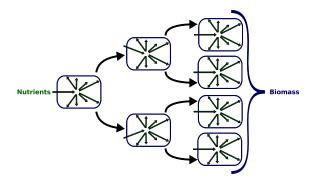
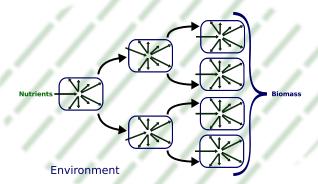
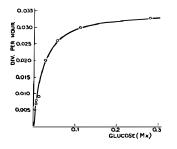
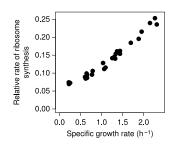

Moving away from steady state to understand growth regulatory strategies in microorganisms

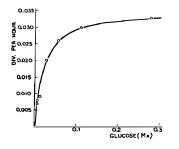

<u>Nils Giordano</u>^{1,2}, Francis Mairet³, Jean-Luc Gouzé³, Johannes Geiselmann^{1,2}, Hidde de Jong²

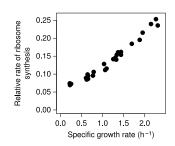

CompSysBio School, Aussois (France) April 2015

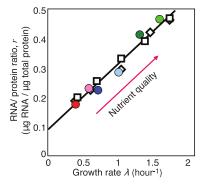
¹Team BIOP (LiPhy, Joseph Fourier University)
 ²Project-team IBIS (Inria Grenoble – Rhône-Alpes)
 ³Project-team BIOCORE (Inria Sophia-Antipolis – Méditerranée)

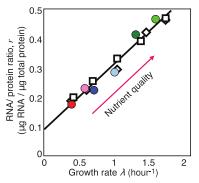


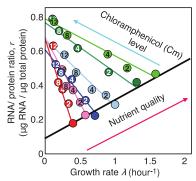




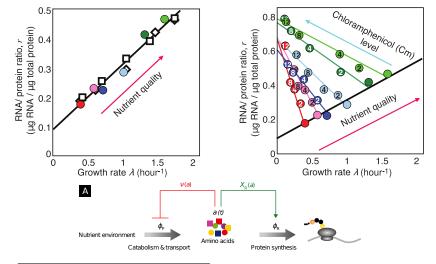

Growth rate and cell composition change with the environment


Growth rate and cell composition change with the environment

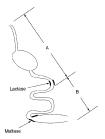



Resource allocation changes with the environment

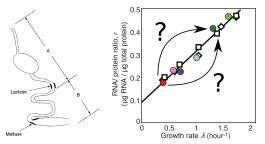
General growth laws predict physiology based on growth rate maximization



General growth laws predict physiology based on growth rate maximization



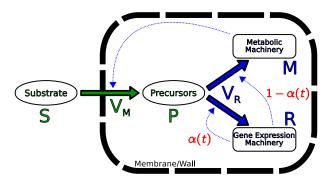
General growth laws predict physiology based on growth rate maximization


Steady-state and dynamic optimization

- ► Most growth laws and data concern steady-state growth → convenient, well-controlled, robust and reproducible
- ► However, most bacteria live (and evolve) in changing environment

Steady-state and dynamic optimization

- ► Most growth laws and data concern steady-state growth → convenient, well-controlled, robust and reproducible
- ► However, most bacteria live (and evolve) in changing environment



What new information (if any) can we gain from studying the dynamics of growth?

Plan

- ► A self-replicator model of resource allocation
- Equivalent regulatory strategies at steady state can be discriminated in dynamical conditions

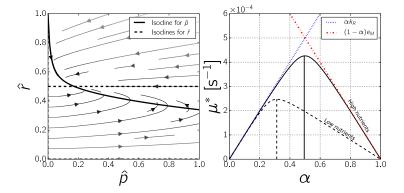
Self-replicator formalism

Biochemical (macro)reactions:

$$\begin{array}{ccc} S & \xrightarrow{V_M} & P \\ P & \xrightarrow{V_R} & \alpha R + (1-\alpha)M \end{array}$$

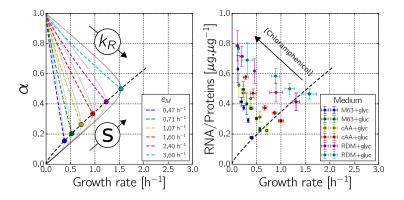
Dynamics of the self-replicating system

$$\frac{d}{dt} \begin{bmatrix} p(t) \\ r(t) \end{bmatrix} = \underbrace{\begin{bmatrix} 1 & -1 \\ 0 & \alpha \end{bmatrix} \cdot \begin{bmatrix} v_M(p,r,s,t) \\ v_R(p,r,t) \end{bmatrix}}_{\text{reactions}} - \underbrace{\mu(p,r,t) \cdot \begin{bmatrix} p(t) \\ r(t) \end{bmatrix}}_{\text{dilution}}$$


$$v_M = \frac{k_M \cdot s}{K_M + s} \cdot (1/\beta - r)$$

$$v_R = \frac{k_R \cdot p}{K_R + p} \cdot r$$
Vol(t) = $\beta \cdot (M(t) + R(t))$

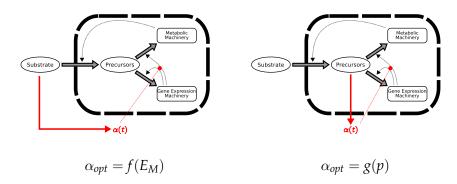
Growth rate is given by total macromolecular synthesis:


$$\mu = \frac{1}{\text{Vol}} \frac{d \text{Vol}}{dt} = \frac{1}{M+R} \frac{d(M+R)}{dt} = \beta \cdot v_R(p,r,t)$$

Transition towards a stable steady state

For any environment $(\frac{k_M \cdot s}{K_M + s} = e_M) \rightarrow$ a single resource allocation α maximizes the growth rate

Maximizing growth rate at steady state yields growth laws


Parameters: order of magnitudes extracted from literature. Qualitative behaviors are not parameter sensitive. Data in right figure from Scott et al (2010), Science.

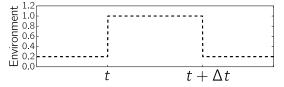
Regulatory strategies: biological implementation of optimal resource allocation

If the cell can measure any variable, which one would allow to maximize growth rate in any environment?

Regulatory strategies: biological implementation of optimal resource allocation

If the cell can measure any variable, which one would allow to maximize growth rate in any environment?

Both strategies are equivalent at steady state

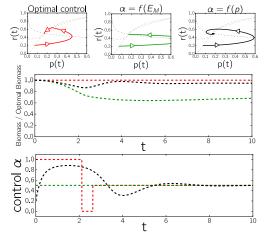

Optimal regulatory strategies during growth transitions

Are those regulatory strategies also optimal (and equivalent) during growth transitions?

Optimal regulatory strategies during growth transitions

Are those regulatory strategies also optimal (and equivalent) during growth transitions?

Environmental conditions: nutrient upshift



Objective function: biomass produced

$$\max_{\alpha \in \mathcal{U}} J(\alpha) := \int_{\tau}^{\tau + \Delta \tau} \mu(p, r, \alpha) dt$$

 Mathematical tools from control theory used to derive optimal strategy: Pontryagin's maximum principle

Regulatory strategies are not equivalent during growth transitions

Measuring precursors is closer to optimal strategy than measuring the environment

Conclusions

- Steady-state growth laws can be reproduced from first principles
- Without additional assumptions, we cannot discriminate between strategies that sense the environment (external input) or the precursor abundance (internal variable)
- However, formulation of dynamical optimal control problem shows that measuring internal variables enables faster adaptation
- What about regulatory strategies that measure several components?
- ► Is there a *growth law* linking the dynamics of the environment with the complexity of regulatory strategies across the diversity of microorganisms?