Using co-activity networks to reveal the structure of planktonic symbioses in the global ocean

Nils Giordano, Samuel Chaffron

Computational Biology team (COMBI) Laboratoire des Sciences du Numérique de Nantes (LS2N, UMR 6004)

GT BIOSS annual meeting July, 2nd-3rd 2018

ENVIRONMENTAL GENOMICS

Microbes

- Everywhere, but >90% not cultivable
- Live in complex communities
- Various ecological roles (biogeochemistry, host-nutrition and development, ...)

Electrically conductive nanowires in *Shewanella oneidensis*. Photo by R. Bencheikhand B. Arey

Chemocline bacterial community of Lake Dagow. Overmann & van Germeden 2000

LAST DECADE EFFORTS: "PLANET-SCALE" SAMPLING

Tara Oceans expeditions for the sampling of marine microbiome

But also Host-associated (Human Microbiome Project), Soil, Oilseep, Hydrothermal...

ENVIRONMENTAL GENOMES

Single Amplified Genomes

- Experimentally challenging
- Amplification
- Incomplete genomes

Metagenome Assembled Genomes

- Shotgun sequencing (cheap)
- Already available data
- Contamination

METAGENOMES ASSEMBLED GENOMES (MAGS): EXAMPLE OF METABAT

Preprocessing

- Samples from multiple sites or times
- Metagenome libraries
- Initial de-novo assembly using the combined library

MetaBAT

- Calculate TNF for each contig
- Calculate Abundance per library for each contig
- Calculate the pairwise distance matrix using pre-trained probabilistic models
- Forming genome bins iteratively

LIST OF MAGS PUBLICATIONS

Intense filling of databases, but not so much is currently done with this new information

CAN WE PREDICT, CARACTERIZE AND EXPLAIN THE COMMUNITIES OF ENVIRONMENTAL GENOMES?

Repartition of 1378 MAGs extracted from Tara Ocean (→2015)

CO-ACTIVITY: WHO GROWS WITH WHOM?

Tools

- Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples Korem et al, Science 2015
 - \rightarrow only complete genomes, code not available
- Measurement of bacterial replication rates in microbial communities

Brown et al, Nature Biotechnology 2016

→ adapted for draft-quality genomes, code on Github

INFERENCE OF MICROBIAL GROWTH DIRECTLY FROM METAGENOMIC SAMPLES

Non-dividing bacterial population

Growing bacterial population

$$PTR = iRep = \frac{\texttt{Ori}_{cov}}{\texttt{Ter}_{cov}} \ge 1$$

Quantitative in situ measurement of the replication rate

GROWTH CORRELATION BETWEEN 556 MAGS IN 172 TARA SAMPLES

Data: *near-complete* "Tara" MAGs from Parks *et al*, Nature Microbiology 2017; Tara Oceans samples

GROWTH CORRELATION BETWEEN 556 MAGS IN 172 TARA SAMPLES

Data: near-complete "Tara" MAGs from Parks et al, Nature Microbiology 2017; Tara Oceans samples

FUNCTIONAL CONTENT OF PROKARYOTIC GENOMES: SCALING LAWS OF LAB-CULTIVATED STRAINS

Scaling laws

$$n_c = \beta_c \times n^{\alpha_c}$$

 n_c : number of gene in cat c n: total number of genes

- Uncovered from ~700 (lab-cultivated) prokaryotes
- What about environmental genomes?

FUNCTIONAL ANNOTATION OF ENVIRONMENTAL GENOMES

- Annotation pipeline (Prodigal/eggNOGmapper)
- 8000 MAGs annotated along ~25k complete genomes

Functional annotation databases

- Strategies: Orthologous groups (eggNOG) VS protein domains (pfam)
- Annotations: eggNOG (50%), KEGG (30%), Gene Ontology terms

SCALING LAWS IN MAGS

Could "social" prokaryotes be functional outliers in such laws?

Work in progress...

Wrapping up

In summary...

- Microbial diversity largely unknown
- Intensive experimental (sampling and sequencing) and theoretical (genome prediction) research efforts to uncover new environmental genomes
- We try to accumulate clues to predict associations

Perspective

- Revisit scaling laws at the ecosystem level
- Add more clues of associations (metaT?)
- Next step: reconstruct metabolic models of consortia to explain microbe social interactions

THANK YOU FOR YOUR ATTENTION

Close collaborators

- Samuel Chaffron
- Damien Eveillard
- Marko Budinich Abarca

