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MICROBIAL GROWTH
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MICROBIAL GROWTH

Lipid
biosynthesis pathway
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Cell composition is a resource allocation problem
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MOLECULAR COMPOSITION CHANGES WITH THE
GROWTH RATE
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Empirical growth laws link the molecular composition with
the growth rate at balanced growth

Molenaar et al, MSB 2009 ; from data in Gausing, JMB 1977
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DO WE FIND BALANCED GROWTH IN NATURAL
CONDITIONS?

Not so much.

Savageau (1998), Am. Natural., 122(6):732-44

Felix Andrews, CC BY-SA 3.0
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PROJECT: A DYNAMICAL PERSPECTIVE ON GROWTH
CONTROL STRATEGIES

» Is considering balanced-growth a critical assumption to
understand growth control strategies?

» Can we gain additional information by extending growth
rate studies to dynamical environments?
Tools:
» A simple model of resource allocation
» Optimal control theory

» Fluorescent reporters of gene expression (experiments)
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SELF-REPLICATOR MODEL OF RESOURCE ALLOCATION
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Two biochemical (macro)reactions:

Metabolism: S M P

Macromolecule synthesis: P VR AR+ (1-—a)M

Giordano et al, Plos Comp Biol 2016
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TWO-DIMENSIONAL DYNAMICAL SYSTEM

Assuming...

1%
Volume: Vol = f(M+R) = Growth rate: yp = Bﬁ = Boug
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Michaelis-Menten kinetics = v =
KR + p

We obtain the following (dimensionless) system:
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How does the cell choose « (relative GEM production)?
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MODEL HAS A SINGLE STABLE STEADY-STATE
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For each environment, a single value of o is “optimal”

Giordano et al, Plos Comp Biol 2016
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MODEL PREDICTS THE STEADY-STATE GROWTH LAWS

1.0

§
0.8 <
N
A ‘\ ’
0.6 ‘
3 \ /
\\,, e ]
0.4 -@— 0.59 []
-@— 0.87
-@— 1.07
0.2 Q- 1.57
-0 3.48
-8 4.76
0 T

0 T
00 05 1.0 15 20 25 3.0
* -1

p* [h™]

Choosing the “optimal” « for each environment predicts the

empirical growth laws

Giordano et al, Plos Comp Biol 2016; from data in Scott et al, Science, 2010
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ALTERNATIVE CONTROL STRATEGIES FOR OPTIMAL
RESOURCE ALLOCATION

Only two possible candidates...
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... which are exactly equivalent for steady-state growth!

Giordano et al, Plos Comp Biol 2016
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AND DURING GROWTH TRANSITIONS?

New objective: producing as much biomass as possible during
an environmental transition

](a) = /()Tﬂ(t?ﬁjaa)dt

The optimal solution is a bang-bang-singular regulatory
strategy
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Giordano et al, Plos Comp Biol 2016
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PERFORMANCE OF CONTROL STRATEGIES DURING
GROWTH TRANSITION
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Measuring precursors leads to a higher biomass production

Giordano et al, Plos Comp Biol 2016
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BUT THE CELL IS NOT THAT CONSTRAINED...

Is a strategy measuring two (or more) variables better?

Metabolic
machinery
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Giordano et al, Plos Comp Biol 2016
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PERFORMANCE OF AN “"ON-OFF” STRATEGY
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A feedback control on two variables improves the transition

Giordano et al, Plos Comp Biol 2016
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DOES THE STRATEGY CORRESPOND TO ACTUAL
REGULATORY MECHANISMS?

If we take a model of the ppGpp regulatory system in E. coli
(Bosdriesz et al, 2015)...

ppGpp regulation

... we obtain a likely candidate.

Giordano et al, Plos Comp Biol 2016
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CONCLUSION

» Is considering balanced-growth a critical assumption to
understand growth control strategies?

» Yes, because strategies are equivalent at steady state

» Can we gain additional information by extending growth
rate studies to dynamical environments?
» Yes, because they become distinguishable in dynamical
conditions
» Complex strategies are beneficial during growth transitions
» The widespread ppGpp system might actually be a cheap
way for the cell to gain information on several variables
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COMING SOON!

Experimental validation:
bacterial cells

observing the dynamics of o in
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FOOD FOR THOUGHT (A.K.A. PERSPECTIVE)

» Is there a fundamental relation between environment
dynamics and complexity of regulations?

» Can we apply this approach to maximize industrial
production yields?

Cost

Benefit (fast env.)

Benefit (slow env.)

Complexity of regulations'
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CONTROL STRATEGIES CAN BE APPROXIMATED BY
BIOLOGICALLY RELEVANT FUNCTIONS
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Giordano et al, Plos Comp Biol 2016



	Bacterial growth laws
	Optimal allocation (steady-state)
	Optimal control (dynamic)
	Appendix

