced-growth a critical assumption to
understand growth control strategies?

I Can we gain additional information by extending growth
rate studies to dynamical environments?

Tools:
I A simple model of resource allocation
I Optimal control theory
I Fluorescent reporters of gene expression (experiments)
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SELF-REPLICATOR MODEL OF RESOURCE ALLOCATION
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Two biochemical (macro)reactions:

Metabolism: S VM−→ P
Macromolecule synthesis: P VR−→ αR + (1− α)M

Giordano et al, in preparation
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TWO-DIMENSIONAL DYNAMICAL SYSTEM

Volume: Vol = β(M + R) ⇒ Growth rate: µ = β
VR

Vol
= βvR

Michaelis-Menten kinetics ⇒ vR =
kR · p

KR + p
· r

Model with concentration variables (dimensionless):

Precursors:
dp̂
d̂t

= EM · (1− r̂)− p̂
K + p̂

· r̂ · (1 + p̂)

GEM:
dr̂
d̂t

=
p̂

K + p̂
· r̂ · (α− r̂)

7 / 17



Bacterial growth laws Optimal allocation (steady-state) Optimal control (dynamic)

MODEL PREDICTS THE STEADY-STATE GROWTH LAWS
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Giordano et al, in preparation; from data in Scott et al, Science, 2010
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ALTERNATIVE CONTROL STRATEGIES FOR OPTIMAL

RESOURCE ALLOCATION
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The two strategies are equivalent for steady-state growth!
Giordano et al, in preparation
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WHAT IF WE OPTIMIZE DURING A GROWTH

TRANSITION?
New objective: maximize biomass during a transition (upshift
at t = 0)

J(α) =
∫ τ

0
µ(t, p̂, r̂, α) dt

Optimal solution: bang-bang-singular regulatory strategy
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Giordano et al, in preparation
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PERFORMANCE OF CONTROL STRATEGIES DURING

GROWTH TRANSITION

Control strategies are no longer equivalent in dynamic
environment.

Giordano et al, in preparation
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AND IF WE CAN MEASURE SEVERAL VARIABLES?
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Giordano et al, in preparation
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IS A STRATEGY MEASURING TWO VARIABLES BETTER?

Giordano et al, in preparation
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DOES THE STRATEGY CORRESPOND TO ACTUAL

REGULATORY MECHANISMS?
If we take a model of the ppGpp regulatory system in E. coli
(Bosdriesz et al, 2015)...
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... we obtain a likely candidate.

Giordano et al, in preparation
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EXPERIMENTAL VALIDATION: OBSERVING THE

DYNAMICS OF α IN BACTERIAL CELLS

tff rpsB tsfmCherry

tff rpsB tsfGFP

Ribosomal subunit

tff rpsB tsfCFP

Bakshi et al, Molecular Microbiology 2012
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CONCLUSION

I Is considering balanced-growth a critical assumption to
understand growth control strategies?

I Yes, because strategies are equivalent at steady state

I Can we gain additional information by extending growth
rate studies to dynamical environments?

I Yes, because they become distinguishable in dynamic
conditions

I Complex strategies are beneficial during growth transitions
I The widespread ppGpp system might actually be a simple

way for the cell to gain information on several variables
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PERSPECTIVE

I Can we observe experimentally an oscillatory pattern of
ribosome synthesis during transitions?

I Is there a fundamental relation between environment
dynamics and complexity of regulations?

I Can we apply this approach to maximize industrial
production yields?

Complexity of regulations

Cost
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