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MICROBIAL GROWTH

Source picture: NIAID
Molenaar et al, MSB 2009
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MICROBIAL GROWTH

Cell composition is a resource allocation problem

Source picture: NIAID
Molenaar et al, MSB 2009
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MOLECULAR COMPOSITION CHANGES WITH THE

GROWTH RATE

Time

Biomass (log)

Nutrients

Empirical growth laws link the molecular composition with
the growth rate at balanced growth

Molenaar et al, MSB 2009 ; from data in Gausing, JMB 1977
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DO WE FIND BALANCED GROWTH IN NATURAL

CONDITIONS?

Not so much.

Savageau (1998), Am. Natural., 122(6):732-44
Felix Andrews, CC BY-SA 3.0
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PROJECT: A DYNAMICAL PERSPECTIVE ON GROWTH

CONTROL STRATEGIES

I Is considering balanced-growth a critical assumption to
understand growth control strategies?

I Can we gain additional information by extending growth
rate studies to dynamical environments?

Tools:
I A simple model of resource allocation
I Optimal control theory
I Fluorescent reporters of gene expression (experiments)
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SELF-REPLICATOR MODEL OF RESOURCE ALLOCATION

Two biochemical (macro)reactions:

Metabolism: S VM−→ P
Macromolecule synthesis: P VR−→ αR + (1− α)M

Giordano et al, Plos Comp Biol 2016
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TWO-DIMENSIONAL DYNAMICAL SYSTEM

Assuming...

Volume: Vol = β(M + R) ⇒ Growth rate: µ = β
VR

Vol
= βvR

Michaelis-Menten kinetics ⇒ vR =
kR · p

KR + p
· r

We obtain the following (dimensionless) system:

Precursors:
dp̂
d̂t

= EM · (1− r̂)− p̂
K + p̂

· r̂ · (1 + p̂)

GEM:
dr̂
d̂t

=
p̂

K + p̂
· r̂ · (α− r̂)

How does the cell choose α (relative GEM production)?
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MODEL HAS A SINGLE STABLE STEADY-STATE
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For each environment, a single value of α is ”optimal”

Giordano et al, Plos Comp Biol 2016
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MODEL PREDICTS THE STEADY-STATE GROWTH LAWS
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Choosing the ”optimal” α for each environment predicts the
empirical growth laws

Giordano et al, Plos Comp Biol 2016; from data in Scott et al, Science, 2010
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ALTERNATIVE CONTROL STRATEGIES FOR OPTIMAL

RESOURCE ALLOCATION

Only two possible candidates...

Substrate Precursors

Metabolic
machinery

Gene expression 
machinery

Substrate Precursors

Metabolic
machinery

Gene expression 
machinery

Nutrient-only Precursor-only

f (EM) =
EM +

√
K EM

EM + 2
√

K EM + 1
g(p̂) =

p̂
p̂ + K

K+p̂(1 + p̂)

... which are exactly equivalent for steady-state growth!

Giordano et al, Plos Comp Biol 2016
10 / 18



Bacterial growth laws Optimal allocation (steady-state) Optimal control (dynamic)

AND DURING GROWTH TRANSITIONS?
New objective: producing as much biomass as possible during
an environmental transition

J(α) =
∫ τ

0
µ(t, p̂, r̂, α) dt

The optimal solution is a bang-bang-singular regulatory
strategy
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Giordano et al, Plos Comp Biol 2016
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PERFORMANCE OF CONTROL STRATEGIES DURING

GROWTH TRANSITION

Measuring precursors leads to a higher biomass production

Giordano et al, Plos Comp Biol 2016
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BUT THE CELL IS NOT THAT CONSTRAINED...

Is a strategy measuring two (or more) variables better?

Substrate Precursors

Metabolic
machinery

Gene expression 
machinery

On-off

Giordano et al, Plos Comp Biol 2016
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PERFORMANCE OF AN ”ON-OFF” STRATEGY

A feedback control on two variables improves the transition

Giordano et al, Plos Comp Biol 2016
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DOES THE STRATEGY CORRESPOND TO ACTUAL

REGULATORY MECHANISMS?
If we take a model of the ppGpp regulatory system in E. coli
(Bosdriesz et al, 2015)...
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... we obtain a likely candidate.

Giordano et al, Plos Comp Biol 2016
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CONCLUSION

I Is considering balanced-growth a critical assumption to
understand growth control strategies?

I Yes, because strategies are equivalent at steady state

I Can we gain additional information by extending growth
rate studies to dynamical environments?

I Yes, because they become distinguishable in dynamical
conditions

I Complex strategies are beneficial during growth transitions
I The widespread ppGpp system might actually be a cheap

way for the cell to gain information on several variables
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COMING SOON!
Experimental validation: observing the dynamics of α in
bacterial cells

tff rpsB tsfmCherry

tff rpsB tsfGFP

Ribosomal subunit

tff rpsB tsfCFP

Bakshi et al, Mol. Microb. 2012; Wang et al, Current Biology 2010
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FOOD FOR THOUGHT (A.K.A. PERSPECTIVE)

I Is there a fundamental relation between environment
dynamics and complexity of regulations?

I Can we apply this approach to maximize industrial
production yields?

Complexity of regulations

Cost

Benefit (fast env.)

Benefit (slow env.) Substrate Precursors
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CONTROL STRATEGIES CAN BE APPROXIMATED BY

BIOLOGICALLY RELEVANT FUNCTIONS

f (EM) =
EM +

√
K EM

EM + 2
√

K EM + 1
g(p̂) =

p̂
p̂ + K

K+p̂(1 + p̂)

Giordano et al, Plos Comp Biol 2016
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