
Université de Strasbourg

École Doctorale Mathématiques, Sciences de l’Information et de l’Ingénieur

ICube : Laboratoire des sciences de l’ingénieur, de l’informatique et de l’imagerie

THÈSE présentée par

Guillaume Bertholon
soutenue le : 22 septembre 2025

pour obtenir le grade de : Docteur de l’Université de Strasbourg
Discipline : Informatique

Interactive compilation via trustworthy
source-to-source transformations

Compilation interactive par des transformations source-à-source
dignes de confiance

Thèse dirigée par :
Arthur Charguéraud Directeur de recherche, Inria Strasbourg

Rapporteurs :
David Monniaux Directeur de recherche, CNRS (Université de Grenoble)
Stephan Merz Directeur de recherche, Inria Nancy

Autres membres du jury :

Chantal Keller Maitresse de conférences, Université Paris-Saclay
Nicolas Magaud Professeur des universités, Université de Strasbourg
Pierre-Évariste Dagand Chargé de recherche, CNRS (Université Paris Cité)

Remerciements

En premier lieu, je tiens très sincèrement à remercier Arthur Charguéraud
pour avoir encadré ma thèse. Arthur a été très présent, et particulièrement
investi dans son accompagnement lors de ce doctorat, toujours disponible
pour répondre à mes nombreuses questions qu’elles portent sur des détails
techniques ou sur la culture de notre communauté scientifique. Il a eu à cœur
de me partager ses méthodes de travail, de m’expliquer patiemment pourquoi
mes premières tentatives de rédactions étaient peu compréhensibles et de
faire vivre et rayonner le projet OptiTrust sur lequel nous avons travaillé
ensemble avec son optimisme résistant à toute épreuve.

Merci ensuite à tous les membres du jury de cette thèse. C’est un honneur
pour moi que vous ayez tous accepté d’en faire partie. Je suis tout particuliè-
rement reconnaissant envers mes deux rapporteurs, Stephen Merz et David
Monniaux, qui m’ont fourni dans leurs commentaires un retour essentiel
et ont grandement contribué à la qualité de ce manuscrit. Merci à Pierre-
Évariste Dagand pour m’avoir aiguillé vers cette thèse en me présentant
à Arthur, il y a 4 ans, ainsi que pour ses questions pertinentes et imagées.
Merci à Chantal Keller pour avoir accepté de rester membre du jury en
visioconférence malgré une jambe cassée. Merci enfin à Nicolas Magaud,
grâce à qui j’ai pu découvrir les joies de l’enseignement avec nos élèves de
master du département Math-Info en parallèle de ma thèse.

Je remercie tous ceux qui ont travaillé sur le projet OptiTrust, avec qui j’ai pu
collaborer. Je commencerai par Thomas Kœhler avec qui j’ai pu développer
une partie des transformations de code présentées dans ce manuscrit. Merci
à toi d’avoir apporté ton point de vue toujours pertinent sur le projet et
d’avoir su nous aider à peser le pour et le contre, avec justesse, sur les choix
techniques. Je profite de ces remerciements pour renouveler mes félicitations
pour ton poste au CNRS ! Merci également à vous Yanni, Pauline, Élian et
Valeran de continuer à faire avancer le projet à vos manières respectives
pendant vos stages et bientôt thèses pour certains. Je regrette d’avoir été
occupé par la rédaction de ce manuscrit et de ne pas avoir pu collaborer
davantage avec vous. J’ai hâte de voir comment vous allez faire évoluer le
projet OptiTrust.

Durant cette thèse, j’ai aussi eu la chance de faire partie de l’équipe que l’on
nomme au choix ICPS ou bien Camus. Vous avez tous été très accueillants
et toujours sympathiques. Merci à vous les membres permanents : Jens,
Stéphane, Vincent, Phillipe, Béranger, Alain et Cédric. Vous m’avez chacun
apporté votre lot de discussions très enrichissantes. Bien évidemment, merci
à vous les doctorants, post-doctorants et ingénieurs de recherche : Clément
R., Clément F., Raphaël, Atoli, Erwan, Marek, Ugo, Tom, Haifa, Etienne et
Arun. Je n’oublierai pas ces repas et moments partagés entre faits divers
improbables et discussions dans la bonne humeur. Merci également aux assis-
tantes d’équipe Inria : Ouiza et Marine. Votre accompagnement administratif
combiné à votre investissement et participation à la vie du centre m’ont
été très précieux. Merci à toute l’équipe pour avoir créé cette très bonne
ambiance que ce soit au labo tout au long de la thèse ou à l’extérieur pendant
les soirées raclettes ou la sortie canoë !

Un grand merci ensuite à l’équipe Inria Cambium de m’avoir accueilli à leurs
séminaires d’équipe toujours très instructifs, et de m’avoir laissé occuper un
bureau chez eux. Tout particulièrement merci à François, Didier, Yannick,
Alexandre et Xavier qui m’ont apporté, avec recul, leurs conseils avisés.

4

Je ne serai pas là sans tous ceux qui m’ont permis de choisir la voie du doc-
torat. En cela, je suis notamment reconnaissant à l’ensemble des professeurs
de l’ENS et du MPRI qui m’ont guidé à travers leurs enseignements vers
cette thèse. En particulier, je me dois de remercier Timothy Bourke pour son
accompagnement dans mes recherches de stages en tant que tuteur.

Merci ensuite à tous mes amis qui m’ont toujours soutenu dans mon parcours
avec bienveillance. Merci pour tous ces projets qu’ils soient musicaux ou
basés sur du game design, pour ces parties de jeux de société, ou pour tous
ces moments de joie partagés. Vous êtes tous incroyables !

Merci à ma famille qui m’a inculqué l’envie de bien faire dans mes études
et la curiosité scientifique qui m’a amené jusque ici. Pour finir, un énorme
merci à Masha, mon épouse, pour avoir supporté mes allers-retours Paris-
Strasbourg tout au long de cette thèse, pour avoir accepté la rédaction de
mon manuscrit juste avant la phase finale de préparation de notre mariage,
mais surtout pour son soutien inconditionnel et extrêmement précieux à
travers les épreuves de la vie, depuis que nous sommes ensemble.

Contents

Contents 5

1 Introduction 7
1.1 Interactive compilation for program optimization 7
1.2 Correctness for interactive compilers 10
1.3 Description of invariants 11
1.4 Choosing the level of detail for the invariants 13
1.5 Mechanically checking and deducing invariants 14
1.6 Correctness of transformation implementations 17
1.7 Contributions . 20

2 OptiTrust in practice 25
2.1 The OpenCV row-based blur case study 26
2.2 The particle simulation case study 31
2.3 The matrix-multiply case study 35

2.3.1 With shape-only annotations 36
2.3.2 With full functional correctness annotations 39

2.4 Comparison of OptiTrust with other interactive compilers 43
2.4.1 Evaluation of other interactive compilers 44
2.4.2 The unique features of OptiTrust 45

3 Syntax and semantics in OptiTrust 51
3.1 Overview of the internal encoding process 52
3.2 Opti𝜆: OptiTrust’s internal, imperative 𝜆-calculus 56
3.3 OptiC: a C-like, user-facing language 60
3.4 Translation from OptiC to Opti𝜆 62
3.5 Translation from Opti𝜆 back to OptiC 64

4 Computing program resources: Contexts 69
4.1 Grammar of resources . 69
4.2 Construction and operations on typing contexts 73
4.3 Grammar of contracts . 76
4.4 Entailment . 79
4.5 Subtraction . 80
4.6 Typechecking of logical expressions 81
4.7 Typechecking of terms . 82
4.8 Type soundness . 87

5 Computing program resources: Usage maps 91
5.1 Grammar of usage maps 91
5.2 Operations on usage maps 92
5.3 Computing usage maps . 93
5.4 Minimization of triples . 95
5.5 Typechecking of order-irrelevant subexpressions 96
5.6 Formal properties of usage maps 97

6 Implementation of trustworthy transformations 101
6.1 Transformations on sequences of instructions 103
6.2 Transformations exploiting equalities 106
6.3 Transformations on bindings 106
6.4 Transformations on storage 108
6.5 Transformations on loops 110
6.6 Transformations on annotations 115

6 Contents

6.7 Correctness of transformations 118

7 Perspectives 123
7.1 Language extensions . 123
7.2 Program logic extensions 125
7.3 Transformation extensions 128
7.4 Reducing the trusted code base 131
7.5 Framework engineering . 132

Appendix 135
A Semantics . 135
B Specialization of contexts 137
C Context satisfaction . 137
D Proof of the frame rule . 139
E Soundness of the algorithmic rule for typechecking for loops 142
F Details of triple minimization 146
G Example typechecking of subexpressions 147
H Details of loop minimization 148

Bibliography 151

Introduction 1
1.1 Interactive compilation for

program optimization . . . 7
1.2 Correctness for interactive

compilers 10
1.3 Description of invariants . 11
1.4 Choosing the level of detail

for the invariants 13
1.5 Mechanically checking and

deducing invariants 14
1.6 Correctness of transforma-

tion implementations . . . 17
1.7 Contributions 20

In computer science, programmers are usually facing two limiting factors.

First, programmers are often limited by the computing power of their hard-
ware. This is, for instance, usually the case with applications in the domains
of numerical simulations, machine learning and computer graphics. Program-
mers can push this hardware limit further by optimizing their programs.

Second, and maybe even more crucially, programmers are limited by their
ability to produce code that actually computes what they want. In order
to trust their programs, programmers need to eliminate the possibility of
incorrect outputs (a.k.a. bugs). Unfortunately, testing the program on a few
examples is generally not sufficient to avoid those incorrect outputs. Formal
verification can go further by proving that the program will always respect
a specification, that is a mathematical description of what it should compute.
Ensuring that a program computes what the programmer wants becomes
more complex as the size of the program grows.

These two limiting factors are interdependent as, most of the time, optimizing
a program also makes such program more complex. Therefore, the more
effort one puts into limiting the resources needed to execute a program, the
more efforts are also required to ensure that such program does not have
bugs.

In this PhD, our objective is to reduce the amount of work needed to produce
code that is at the same time optimized and exempt from bugs.

1.1 Interactive compilation for program
optimization

Retrospective on hardware performance Historically, hardware inno-
vations were the simplest way of making computation faster. In the 1970s,
hardware manufacturers were able to quickly increase the number of op-
erations a processor can do per second or per consumed joule. This was
possible thanks to the miniaturization of transistors, that lead to an exponen-
tial growth of the processor clock frequency year after year, while keeping
the power consumption of the whole processor identical. For software de-
velopers, this meant that their program could run faster (and consume less
energy) with a more recent hardware without any additional work. Since
the beginning of the millennium, we cannot hope for a significant growth
of the clock frequencies anymore as the hardware size is slowly reaching
atomic limits.

Moreover, processor clock frequency is not the only bottleneck when per-
forming computations nowadays. Indeed, when computations are fast, the
speed of memory accesses can often be the limiting factor. Typically, in 2025,
fetching a value from the RAM1 can take more than 100 cycles, while a
typical processor can compute multiple FMA2 instructions in one cycle. This
is not surprising since, even at the speed of light, one processor cycle is too
short for data to travel back and forth between the processor and the RAM.
Similarly, energy-wise, getting 32 bits of data from the RAM consumes 640 pJ,
while computing an FMA on 32-bits floats only consumes 1.2 pJ [Dal21].

1: Random Access Memory: the main
memory region for storing intermediate
results of ongoing computations
2: Fused Multiply and Add: this corre-
sponds to the operation 𝑥 ∗ 𝑦 + 𝑧 where 𝑥 ,
𝑦 and 𝑧 are floating point values.
[Dal21]: Dally (2021), The Future of Com-
puting: Domain-Specific Architecture

8 1 Introduction

[Rag24]: Ragan-Kelley (2024), The Future of
Fast Code: Giving Hardware What It Wants

3: Central processing unit: the main pro-
cessor inside a computer, typically running
the operating system and most applica-
tions
4: Single Instruction Multiple Data

5: Graphical Processing Unit: Historically
the SIMD architecture of the GPUs was
mostly used for computer graphics to exe-
cute programs called shaders on each ver-
tex or pixel, hence the name. Nowadays,
GPUs are used for all sorts of massively
parallel computations.
6: Neural Processing Unit
7: Tensor Processing Unit
8: Field-Programmable Gate Array: the
most widely used technology for recon-
figurable electronic circuits

[Vac+03]: Vachharajani et al. (2003), Com-
piler Optimization-Space Exploration

Both the end of the exponential growth of the clock frequency and the daunt-
ing cost of memory accesses have lead to increasingly complex hardware to
keep reducing computation costs [Rag24].

Manufacturers find it incredibly difficult to accelerate one processor core
any further, instead they equip CPUs3 with multiple cores (typically between
4 and 8 in an average computer), each executing different instructions in
parallel. Then, on each core, modern architectures also allow performing the
same computation on multiple chunks of data with SIMD4 instructions.

To partially address the slow memory issue, modern computer architectures
include memory caches. If all the data cannot be stored close enough to
the CPU to benefit from fast accesses, one can instead store the copy of a
small subset of that data closer, without taking too much physical space.
Such a copy is what we call a memory cache. Hardware manufacturers find
the pattern so effective that they place memory caches on memory caches,
typically creating up to 3 levels of caches between the RAM and the CPU.
A cache near the RAM stores more data, but a cache near the CPU have a
faster access time.

Modern CPUs also include features such as branch prediction and out of
order execution with an increasingly complex microarchitecture that we
will not detail here.

In addition to all of that, nowadays, computers usually embed different kind
of processing units called accelerators in addition to the CPU. Accelerators
can have very different architectures, each of them suited for specific ap-
plications, where they perform better than the general-purpose CPU. The
most widely used accelerator is the GPU5. GPUs are processors tailored for
maximizing SIMD efficiency but are inefficient with complex control flow
and pointer indirections. More recently, the rise of machine learning gave
birth to new kind of accelerators: NPU6s are processors specialized for matrix
product and convolutions and TPU7s mix memory and computation in the
same chip to compute tensors. On another level, FPGA8s allow programmers
to make their own custom accelerator by configuring series of electronic
circuit logical gates.

Each of those architectures have their own optimization constraints. There-
fore, programming high performance code for a system that combines differ-
ent kind of accelerators and CPUs can be particularly complex. In this PhD,
we only focused on optimizing computations performed on CPUs, which
is already a significantly challenging task. That said, we believe that some
optimization techniques for CPUs can be reused in presence of accelera-
tors. Even when working with only one kind of processor, the program
performing the best depends on the exact targeted hardware configuration.
Hence, performance critical code is not portable and programmers need to
adapt such code for each specific machine they want to use which incurs a
potentially significant maintenance cost.

The challenge of performant code for complex hardware We see
that our complex CPUs need carefully chosen instructions to perform best.
However, nowadays, very few programmers are directly writing their code
in assembly to choose those instructions by hand. Indeed, most programmers
rely on programming languages that are further away from the machine,
and then execute a compiler that chooses the exact instruction sequence
sent to the CPU. On arbitrary imperative code, fully automatic compilers
fail to produce the fastest code for a given algorithm. Even starting from a
programming language relatively close to the machine such as C, the ex-
ploration space is very large, and cost models are very complex [Vac+03].

1.1 Interactive compilation for program optimization 9

Those general-purpose compilers such as GCC or Clang must rely on heuris-
tics that greatly improve the average case but produce an output that is
nowhere near the best performance achievable and is sometimes not enough
[BI19]. Therefore, producing highly performant code is out of reach for a
general-purpose and fully automatic compiler.

A common practice in the high performance programming community is to
sacrifice automation and write a micro-optimized version of their C code
by hand in order to guide the compiler in its choices [Ama+20; Eva+22].
This practice generally brings significant speedups that can typically make
the same algorithm run 50 times faster [KK22]. However, manually micro-
optimized code is much more complex than the corresponding naive imple-
mentation of the same algorithm. This complexity is due to the fact that a
lot of abstractions cannot be kept in the optimized code, and that simple
computations can be hidden beneath complex instructions. Besides, opti-
mized code tends to be longer than a naive version of the same algorithm.
This added complexity makes writing by hand an optimized version of an
algorithm not satisfying for at least three reasons:

▶ First, writing manually optimized code is a very time-consuming
process that requires advanced knowledge on how computers work.
It can take experts months to optimize a single application [Bar18].

▶ Second, the resulting optimized code is significantly harder tomaintain
than the naive algorithm implementation. This added maintenance
complexity is particularly unfortunate since those optimizations are
not portable and the code might need to be adapted to new hardware.

▶ Third, there are a lot of opportunities to introduce bugs in complex
code. Moreover, the added complexity makes such bugs harder to track
down, especially when concurrency is involved.

Interactive compilers An alternative to rewriting the code by hand is to
exploit an interactive approach, whereby the user to collaborates with an
interactive compiler to optimize the code. In this case, programmers first write
a naive and easy to read version of their algorithm, then write a second kind
of source code to guide the compiler (thus replacing some heuristics with
more carefully chosen strategies) and produce the high performance code.
The main challenge with this approach is to define a model of interaction
between the user and the compiler explaining how programmers describe
what they want and what kind of feedback they receive.

In the subdomain of image processing, interactive compilers such as
Halide [Rag+13] or TVM [Che+18] separate the description of the functional
behavior of an algorithm, and the scheduling of the computation. That
scheduling determines the order of computations and the memory layout.
This separation allows testing multiple schedules in order to keep the best
performing one without risking changing the semantics of the code in the
process. In order to improve the feedback loop, tools such as Roly-poly
[Ika+21] can create interactive visualizations to help in the conception of
Halide schedules.

Some interactive compilers such as Elevate [Hag+20b] and Exo [Ika+22]
replace schedules with source-to-source transformation scripts. In that case,
instead of giving instructions on how to lower functional code into an
efficient implementation in one pass, the user progressively transforms an
executable code by applying rewriting rules. This point of view leads to the
following user interaction loop: at each step, the tool can display the current
version of the source code and ask the user which transformation to apply

[BI19]: Barham et al. (2019),Machine Learn-
ing Systems are Stuck in a Rut

[Ama+20]: Amaral et al. (2020), Program-
ming languages for data-Intensive HPC ap-
plications: A systematic mapping study
[Eva+22]: Evans et al. (2022), A survey of
software implementations used by applica-
tion codes in the Exascale Computing Project

[KK22]: Kelefouras et al. (2022), Design
and Implementation of 2D Convolution on
x86/x64 Processors

[Bar18]: Barsamian (2018), Pic-Vert: A
Particle-in-Cell Implementation for Multi-
Core Architectures

[Rag+13]: Ragan-Kelley et al. (2013),
Halide: A Language and Compiler for Opti-
mizing Parallelism, Locality, and Recompu-
tation in Image Processing Pipelines

[Che+18]: Chen et al. (2018), TVM: An Au-
tomated End-to-End Optimizing Compiler
for Deep Learning

[Ika+21]: Ikarashi et al. (2021), Guided Op-
timization for Image Processing Pipelines

[Hag+20b]: Hagedorn et al. (2020), Achiev-
ing high-performance the functional way:
a functional pearl on expressing high-
performance optimizations as rewrite strate-
gies

[Ika+22]: Ikarashi et al. (2022), Exocompi-
lation for productive programming of hard-
ware accelerators

10 1 Introduction

9: Note that, if we assume the standard
wrapping behavior of addition and subtrac-
tion on fixed size integers, this is true even
when the expression 𝑥 + 1 overflows. In
languages such as C, signed integers do
not wrap but trigger undefined behavior
instead. This is not an issue either because
replacing an undefined behavior with any
fixed behavior is always correct.

[JM18]: Journault et al. (2018), Inferring
functional properties of matrix manipulat-
ing programs by abstract interpretation

next and where. Generally, source-to-source transformation scripts give
more control and feedback to the user compared to monolithic schedules.

Existing interactive compilers (which we describe in more details in sec-
tion 2.4.1) all have their own domains of applicability and their own strengths
and weaknesses. In this PhD, we try to build an interactive compiler that
accepts imperative code as input, and gives full control to the user to apply
a sequence of source-to-source transformations.

Interactive compilers should not accept code transformations that could
create bugs in the software. In other words, we say that interactive compil-
ers should guarantee transformation correctness. One focus of this PhD is
the experimentation around different ways to ensure such transformation
correctness, and the impact of such choices on the trustworthiness of the
compiler.

1.2 Correctness for interactive compilers

One way of ensuring the correctness of code transformations, is to guarantee
that all transformations preserve the semantics of the code. We say that a
transformation is semantic-preserving when the possible behaviors of the
produced code are included in the possible behaviors of the original code.

Some code transformations are always correct with respect to the semantics
of the language. For instance, for an integer variable 𝑥 the simplification of
𝑥 + 1 − 1 into 𝑥 is always correct9. However, a lot of useful transformations
are not valid in the general case, but are still applicable on a particular
instance due to properties enforced by the algorithm at hand. For example, a
transformation replacing (𝑥/2) × 2 into 𝑥 where 𝑥 is an integer variable does
not preserve the semantics in general (as for instance if 𝑥 = 3 then (𝑥/2) × 2
computes to 2 instead of 3), but this transformation is semantic-preserving
under the hypothesis that 𝑥 is even before the evaluation of (𝑥/2) ×2. Dually,
a transformation that removes an assignment to a variable might be correct
because such value is never read afterwards and does not contribute to the
program output. In this case, the transformation does not locally preserve
the semantics of the deleted instruction but globally preserves the expected
behavior of the initial code.

These properties that describe either the hypotheses before executing an in-
struction in the code or the expected behavior of such instructions are called
program invariants. The two previous examples show that it is necessary
to exploit those program invariants to check that the transformations re-
quested by the user are indeed applicable. However, usually, finding relevant
invariants and checking that they hold is a complex task.

One classical way to tackle this problem is to rely on static analysis to
synthesize the relevant invariants. Static analyses are available for specific
use-cases, such as basic linear algebra [JM18], but there is no hope to derive
automatically the required invariants for any code and for any kind of
transformation, as this task in undecidable in general. Such limitation implies
that we need to sometimes rely on the user to help the interactive compiler
to find and check those invariants.

That said, our goal is to build an interactive compilation framework that
performs user-guided transformations leveraging program invariants to
guarantee correctness. We believe that such a tool can allow writing code
that matches the performance of manually micro-optimized code, without
the extra risks and efforts of the manual approach. Building this framework
raises several fundamental questions:

1.3 Description of invariants 11

▶ How can we describe the invariants that are needed to justify the
correctness of transformations?

▶ What kind of annotations need to be provided by the user to deduce
those invariants anywhere in the code? How are these annotations
algorithmically checked and propagated?

▶ How can we leverage the invariants of the code in the implementation
of transformations to justify their correctness?

▶ In order to perform chains of transformations, we need to maintain the
capability of computing invariants between each step. How can we im-
plement transformations in a way such that they maintain meaningful
annotations?

▶ How can we gain confidence in the fact that the implementation
of the transformations does not contain bugs that would otherwise
compromise the correctness of the output code?

1.3 Description of invariants

As said in previous section, program invariants are properties that either
describe hypotheses or expected behaviors of program instructions, and we
need such properties to reason about the correctness of transformations.

Hoare triples The field of program logics formalizes this notion of pro-
gram invariant with the concepts of precondition, postcondition and Hoare
triple. A precondition is a mathematical formula describing the hypotheses
that one can assume true before the execution of some code. Dually, the
postcondition is a mathematical formula describing hypotheses that must
be true after the execution of some code. Usually, for the same code a more
precise precondition can lead to a more precise postcondition. In this setup,
a Hoare triple denoted {𝐻 } 𝑡 {𝑄} where 𝐻 is a precondition, 𝑡 is a program
and 𝑄 a postcondition, describes the fact that in an input state described
by the precondition 𝐻 , the (sub)program 𝑡 terminates in an output state
described by the postcondition 𝑄10.

For a function 𝑓 with one argument, a property of the form∀𝑥, {𝐻 } 𝑓 (𝑥) {𝑄}
can be viewed as a contract fulfilled by 𝑓 . More precisely, if before a call to
𝑓 (𝑥) the precondition𝐻 holds, then after such call the postcondition𝑄 must
hold as well. This vision from outside on Hoare triples can be generalized
to any instruction, and is very useful in practice to abstract away entire
subprograms when reasoning about transformations.

Separation logic as invariant structure The definition of Hoare triples
does not state what kind of properties are expressed as pre- and post-
conditions. In theory, an invariant can specify anything about the values of
variables currently in scope and about the state of the entire program mem-
ory. In practice, however, being able to express arbitrary properties about the
entire memory is not desirable. Indeed, suppose that an invariant is verified
before an instruction that mutates a memory cell. How can one tell if this
invariant still holds after the execution of the instruction? If such invariant
does not hold, what can still be asserted about the memory after the execu-
tion? The answer to these two questions depends on the way the invariant
is expressed. Thus, to avoid arbitrarily complicated reasoning steps to show
invariant preservation when instructions modify the memory, we want to
define a fixed structure for invariants that refer to mutable memory.

10: For some program logics, Hoare
triples do not guarantee termination. In
such cases, if 𝐻 holds, either 𝑡 does not
terminate or the output state is described
by𝑄 . We do not consider this alternative
definition in the rest of this manuscript.

12 1 Introduction

[Rey02]: Reynolds (2002), Separation Logic:
A Logic for Shared Mutable Data Structures

{𝐻 } 𝑡 {𝑄}
{𝐻 ★𝐻 ′} 𝑡 {𝑄 ★𝐻 ′}

Figure 1.1: Frame rule in separation logic.
Properties above the line are hypotheses
and the property below is a conclusion.

11: In the case where 𝐻 ′ describes a frag-
ment of memory that is not disjoint with
𝐻 , it is impossible to satisfy 𝐻 ★𝐻 ′ with
any memory, thus the triple is useless but
true anyway.

12: In this manuscript, we will not con-
sider the case of weak memory models, as
sequentially consistent concurrency is al-
ready challenging enough.

13: Modern CPUs feature some atomic op-
erations. Those atomic operations provide
guarantees about what happens when ex-
ecuted concurrently at the same memory
cell on two threads. Fetch-and-add is one of
such atomic operations, that adds a value
at a given location, taking concurrent con-
tributions into account. Atomic operations
are slower that the corresponding non-
atomic operations, therefore they must be
used sparsingly.

One such structure is introduced by separation logic [Rey02] with the key
notion of separating conjunction. The separating conjunction of two proposi-
tions, denoted𝐻1★𝐻2, states that both properties𝐻1 and𝐻2 hold on disjoint
parts of the memory. This simple, yet very powerful, notion enables modular
reasoning about the memory, thanks to what is called the frame rule.

Intuitively, if an instruction modifies a single memory cell, then any property
about memory that is separated from this memory cell is necessarily pre-
served. More formally, the frame rule states that if a Hoare triple {𝐻 } 𝑡 {𝑄}
holds, for any property 𝐻 ′, the triple {𝐻 ★𝐻 ′} 𝑡 {𝑄 ★𝐻 ′} also holds11. To
link this statement with the intuition, one may think of 𝐻 as the description
of the memory cells modified by 𝑡 before such modification, of 𝑄 as their
description after the modification, and of 𝐻 ′ as the description of the rest of
the memory that is not manipulated by 𝑡 .

With separation logic, one can view each invariant as a set of resources
available at a given program point. Some resources are independent of the
memory state and only depend on the local context of immutable variables.
We call those resources pure, and we can freely duplicate them because they
remain true nomatter which instruction is executed. The rest of the resources
are called linear, and each of them describe a disjoint non-empty part of the
memory. With this point of view, each instruction can consume and produce
a set of linear resources, and similarly each instruction can depend on and
produce a set of pure resources. Such manipulations describe the difference
between the invariant before such instruction and the invariant after.

Concurrent separation logic Separation logic also simplifies reasoning
about concurrent programs, that is, programs with several parallel execution
threads acting on the same memory12. Reasoning about such concurrent
programs can be hard because threads are executing instructions in a non-
deterministic order, and the side effects of one thread can impact another
thread’s computations. In order to avoid such non-deterministic interfer-
ences, one may force all instructions executing concurrently to manipulate
disjoint linear resources. However, by itself, forcing disjoint resources for
each concurrent thread would not be very powerful. Indeed, there are com-
mon safe concurrent program patterns that involve some amount of resource
sharing. One of such pattern, is reading at the same memory location in
multiple different threads, provided no other thread concurrently writes at
this location.

To allow this kind of resource sharing, a standard extension to separation
logic allows cutting a resource in two halves, that give reduced permissions
until they are merged back together. In that case, each half is considered
disjoint for the separating conjunction, and can be split further. Typically,
read-only fractions allow making multiple separated resources describing
the same memory location, by temporarily losing the permission to write
at those locations. A triple for a program 𝑡 that mentions only a read-only
fraction of a permission in its precondition expresses the fact that 𝑡 can read
but never modify the locations described by the permission. Therefore, such
triple asserts that 𝑡 can be executed in parallel with another subprogram
that also only needs to read at those locations.

In concurrent separation logic, the concept of fraction is not limited to read-
only resources. To give one more example, a fetch-and-add13 fraction gives
the permission to concurrently use the fetch-and-add atomic instruction at
a given location but reading or writing an arbitrary value at that location is
impossible until all the fractions are merged back.

1.4 Choosing the level of detail for the invariants 13

1.4 Choosing the level of detail for the
invariants

Once settled on concurrent separation logic, we still have a lot of flexibility to
choose the level of details for the invariants. This choice is important because
each level of detail allows proving different kind of program transformations,
with different trust models, and at the price of different user annotation
efforts.

Full functional correctness invariants The strongest level of details for
invariants is called full functional correctness. In that case, the final postcon-
dition expresses all the expected mathematical properties about the output.
Usually, this implies defining a mathematical function that relates program
inputs to expected outputs, asserting that the program actually behaves like
this function.

For code transformations, having full functional correctness invariants is
very powerful. Indeed, in that case, the final postcondition replaces the code
as the ground truth of what must be computed, and the code is simply a
description of how such computation is performed. Thus, if a transformation
produces any code respecting the same Hoare triple as the original code, it
is correct by definition, no matter how far the produced code is from the
original code.

An important detail is that, with this level of specification, bugs in the original
code can only be located inside the pre- and post-condition of the top-level
Hoare triple. Indeed, if the source code contains bugs that do not also appear
in the Hoare triple, such Hoare triple cannot be verified. Since the pre- and
the post-condition of the Hoare triple are typically shorter than the source
code, and are written with a higher level of abstraction, having to trust only
those invariants can highly increase the confidence in the software. However,
note that it is possible to write and verify an imprecise specification, which
can then allow bugs in code produced by transformations even though the
original code does not exhibit any bug.

In practice, with full functional correctness, proving that an invariant holds
can be an arbitrarily hard task that may involve any complex mathematical
theorem and requires finding non-trivial intermediate invariants. Therefore,
this level of details for program invariants may require more work than
affordable.

Incomplete functional correctness invariants If one cannot afford the
costs of full functional correctness proofs, an alternative is to aim instead for
incomplete specifications. Incomplete functional correctness specifications
can use the same kind of invariants as full functional correctness, but those
invariants are not expected to capture all the properties that make the
algorithm correct. For example, with incomplete specification a postcondition
may only state that the output value must be an integer between 0 and 1000
that is even, without specifying which integer, even though a specific return
value is expected.

Unlike with full functional correctness invariants, with incomplete specifi-
cations, transformations must preserve the semantics of the original code
instead of preserving the top-level pre- and post-condition. However, in nu-
merous cases, those incomplete specifications can suffice to justify semantic-
preservation of some transformations that are not semantic-preserving in
the general case. For instance, knowing that a value is even allows rewriting

14 1 Introduction

{𝐻 } 𝑡1 {𝑄} {𝑄} 𝑡2 {𝑅}
{𝐻 } 𝑡1; 𝑡2 {𝑅}

Figure 1.2: Typical rule for the Hoare
triple of a sequence of two instructions.

(𝑥/2) × 2 into 𝑥 , and knowing that the value is between 0 and 1000 can
guarantee that the value can be stored on 16 bits even though the original
code allocated 32 bits for its storage.

Shape-only invariants One particular case of incomplete specification
that can be very useful for transformations is the specification of data shapes.
Such shapes correspond to a description of the memory layout of the data
structures.

In practice, the information captured by invariants that only specify data
shapes is similar to the information captured by advanced typesystem that
track ownership and mutability, such as the typesystem of Rust.

When compilers need to reason about pointers, one particularly important
fact is to know whether two pointers may or may not refer to the same
memory cells. We call this kind of fact an aliasing property. For instance,
replacing two consecutive assignments of the form 𝑇 [𝑖] = 0; 𝑈 [𝑗] = 1; with
𝑈 [𝑗] = 1; 𝑇 [𝑖] = 0; preserves the semantics of the program if the arrays 𝑇
and 𝑈 do not alias. If transformations can rely on invariants that specify
the memory layout, all of those aliasing properties are available and can
therefore be exploited.

Moreover, with fractional permissions, knowing that a subexpression only
consumes a read-only fraction of a resource can justify the correctness
of a transformation introducing concurrent read-only access to the same
resource.

In this PhD, we consider concurrent separation logic invariants with three
possible levels of specification: shape-only, incomplete functional correct-
ness, and full functional correctness.

1.5 Mechanically checking and deducing
invariants

In the previous section, we saw different kinds of invariants wemight want to
exploit at each program point in order to perform transformations. However,
in order to trust those invariants we need a tool that checks the adequacy of
invariants with respect to the behavior of the code. Moreover, writing by
hand those invariants between all lines of code would be too repetitive and
therefore require too much work. Therefore, before starting interactive code
transformations, we also need a mechanized way of deducing invariants
between each instruction from only a few user-written annotations.

Hoare proof trees In order to check and deduce those program invariants,
we can draw inspiration from formal methods for software verification. In
software verification, the typical problem is to check that a given Hoare
triple {𝐻 } 𝑡 {𝑄} holds.

One nice property about Hoare triples is that we can find a small set of
rules that can be composed together to prove triples about any program.
Those rules form a Hoare logic that describes a set of true triples for each
construction of the programming language. Typically, the proof of a Hoare
triple for a complex program consists of a tree with rules to deduce triples
for primitive operations at the leaves, and rules to deduce triples for complex
constructions as the nodes (like in figure 1.2).

1.5 Mechanically checking and deducing invariants 15

If we have a Hoare logic proof tree, we get not only the guarantee that a
triple holds, but we also can extract the intermediate invariants between
each language construction since those intermediate invariants are written
in intermediate proof goals. The challenge then becomes to find a way to
semi-automatically build such a proof tree.

In practice, the choice of the rules for assembling such a proof tree for a
Hoare triple is mostly mechanical as it is syntactically constrained by the
program. In that regard, the main choice is the order in which the recursive
construction is made in rules such as the one presented in figure 1.2: either
a forward approach is taken and then 𝑄 is constructed as the strongest
postcondition deduced from the recursive construction of {𝐻 } 𝑡1 {𝑄}, or
a backward approach is taken and then 𝑄 is constructed as the weakest
precondition deduced from the recursive construction of {𝑄} 𝑡2 {𝑅}. In any
case, there are three difficulties:

▶ Some program constructions require the choice of an intermediate
invariant that cannot be guessed automatically in the general case. One
such construction is the loop: the Hoare logic rule for a loop requires
providing the invariant that holds before and after each iteration. We
call such loop invariant a loop contract. Another construction that
requires the choice of an invariant is the function definition: there
the Hoare logic rule checks that a given function contract holds for
the function body, but such contract cannot be syntactically inferred.
Recall that such function contracts corresponds to a Hoare triple that
the function body respects and that is used for function calls.

▶ Sometimes the invariants obtained by the simple application of the
Hoare logic rules are not in the right shape or are too precise to con-
clude. To handle that, Hoare logics usually include structural rules, such
as the frame rule we saw before in figure 1.1, or the consequence rule
(figure 1.3) which allows weakening a postcondition or strengthening
a precondition14. Those structural rules can be applied anywhere and
therefore are not syntactically constrained.

▶ Some Hoare logic rules require hypotheses that are not simply other
Hoare triples on subprograms, but arbitrarily complex logical proposi-
tions that do not mention any code. We call such propositions pure
proof leaves. Those pure proof leaves occur, for instance, in the con-
sequence rule (figure 1.3) with the hypotheses 𝐻 ⇒ 𝐻 ′ and 𝑄 ′ ⇒
𝑄 . Such formula 𝐻 ⇒ 𝐻 ′ denotes an entailment, asserting that the
resources mentioned in the invariant 𝐻 can be reorganized to form
the resources of the invariant 𝐻 ′ without losing anything. In general,
proving a pure proof leaf such an entailment may require an arbitrarily
complex mathematical reasoning.

In order to resolve these three issues and build proof trees that assert Hoare
triples, software verification tools usually fall in one of two categories:
annotation-guided or interactive.

Annotation-guided software verification Annotation-guided software
verification tools leverage user-annotations written in the middle of the
code to generate the proof tree. Those annotations specify the Hoare triples
that must be checked and the intermediate invariants and structural rules
that cannot be automatically guessed. Typically, users of annotation-guided
verification tools annotate every function with its intended Hoare triple,
and every loop with an invariant that should be true before and after every
iteration. Those users, also typically add ghost instructions to their code.
Such ghost instructions are annotations that take the form of a program

𝐻 ⇒ 𝐻 ′ 𝑄 ′ ⇒ 𝑄

{𝐻 ′} 𝑡 {𝑄 ′}
{𝐻 } 𝑡 {𝑄}

Figure 1.3: Typical consequence rule for
a Hoare logic.

14: Those two rules can be combined to-
gether in a single consequence frame rule,
which can sometimes help mechanization.

16 1 Introduction

[FP13]: Filliâtre et al. (2013),Why3—Where
Programs Meet Provers

[Bau+20]: Baudin et al. (2020), WP plug-in
manual

[Phi+14]: Philippaerts et al. (2014), Soft-
ware Verification with VeriFast: Industrial
Case Studies
[MSS16]: Müller et al. (2016), Viper: A Veri-
fication Infrastructure for Permission-Based
Reasoning

15: Satisfiability Modulo Theories solver:
fully automatic program that tries to check
if a mathematical property is provably true.
Internally, SMT solvers are based on the
resolution of the SAT problem which is fa-
mously NP-hard, therefore on some inputs,
SMT solvers will not provide any answer in
reasonable time. That said, the proportion
of program verification properties that can
be automatically solved by modern SMT
solvers in a reasonable time is impressive.
[Sam+21]: Sammler et al. (2021), RefinedC:
automating the foundational verification of
C code with refined ownership types

16: Rocq is the recent new name for the
tool formerly known as Coq.

[Cha10]: Charguéraud (2010), Program Ver-
ification Through Characteristic Formulae

[Jun+18b]: Jung et al. (2018), Iris from the
ground up: Amodular foundation for higher-
order concurrent separation logic

instruction that semantically does nothing; however, they correspond to the
manual application of a structural rule, which is sometimes necessary to
complete the proof tree. Most annotation-guided verification tools try to
limit the number of annotations that are required to verify the Hoare triples.
One very common idea is to systematically insert consequence and frame
rules around every instruction, limiting ghost instructions for cases where
required entailments cannot be guessed.

Famous examples of such annotation-guided tools are Why3 [FP13] for
verification of code written in an imperative lambda calculus or FramaC
with its WP plugin [Bau+20] for verification of C code. Neither FramaC nor
Why3 is based on separation logic, and both have a management of aliasing
that can be hard to use with complex data structures. Separation logic is
available in more recent tools such as VeriFast [Phi+14], or Viper [MSS16].

Usually, those annotation-guided verification tools discharge the pure proof
leaves to an SMT solver15. When the automatic proof inference fails, the
user of annotation-guided tools, is invited to add more ghost instructions to
help the verification process, such as useful intermediate assertions. SMT
solvers usually significantly reduce the amount of work needed to verify a
program. However, when an SMT solver fails, it is often hard to understand
why, as it may either be because the computation became too expensive, or
because the property is simply false.

Other annotation-based tools such as RefinedC [Sam+21] remove the need
for ghost instructions at the price of more complex annotations on functions,
loops, and data type definitions. RefinedC does not rely on SMT solvers, and
instead uses its own heuristics for goal directed automatic proof search.

Interactive software verification On the other hand, interactive soft-
ware verification tools are more predictable, as they display much more
information to the user with an interaction loop. Interactive software veri-
fication tools are usually embedded in a proof assistant such as Rocq16 or
Isabelle, and inherit their model of interactivity. The main idea is that a proof
assistant always shows what remains to be proven, and asks the user for a
proof step. For software verification, this often means that the verification
tool displays at each step the Hoare triple that remain to be proven. Then,
each user interaction corresponds to the application of a proof step which
can either be a structural rule that updates the pre- and post-conditions, or
a syntactic rule that decomposes the Hoare triple to prove into Hoare triples
on smaller subprograms. In this setup, the proof leaves are mathematical
goals that must be proven in the underlying proof assistant.

With proof assistants, the series of steps written by the user constitutes a
proof script that can be replayed to check the proof on another machine. In
the case of Rocq, the rules for the applicability of proof steps do not need to
be trusted, as the tool also produce a proof term that can be independently
checked by its kernel.

Examples of interactive software verification tools with separation logic
assertions are CFML [Cha10] and Iris [Jun+18b], both embedded in the Rocq
proof assistant. Usually, those interactive software verification tools are used
on complex software where invariants are hard to find, or, in the case of Iris,
in presence of non-trivial concurrency patterns.

Hybrid approaches Interactive and annotation-based approaches are not
necessarily mutually exclusive categories for software verification tools. For
example, Why3 allows locally using the Rocq proof assistant instead of an

1.6 Correctness of transformation implementations 17

SMT solver for proving a proof leaf. Reciprocally, Isabelle [BP13] and Rocq
[Arm+11] allow calling SMT solvers on some proof goals. About the Hoare
proof tree construction itself, our preliminary work [BC23] showed that
one can use an interactive software verification workflow inside Rocq to
add all the required annotations to verify a given program, and reciprocally
transform a sufficiently annotated program into a proof using CFML.

Foundational software verification tools Additionally, a few software
verification tools are foundational. A tool is foundational if its implementa-
tion is fully proven correct with respect to the semantics of the manipulated
programming language. The trusted code base of a program verified by
a foundational tool only consists of the formalization of the semantics of
the language, the mechanized proof system (e.g. the Rocq kernel) and the
program specification itself. Examples of foundational tools include Iris and
RefinedC.

In this PhD, we use the annotation-based approach to deduce and check
invariants between all instructions. However, unlike most annotation-based
tools, we do not try to explore how to best integrate SMT solvers or other au-
tomated procedures to discharge proof leaves. Instead, we focus on providing
expressive annotations with ghost instructions that may specify proof terms
to fulfill proof leaves. Like in Rocq, those proof terms can be typechecked
to verify their validity. This design with manually written proof leaves in
expressive annotations is chosen because annotations are not only written
by the user on the initial code but can also be inserted by our trustworthy
transformations whose correctness checks should not depend on the unpre-
dictable execution time of a solver. Moreover, our preliminary work showed
that it is feasible to add support for interactive workflows in our interactive
compiler, but a full integration of such workflow with the rest of the project
is left for future work. Similarly, trying to build a foundational tool is left
for future work.

1.6 Correctness of transformation
implementations

Once program invariants are found, compilers (interactive or not) can lever-
age those invariants to check the correctness of their code transformations.
However, like any program, the implementation of those transformations
themselves may contain bugs.

In general, a bug inside a compiler leads to one of the two undesirable
outcomes: either the compiler fails to produce any output, or the compiler
produces miscompiled executables that do not behave like their source code
specifies. It is unfortunate when a bug makes the compiler fail to produce
an output, but such bugs only limit the applicability of the compiler, and
therefore do not alter the trustworthiness of the compiler on successful
outputs. On the other hand, most of the time, miscompilation leads to a bug
in the compiled executable even though its original source code is correct.

Testing and fuzzing To limit the risks of miscompilation, general purpose
compilers mostly rely on test-driven approaches. However, by construction,
tests cannot catch all the bugs, but only the most anticipated ones. Another
technique used by general purpose compilers to limit miscompilation bugs
is fuzzing which corresponds to automated testing on random inputs. One

[BP13]: Blanchette et al. (2013), Hammer-
ing Away

[Arm+11]: Armand et al. (2011), A Modu-
lar Integration of SAT/SMT Solvers to Coq
through Proof Witnesses

[BC23]: Bertholon et al. (2023), An AST for
Representing Programs with Invariants and
Proofs

18 1 Introduction

[Yan+11]: Yang et al. (2011), Finding and
Understanding Bugs in C Compilers

17: Indeed, as one can read in the Csmith
paper [Yan+11], intoducing new fuzzing
techniques usually finds new miscompila-
tion bugs.

[Ler09]: Leroy (2009), Formal verification
of a realistic compiler

[Kum+14]: Kumar et al. (2014), CakeML: A
Verified Implementation of ML

[Ben04]: Benton (2004), Simple relational
correctness proofs for static analyses and pro-
gram transformations

[Gäh+22]: Gäher et al. (2022), Simuliris:
a separation logic framework for verifying
concurrent program optimizations

[TL08]: Tristan et al. (2008), Formal verifi-
cation of translation validators: a case study
on instruction scheduling optimizations

[Liu+24]: Liu et al. (2024), A Verified Com-
piler for a Functional Tensor Language

example of a fuzzing software generating random C code inputs is Csmith
[Yan+11]. Fuzzing is not perfect either because a significant amount of
compiler bugs only manifest on statistically improbable programs with
respect to the chosen random program generator, and therefore have almost
no chance being detected. In any case, both regular testing and fuzzing
can only prove the presence of compiler bugs, never the absence of such
bugs, and miscompilation is still relatively common inside general purpose
optimizing compilers17.

Formal verification of a compiler In order to completely avoid mis-
compilation issues, one may opt for fully verified compilers using formal
methods. In that case the formally verified compiler comes with a theorem
that states that if the compiler returns without error an output program,
then such output program have fewer possible behaviors than the source
program. Generally such a proof can be quite tedious and is formalized in a
proof assistant. The most famous examples of verified compilers are probably
CompCert [Ler09] and CakeML [Kum+14]. In order to prove such a theorem,
let us present three standard techniques: refinement, translation validation,
and equational reasoning.

A proof based on refinement is constructed around a set of logical rules
with a judgment of the form {𝐻 } 𝑡𝑠 ⊇ 𝑡𝑡 {𝑄} that asserts that under the
precondition 𝐻 , the source program 𝑡𝑠 has more possible behaviors than
the target program 𝑡𝑡 and that those behaviors are all described by the
postcondition 𝑄 . This kind of refinement has been introduced first in the
context of Hoare logic [Ben04], andmore recently in the context of separation
logic [Gäh+22]. A formal compiler proof then examines the source code of
the compiler to show that, in all cases, it is possible to build a proof tree
using refinement logical rules to assert the required behavior inclusion.

Translation validation is an orthogonal method that sometimes simplifies
compiler formal verification by decoupling two phases: first the compiler
produces the target source code, and then a validator is executed with both
the source and the target code and such validator is responsible to check
that behaviors of the target code are included in behaviors of the source
code. If the validator fails, then the compilation process is aborted, and
an error is reported to the user. With translation validation, the proof of
correctness then only refers to the source code of the validator, which is
usually way shorter, and simpler to reason about to establish the required
behavior inclusion. Translation validation is one of the key ingredients of
CompCert [TL08].

Finally, equational reasoning is a strategy for proving the correctness of
source-to-source transformations over functional programs. The idea, is that
two functional programs can be proven equal if they always return the same
value with the same input. In order to prove a transformation using equa-
tional reasoning, we can express theorems that conclude equalities between
the source and the target programs. Then, by composing such theorems, it
is possible to prove correct the full compiler. Equational reasoning is the
key ingredient for proving the correctness of the ATL interactive compiler
[Liu+24].

Validating the output program with respect to a specification Ver-
ified compilers prove that their output code admit the same semantics as
their input code. However, relating the semantics of the output code to the
semantics of the input code is not always necessary to guarantee correctness
of such output code. Indeed, if the source program is equipped with a full

1.6 Correctness of transformation implementations 19

functional correctness specification, the user can accept any target program
that satisfies the same specification. In such case, a semantic-preserving
compiler can be replaced by a specification-preserving compiler that ensures
that the target code it produces respects the same specification as the source
code. Actually, in this setup, the source code is only a naive implementation
hint for the compiler, that could instead rely on program synthesis tech-
niques (e.g. [SGF10]) to transform the input specification into a naive verified
implementation. Those specification-preserving compilers can usually apply
more aggressive optimizations: indeed, those compilers may produce target
code with different semantics than the source code as long as this target
code can be independently verified with respect to the specification.

The challenge to build a verified specification-preserving compiler is to de-
sign a procedure that actually can check that the output code respects the
same specification as the source code (instead of admitting the same seman-
tics). Following the validation approach, one may try to build a validator that
takes a specification and a program and checks that such program admits
such specification. As said in section 1.5, checking that a program admits a
given specification usually requires non-trivial proof elements that can be
given through code annotations. This idea leads to proof-carrying code which
contains enough annotations to allow a validator to certify that such code
respects some properties (for instance, that it satisfies a given specification).
Then, a certifying compiler can ensure specification preservation by carrying
proof elements from the source proof-carrying code down to the target
proof-carrying code, and validating the proof carried by the target code.

Related work on proof-carrying code The original line of work on
proof-carrying code [Nec98] did not aim at full functional correctness prop-
erties, but rather focused on simpler invariants capturing safety properties,
such as the absence of out-of-bound accesses.

Subsequent work introduced compilers that take as input a formally-verified
program and produce as output compiled code accompanied by a formal
proof that the compiled code satisfies the same functional correctness
specification as the input program. In particular, the PhD work of César
Kunz [Kun09; Bar+09] shows how to realize such proof-transforming
compilation for standard compiler optimizations, applied at the level of an
RTL18 intermediate language.

Later projects introduced variants of proof-carrying code using separation
logic. This is the case of Alpinist [Sak+22] a pragma-based compiler19 that
targets GPU array-based computations, and preserves proof annotations
(that can be later checked in Viper) through code transformations.

In this PhD, we build an interactive compilation framework that supports
the proof-carrying code approach: each transformation updates a formal
proof that the code satisfies its specification, and a separation logic proof
typechecker can validate the well-formedness of such proof at any step. The
proof obtained at the final step is enough to guarantee the absence of miscom-
pilation only if the specification fully characterizes the wanted behavior of
the program. If the user gives incomplete specification, such proof obtained
at the end only guarantees what is written in this incomplete specification.
In particular, for shape-only annotations, the final proof only guarantees
memory safety properties. Said differently, with incomplete specifications
a specification-preserving compiler is not enough and should be replaced
by a semantic-preserving compiler. In this incomplete specification case, we
currently use the same trust model as general-purpose compilers, relying

[SGF10]: Srivastava et al. (2010), From pro-
gram verification to program synthesis

[Nec98]: Necula (1998), Compiling with
proofs

[Kun09]: Kunz (2009), Proof preservation
and program compilation
[Bar+09]: Barthe et al. (2009), Certificate
Translation for Optimizing Compilers

18: Register Transfer Language: Interme-
diate representation of a program inside
a compiler which describes how the data
moves and is processed between CPU reg-
isters. RTL is very close to an assembly
language.
[Sak+22]: Sakar et al. (2022), Alpinist: An
Annotation-Aware GPU Program Optimizer

19: A pragma-based compiler is an interac-
tive compiler in which users can request a
specific transformation by adding an anno-
tation on the transformed instruction. This
model of interaction tends to be hard to use
whenever there is more than one transfor-
mation to apply on a single instruction.

20 1 Introduction

on tests to check that transformations are not causing miscompilation on
common cases. We think that most users wanting strong formal guarantees
are more interested in full specifications, and therefore the absence of for-
mal compiler verification in the incomplete specification case is mostly a
theoretical issue.

1.7 Contributions

During my PhD, I worked on an interactive compiler named OptiTrust. Op-
tiTrust is a tool which applies user-guided trustworthy source-to-source
transformations. The OptiTrust project is developed within the ICPS team
of the ICube laboratory under the direction of my supervisor Arthur Char-
guéraud. Prior to the start of my PhD, a prototype for OptiTrust was devel-
oped by Arthur Charguéraud, Begatim Bytyqi, and Damien Rouhling. This
early prototype was not concerned by transformation correctness: back then,
OptiTrust blindly applied any user request, even if it might create a bug in
the optimized program. My main contribution described in the rest of this
manuscript is the implementation of mechanisms that ensure that OptiTrust
transformations are correct.

Contents of this manuscript Chapter 2 illustrates the OptiTrust work-
flow on three case studies: a blur function from image processing, a kernel
for particle simulation, and a matrix-multiplication algorithm. In those three
cases, we reproduce the same optimization as the state-of-the-art implemen-
tation, with our trustworthy workflow. The implementation inside OptiTrust
of all the trustworthy source-to-source transformations required to realize
these case studies is a joint work with my supervisor and Thomas Kœhler (a
post-doc researcher in the team back then).

Chapter 3 describes my preliminary work on the OptiTrust frontend. This
chapter contains the formalization of a translation from a language close to
C that should be familiar to high-performance code experts (OptiC) to an
internal imperative 𝜆-calculus that makes implementation and reasoning on
transformations easier (Opti𝜆).

Chapter 4 describes a typing algorithm with separation logic resources that
uses annotations on loops and functions, as well as a few ghost instruc-
tions, to check that specifications hold and find invariants at any point in
the program. This system supports the three aforementioned specification
levels of detail: either the user simply specifies information about the shape
of the data, or they can specify functional correction properties for their
algorithm, in that second case they can either choose full or incomplete
specifications. This system (and its extension presented in the following
chapter) is a personal contribution to the OptiTrust project, that plays a
major role in checking the correctness of transformations in OptiTrust.

Chapter 5 describes a key extension of this typing algorithm that is crucial
to justify some program transformations: the production of resource usage
summaries. These summaries are computed on each node of the program’s
syntax tree to deduce which resources are essential to the execution of an
instruction. The chapter details the format of these resource usage summaries
and how our typechecker computes them.

Chapter 6 describes some code transformations inside OptiTrust. Those
transformations support two different modes of correctness checks: semantic
preservation that can be used with incomplete specifications and specification
preservation that can only be used in presence of full functional specifications.

1.7 Contributions 21

In semantic preservation mode, transformations use the combination of
invariants at all program points and usage summaries (both computed by
the aforementioned typechecker) to check their own applicability conditions
before executing. On this point, my personal contribution mostly consists in
finding patterns of invariant and usage exploitation that can be used across
transformations, and helping Thomas Kœhler designing the correctness
criterions. In specification preservation mode, the transformations do not
need to check their own applicability, their implementation is no longer
part of the trusted code base, and the typing algorithm with annotations
alone can guarantee that the expected semantics are preserved. In both
cases, as mentioned previously, to be able to make chains of transformations,
another essential point ofmywork consisted in adjusting the transformations
to maintain relevant annotations after code modification. On this point, I
worked in particular on developing strategies for transforming annotations
(notably ghost instructions) that are a priori troublesome, so as to increase
the scope of transformations on executable code.

In the end, the differences between OptiTrust with shape-only annotations
and with functional correctness specifications are rather small, because we
anticipated the need for different levels of detail inside specifications. Those
small differences are described inside the relevant chapters.

Publications My PhD research lead to the following publications:

▶ Guillaume Bertholon and Arthur Charguéraud. “An AST for Repre-
senting Programs with Invariants and Proofs”. In: 34èmes Journées
Francophones des Langages Applicatifs (JFLA 2023). 2023

This 15 page long workshop paper presents our preliminary work for
finding an appropriate representation for programs annotated with
invariants and the proof that such invariants hold. This work presents
an encoding in Rocq for Hoare proof trees as programs annotated with
specifications and ghost instructions, and then proposes an interactive
program verification workflow to add relevant annotations to an exist-
ing program, and extract a foundational proof out of a fully annotated
program. This PhD manuscript does not reproduce the content of
this publication since most of its ideas are currently not integrated in
OptiTrust.

▶ Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler, Begatim
Bytyqi, and Damien Rouhling. “Interactive source-to-source optimiza-
tions validated using static resource analysis”. In: Proceedings of the
13th ACM SIGPLAN International Workshop on the State Of the Art in
Program Analysis. 2024

This 7 page long workshop paper gives an overview of OptiTrust with
shape-only annotations, illustrating the tool on the matrix multiplica-
tion case study. This case study is reproduced in this manuscript in
section 2.3.1.

▶ Guillaume Bertholon and Arthur Charguéraud. “Bidirectional Trans-
lation between a C-like Language and an Imperative 𝜆-calculus”. In:
36èmes Journées Francophones des Langages Applicatifs (JFLA 2025).
2025

This 16 page long workshop paper describes our preliminary work
to formally describe OptiC, Opti𝜆, and the translation between those
two languages. Most of the chapter 3 is directly taken from this paper.

22 1 Introduction

20: https://github.com/charguer/
optitrust

21: https://ocaml-ppx.github.io/
ppxlib/ppxlib/matching-code.html#
ast_pattern_intro

Moreover, we submitted the following publication that is currently undergo-
ing a major revision before publication in the journal TOPLAS:

▶ Guillaume Bertholon, Arthur Charguéraud, Kœhler, Begatim Bytyqi,
and Damien Rouhling. “OptiTrust: Producing Trustworthy High-
Performance Code via Source-to-Source Transformations”. Draft
paper. 2024

This draft of a 60-page-long journal paper describes OptiTrust in the
particular case of shape-only annotations. Chapters 2, 4, 5 and 6 are
improved versions of sections from this draft. Most importantly, these
sections are extended with arbitrary functional correctness properties,
and specification preserving transformations.

Besides those publications, OptiTrust is an open source software available
on GitHub20. In the project codebase, I made the following contributions:

▶ I personally wrote all the code of the separation logic typechecker and
the utilities to parse and manipulate annotations.

▶ I adapted the code of several transformations to use typechecking
information to check their correctness and adapt annotations for the
next step.

▶ I developed the annotation only transformations we describe in sec-
tion 6.6.

▶ I integrated a system of composable smart deconstructors similar to
what can be found in OCaml’s ppxlib21 to make the code of transfor-
mations more readable.

▶ I clarified the design of Opti𝜆 and fixed the broken translation between
OptiC and Opti𝜆.

▶ I heavily contributed to the interactive transformation trace visualiza-
tion infrastructure.

▶ I added a basic form of continuous integration to ensure that new
commits always pass the test suite.

Current limitations At the end of my thesis, OptiTrust still has important
limitations:

▶ OptiTrust manipulates programs written in OptiC, a programming
language which does not yet support all features of an imperative
language such as C. Most importantly, OptiC does not feature any
language construction that could introduce non-termination such as
general while loop or recursive functions. As our case studies show,
this subset nevertheless suffices to express numerous practical, high-
performance programs, in an idiomatic programming style both for
the unoptimized and for the optimized code. Moreover, for simplicity,
in our transformations, we currently use unbounded integers to ignore
complications related to arithmetic overflows, and we use symbolic
reals to avoid floating point rounding.

▶ We have so far restricted ourselves to a small subset of separation
logic. Our resource-based typesystem is able to describe the ownership
of arrays, matrices, or individual cells, however there is currently
no support for user-defined heap predicates. Nevertheless, as our
case studies show, we are able to demonstrate the usefulness of our
approach in this limited setup.

https://github.com/charguer/optitrust
https://github.com/charguer/optitrust
https://ocaml-ppx.github.io/ppxlib/ppxlib/matching-code.html#ast_pattern_intro
https://ocaml-ppx.github.io/ppxlib/ppxlib/matching-code.html#ast_pattern_intro
https://ocaml-ppx.github.io/ppxlib/ppxlib/matching-code.html#ast_pattern_intro

1.7 Contributions 23

▶ We have already implemented dozens of transformations, among the
most standard ones. We believe that these transformations suffice to
assess the interest of the OptiTrust approach to code optimization.
However, for production usage, dozens of additional transformations
remain to implement.

▶ We strived to limit the trusted code base of OptiTrust. In particular,
with full functional correctness invariants, the implementation of the
transformations is not in the trusted code base, and, with incomplete
specifications, complex transformations do not need to be trusted
because they are built on top of a smaller subset of trusted basic
transformation. However, we are still far from having a foundational
tool. Indeed, we have not yet proven correct our separation logic
typechecking rules and our typechecker implementation with respect
to the semantics of our programming language, we currently use an
untrusted backend to produce machine code after the interactive steps,
and we have not proven correct our basic transformations that support
incomplete specifications. Completing such mechanized proof will
presumably require several years of additional work. Note that state-of-
the-art compilers such as Halide have been described in publications
that did not include correctness proofs.

Chapter 7 gives perspectives on how to remove those limitations in the
future. The effectiveness of separation logic has been successfully demon-
strated across a broad range of applications, both for low-level and high-level
code [OHe19; Cha20b]. By building OptiTrust on separation logic, we are
confident that our framework has the potential to be generally applicable.

In summary, the version of OptiTrust we present in this PhD can readily
be exploited to optimize certain classes of programs, but we acknowledge
that future work remains necessary to achieve full generality. Note that we
have taken great care in our design and implementation to anticipate for
the extensions to a richer programming language and to a richer separation
logic.

[OHe19]: O’Hearn (2019), Separation logic
[Cha20b]: Charguéraud (2020), Separation
logic for sequential programs (functional
pearl)

OptiTrust in practice 2
2.1 The OpenCV row-based

blur case study 26
2.2 The particle simulation

case study 31
2.3 The matrix-multiply case

study 35
2.3.1 With shape-only annotations36
2.3.2 With full functional correct-

ness annotations 39
2.4 Comparison of OptiTrust

with other interactive
compilers 43

2.4.1 Evaluation of other interac-
tive compilers 44

2.4.2 The unique features of
OptiTrust 45

In OptiTrust, the user starts from unoptimized code in OptiC, and develops
a transformation script describing a series of optimization steps. Each step
consists of an invocation of a specific transformation at specified targets.
OptiTrust provides an expressive target mechanism for describing, in a
concise and robust manner, one or several code locations. On any step of
the transformation script, the user can press a key shortcut to view the diff
associated with that step, in the form of a comparison between two human-
readable programs in OptiC. Concretely, a transformation script consists of
an OCaml program linked against the OptiTrust library of transformations.

A central aspect of OptiTrust is that it guarantees that the code transfor-
mations requested by the programmer preserve the semantics or the full
specifications of the program. To that end, OptiTrust leverages our separation
logic typesystem.

For typechecking separation logic resources, functions and loops need to
be equipped with contracts describing their resource usage. These contracts
must be provided as annotations (in the form of no-op instructions) in the
OptiC source code. OptiTrust is able to automatically infer simple loop
contracts, thus not all loops need to be annotated manually. Crucially, every
OptiTrust transformation takes care of updating contracts in order to reflect
changes in the code. In other words, a well-typed program must remain
well-typed after a successful transformation. This property is essential to
ensure that subsequent transformations in the optimization chain can be
validated by exploiting information from our typechecker.

The implementation of OptiTrust distinguishes between basic transforma-
tions and combined transformations. On the one hand, a basic transformation
applies minimalistic changes to the abstract syntax tree (AST). The validity
of a basic transformation is checked by leveraging information extracted
from the typesystem. On the other hand, a combined transformation is
implemented as a composition of basic transformations. Combined trans-
formations aim to implement high-level strategies, that may trigger the
execution of dozens of basic transformation. These more complex combined
transformations need not be accompanied by code for checking validity:
their validity is guaranteed by the validity checks performed by the basic
transformations. This two-layer approach enables us to minimize the size of
the trusted code base (TCB) of OptiTrust.

An OptiTrust user manipulates programs written in OptiC, an imperative
C-like language augmented with typing annotations—function and loop con-
tracts, as well as ghost code. However, OptiTrust does not directly manipulate
an AST for OptiC. Instead, it operates on an intermediate representation
that essentially consists of an imperative 𝜆-calculus. We call this internal
language Opti𝜆. Concretely, the OptiC code, expressed in C syntax, is first
parsed using Clang. Then, the OptiC code is translated into Opti𝜆. In partic-
ular, our translation eliminates mutable variables and operations involving
left-values. Importantly, our translation is bidirectional, allowing to print
back human-readable OptiC code after transformations are applied on the
internal AST. Considering a simple internal language such as Opti𝜆 consid-
erably helps to tame the complexity of the design and implementation of
typing rules, code transformations, and correctness criterions associated
with transformations.

26 2 OptiTrust in practice

[BK+00]: Bradski et al. (2000), OpenCV

This chapter presents these features of OptiTrust through three case studies.
In section 2.1, we reproduce manually written code from OpenCV—a very
popular, optimized computer vision library. In section 2.2, we consider a
physics simulation program featuring a kernel typical of particle simulations;
we demonstrate how to apply, using OptiTrust, several optimizations that
are ubiquitous in this kind of application. In section 2.3, we reproduce an
optimized implementation of matrix multiplication, similar to the one pro-
duced by TVM, the state-of-the-art specialized compiler for machine learning
applications. On this example, we demonstrate the use of two different levels
of details for resource annotations. First, like both other examples, we show
how we can derive optimized code by relying on incomplete specifications
only specifying the shape of data. Then, we show that OptiTrust is able to
preserve a proof of full functional correctness through optimizations, if such
functional correctness is established on the initial code. Then, in section 2.4,
we evaluate OptiTrust against the desirable properties for interactive code
optimization frameworks.

2.1 The OpenCV row-based blur case study

In image processing, a blur is typically used to remove noise and smoothen
images. A two-dimensional blur can be decomposed as a combination of
column-based blur, row-based blur, and (optionally) the application of a nor-
malization pass. Our case study focuses on a row-based blur function, as
implemented in the state-of-the-art OpenCV library [BK+00].

Unoptimized code If performance was not a concern at all, the row-based
blur function would be implemented as shown in figure 2.1. The output is a
single-row image, stored in an array named D, made of n pixels. The input
is a single-row image, stored in an array named S, made of n+w-1 pixels,
where the parameter w corresponds to the width of the blur. The input pixels
in S are encoded on cn integers of type uint8_t, whereas the output pixels
in D are encoded on cn integers of type uint16_t. The output pixel D[i]
is computed as the sum of the values of the input pixels in the range from
S[i] to S[i+w-1]. This sum is computed independently for each of the cn
color channels. The code accommodates any value of cn, but practical values
include cn=1 for grayscale, cn=3 for RGB, cn=4 for RGBA.

Optimized code The handwritten OpenCV library includes an implemen-
tation of row-sum blur structured like the code shown in figure 2.2. The
original OpenCV code may be viewed online1

1: https://github.com/opencv/
opencv/blob/4.10.0/modules/
imgproc/src/box_filter.simd.hpp#
L75: The OpenCV code is implemented as
a class with the types T and ST as template
arguments, whereas for the moment our
code refers to fixed integer types; we look
forward to add support for polymorphism
in the future. The OpenCV code also
traverses certain arrays by incrementing
pointers, whereas we use explicit array
indexing everywhere. In general, this
choice is not performance critical and
we leave OptiTrust support for pointer
shifting to future work.

. The code from figure 2.2
corresponds to the code that we produce using OptiTrust.

void rowSum(const int n, const int cn, const int w, const uint8_t S[n+w-1][cn], uint16_t D[n][cn]){
for (int i = 0; i < n; i++) { // for each target pixel in the row described by D
for (int c = 0; c < cn; c++) { // for each channel (e.g., red, green, and blue)
uint16_t s = 0;
for (int k = i; k < i+w; k++) // for each source pixel nearby to the right
s += (uint16_t) S[k][c];

D[i][c] = s;
} } }

Figure 2.1: Unoptimized C code for the OpenCV case study, using multidimensional arrays.

https://github.com/opencv/opencv/blob/4.10.0/modules/imgproc/src/box_filter.simd.hpp#L75
https://github.com/opencv/opencv/blob/4.10.0/modules/imgproc/src/box_filter.simd.hpp#L75
https://github.com/opencv/opencv/blob/4.10.0/modules/imgproc/src/box_filter.simd.hpp#L75
https://github.com/opencv/opencv/blob/4.10.0/modules/imgproc/src/box_filter.simd.hpp#L75

2.1 The OpenCV row-based blur case study 27

void rowSum(int32_t n, int32_t cn, int32_t w, uint8_t* S,
uint16_t* D) {

if (w == 3) {
for (int32_t ic = 0; ic < cn * n; ic++) {
D[ic] = (uint16_t) S[ic]

+ (uint16_t) S[cn + ic]
+ (uint16_t) S[2 * cn + ic];

}
} else if (w == 5) {
for (int32_t ic = 0; ic < cn * n; ic++) {
D[ic] = (uint16_t) S[ic]

+ (uint16_t) S[cn + ic]
+ (uint16_t) S[2 * cn + ic]
+ (uint16_t) S[3 * cn + ic]
+ (uint16_t) S[4 * cn + ic];

}
} else if (cn == 1) {
uint16_t s = (uint16_t) 0;
for (int32_t i = 0; i < w; i++) {
s += (uint16_t) S[i];

}
D[0] = s;
for (int32_t i = 0; i < n - 1; i++) {
s += (uint16_t) S[i + w] - (uint16_t) S[i];
D[i + 1] = s;

}
} else if (cn == 3) {
uint16_t s0 = (uint16_t) 0;
uint16_t s1 = (uint16_t) 0;
uint16_t s2 = (uint16_t) 0;

for (int32_t i = 0; i < 3 * w; i += 3) {
s0 += (uint16_t) S[i];
s1 += (uint16_t) S[i + 1];
s2 += (uint16_t) S[i + 2];

}
D[0] = s0;
D[1] = s1;
D[2] = s2;
for (int32_t i = 0; i < 3 * n - 3; i += 3) {
s0 += (uint16_t) S[3 * w + i] - (uint16_t) S[i];
s1 += (uint16_t) S[3 * w + i + 1] - (uint16_t) S[i + 1];
s2 += (uint16_t) S[3 * w + i + 2] - (uint16_t) S[i + 2];
D[i + 3] = s0;
D[i + 4] = s1;
D[i + 5] = s2;

}
} else if (cn == 4) {
// [...] similar to cn == 3, with one more variable

} else {
for (int32_t c = 0; c < cn; c++) {
uint16_t s = (uint16_t) 0;
for (int32_t i = 0; i < cn * w; i += cn) {
s += (uint16_t) S[c + i];

}
D[c] = s;
for (int32_t i = c; i < cn * n - cn + c; i += cn) {
s += (uint16_t) S[cn * w + i] - (uint16_t) S[i];
D[cn + i] = s;

} } } }

Figure 2.2: Our optimized C code for the OpenCV case study, showing the body of the rowSum function. This code exploits essentially the
same optimizations as the original OpenCV code.

This optimized implementation is multi-versioned code, with dedicated exe-
cution paths for handling specific values of the parameters. The branches
w == 3 and w == 5 correspond to values of the width that are commonly
used by library users. For these small constant values of w, the inner loop on
k from figure 2.2 is unfolded. Otherwise, the loop on k is not unfolded and
a standard algorithmic optimization called sliding window is applied. Note
that Halide, the state-of-the-art specialized compiler for image processing,
does not support the introduction of sliding windows—and the developers
of Halide do not plan to lift this limitation.2

The branch of the code that uses the sliding window optimization is then
further specialized with branches for commonly used parameters: cn == 1,
cn == 3, and cn == 4. For these small constant values of cn, the outer loop
on c is unfolded, then the multiple occurrences of the loop on i that result
from this unfolding are fused into a single loop. The final else branch in the
code from figure 2.2 corresponds to the generic implementation. Moreover,
in the last three branches, the loops are reindexed to augment the counter i
by steps of cn, thereby saving multiplication operations.

Multidimensional versus flat arrays The code from figure 2.1 is pre-
sented using C syntax for multidimensional arrays, for the sake of improved
readability. However, the optimized code from figure 2.2 and our contract-
annotated code from figure 2.3 instead use a flat array representation. The
flat representation is frequently used in high-performance code: it allows
performing simplifications in array accesses, moreover it allows for compat-
ibility with C++ parsers3. We leave to future work the parsing of multidi-
mensional arrays.

Annotated unoptimized code Before we can start optimizing the code
from figure 2.1 using OptiTrust, we need to annotate the code with function
contracts, loop contracts, as well as ghost instructions. A contract consists of a
description of the assumptions and guarantees associated with a function or

2: Halide does not support sliding
windows for reasons explained on:
https://github.com/halide/Halide/
issues/180. Hence, the programmer
either needs to manually refine the code
to introduce the sliding window before
scheduling; or needs to exploit other
transformation tools specialized in sliding
window optimizations [Cha+15; Kan+24].

3: In C++, unlike in C, arrays must have a
size known at compilation time, therefore
the code from figure 2.1 is rejected by a
Clang parser in C++ mode. For technical
reasons such as the need for anonymous
functions in OptiC, OptiTrust currently re-
lies on a C++ parser.

https://github.com/halide/Halide/issues/180
https://github.com/halide/Halide/issues/180

28 2 OptiTrust in practice

4: Such a less precise annotation conveys
less information and thus can make some
transformations fail if their correctness de-
pend on the fact that the values described
by the clause are never read. However,
in some cases such as this one, we can
use a procedure called contract minimiza-
tion detailed later in chapter 5 to automati-
cally stenghten a function contract with a
__modifies clause into a contract with a
__writes clause.

void rowSum(int n, int cn, int w, int* S, int* D) {
__requires("w >= 0, n >= 1, cn >= 0");
__reads("S ⇝ Matrix2(n+w-1, cn)");
__writes("D ⇝ Matrix2(n, cn)");
for (int i = 0; i < n; i++) { // for each pixel
__xwrites("for c in 0..cn → &D[MINDEX2(n, cn, i, c)] ⇝ Cell");
for (int c = 0; c < cn; c++) { // for each channel
__xwrites("&D[MINDEX2(n, cn, i, c)] ⇝ Cell");
__ghost(assume, "is_subrange(i..(i+w), 0..(n+w-1))");
int s = 0;
for (int k = i; k < i+w; k++) {
__ghost(in_range_extend, "k, i..(i+kn), 0..(n+kn-1)");
__ghost_begin(focus, matrix2_ro_focus, "S, k, c");
s += S[MINDEX2(n+w-1, cn, k, c)];
__ghost_end(focus);

}
D[MINDEX2(n, cn, i, c)] = s;

}
}

}

Figure 2.3: Unoptimized OptiC code for the OpenCV case study, using flat arrays and resource annotations.

a loop, as well as a description of the side effects that may be performed. A
ghost instruction behaves, semantically, as a no-op. Its purpose is to guide
the typechecker of OptiTrust, typically by altering the way the memory
state is described in the separation logic invariants. These invariants may be
exploited for guiding code transformations, and for checking their correct-
ness.

Ghost instructions may also be used to keep track of nontrivial arithmetic
reasoning involved in the typechecking process. Typically, we need to derive
arithmetic inequalities, to justify that a certain range falls within the bounds
of an array. In this example, we derive from the lemma in_range_extend
the fact that the range from 𝑖 to 𝑖 + 𝑤 is included in the range from 0 to
𝑛 +𝑤 − 1. In future work, we hope to integrate an SMT solver to discharge
this kind of goal.

Besides, to ease the manipulation and typechecking of multidimensional
arrays, all accesses are assumed to be written using a family of functions
called MINDEX. For example, D[MINDEX2(n,cn,i,c)] denotes access in the
flat array D, of dimensions n × cn, at the coordinates (i,c). We leave it to
future work to support input programs written without explicit dimensions
on array accesses.

Figure 2.3 shows the same code as in figure 2.1 in OptiC, the input language
of OptiTrust. Compared to the corresponding unoptimized C code, the OptiC
code is augmented with contracts, relevant ghost instructions, and MINDEX
accesses.

The clause __requires contains assumptions about the input parameters.
The clause __reads asserts that the input array S can be accessed in read-
only mode. The clause __writes asserts that the output array D is completely
overwritten by the function and that its content at the beginning of the
function is never read. We could also replace this __writes clause with the
more generic clause __modifies (like we will see in the next case study)
to simply assert that data can be modified in place, without specifying that
its initial value is ignored4. The clause __xwrites describes a loop contract:
it indicates not only that the i-th iteration writes in certain cells, but also
that the other iterations do not access these cells. In other words, the i-th

2.1 The OpenCV row-based blur case study 29

Reduce.intro [cVarDef "s"];
Specialize.variable_multi ~mark_then:fst ~mark_else:"anyw"
["w", int 3; "w", int 5] [cFunBody "rowSum"; cFor "i"];

Reduce.elim ~inline:true [nbMulti; cMark "w"; cCall "reduce_spe1"];
Loop.collapse [nbMulti; cMark "w"; cFor "i"];
Loop.swap [nbMulti; cMark "anyw"; cFor "i"];
Reduce.slide ~mark_alloc:"acc" [nbMulti; cMark "anyw"; cArrayWrite "D"];
Reduce.elim [nbMulti; cMark "acc"; cCall "reduce_spe1"];
Variable.elim_reuse [nbMulti; cMark "acc"];
Reduce.elim ~inline:true [nbMulti; cMark "anyw"; cFor "i"; cCall "reduce_spe1"];
Loop.shift_range StartAtZero [nbMulti; cMark "anyw"; cFor "i"];
Loop.scale_range ~factor:(trm_find_var "cn" []) [nbMulti; cMark "anyw"; cFor "i"];
Specialize.variable_multi ~mark_then:fst ~mark_else:"anycn" ~simpl:custom_specialize_simpl
["cn", int 1; "cn", int 3; "cn", int 4] [cMark "anyw"; cFor "c"];

Loop.unroll [nbMulti; cMark "cn"; cFor "c"];
Target.foreach [cMark "cn"] (fun c →

Loop.fusion_targets ~into:FuseIntoLast [nbMulti; c; cFor "i" ~body:[cArrayWrite "D"]];
Instr.gather_targets [c; cStrict; cArrayWrite "D"];
Loop.fusion_targets ~into:FuseIntoLast [nbMulti; c; cFor ~stop:[cVar "w"] "i"];
Instr.gather_targets [c; cFor "i"; cArrayWrite "D"];);

Loop.shift_range (ShiftBy (trm_find_var "c" [cMark "anycn"]))
[cMark "anycn"; cFor ~body:[cArrayWrite "D"] "i"];

Cleanup.std ~int_size:[(typ_u8, "S"), (typ_u16, "D\\|s.*")] ();

Figure 2.4: Optimization script for the OpenCV case study.

iteration has exclusive access to that cell. The “x” prefix in __xwrites stands
for “exclusive”. Next case studies also use the x variants of other clauses
such as __xmodifies.

In particular, the outer loop on i is annotated with a clause involving an
iteration construct: __xwrites("for c in 0..cn → &D[MINDEX2(n,
cn, i, c)] ⇝ Cell"). This clause indicates that the i-th iteration of
that outer loop requires exclusive access to all the cells in the 𝑖-th row of
the destination array D. Further in the manuscript, this same resource may
also be written using the corresponding math notation, as:★𝑐∈0..cn D ⊞
mIndex2(n, cn, i, 𝑐) ⇝ Cell, where the star symbol is called iterated sepa-
rating conjunction in separation logic. The iteration construct is also used
to define the Matrix2 predicate, which describes a 2D range of individ-
ual cells. Concretely, the resource D ⇝ Matrix2(n,cn) is equivalent to
★𝑖∈0..n★𝑐∈0..cn D ⊞ mIndex2(n, cn, 𝑖, 𝑐) ⇝ Cell, which covers all the n × cn
cells of the matrix D.

The lines introduced by __ghost_begin, __ghost_end, or sometimes just
__ghost correspond to ghost instructions: no-ops whose purpose is to change
the view on the resources, or prove mathematical properties. The need for
ghost instructions is standard in separation logic frameworks. The spe-
cialized keywords __ghost_begin and __ghost_end materialize a pair
of ghost instructions that are the reciprocal of one another. For exam-
ple, the ghost focus operation allows recovering a single memory cell
from the array S, isolating S ⊞ mIndex2(n+w-1, cn, k, c) ⇝ Cell from
★𝑗∈0..n+w-1★𝑐∈0..cn S ⊞ mIndex2(n+w-1, cn, 𝑗, 𝑐) ⇝ Cell. Technically, the
focus involves read-only fractions and a “magic wand” describing the re-
maining cells. The matching __ghost_end pseudo-instruction applies the
symmetrical operation, recovering the original resource. In the future, we
could try to rely on heuristics for automatically inferring certain ghost op-
erations, and reduce the number of such ghost operations that need to be
explicitly provided by the programmer.

30 2 OptiTrust in practice

5: As of June 2025, the choice of integer
size is not yet implemented in Cleanup.
std. Instead, we currently start with sized
integers in the unoptimized code, and we
ignore this size during the optimization
process.We believe the presentation of this
manuscript is better, since it makes explicit
that the sizing operation is performed only
at the end, and that integer overflows are
not checked by our transformations at the
moment.

Optimization script syntax Figure 2.4 shows our script for generating
the optimized code of figure 2.2 starting from the annotated unoptimized
code of figure 2.3. In OptiTrust, optimizations are dictated by means of
a script written in the OCaml programming language. For the reader not
familiar with OCaml, f x y denotes the call of f on the arguments x and
y; the symbol ~ is used to provide optional (or named) arguments; [x;
y; z] denotes a list; (x, y, z) denotes a tuple; x ^ y denotes a string
concatenation; and let f x = t in introduces a local function.

A transformation script consists of a series of calls to functions from the
OptiTrust library. Each call may depend on a number of arguments control-
ling the transformations. By convention, the last argument of a transfor-
mation always denotes a target. Before explaining the working of targets,
we first present the transformations involved in our script from figure 2.2.
Reduce.intro introduces a map-reduce operation for computing the sum
over a segment. Reduce.elim eliminates a map-reduce into an explicit
summation. Reduce.slide performs a sliding window optimization on a
map-reduce computation. Specialize.variable_multi introduces a cas-
cade of if-statements for testing specific variable values. Loop.collapse
takes two nested loops and replaces them with a single loop that iterates
over the product space. Loop.swap takes two nested loops and swaps them.
Variable.elim_reuse takes two variables with equal values and eliminates
the second variable. Loop.shift_range and Loop.scale_range allow al-
tering the iteration range of a loop. Loop.unroll unrolls a loop with a
statically known number of iterations. Loop.fusion_targets fuses tar-
geted loops into a single one. Instr.gather_targets reorders instructions
in a sequence to make the targeted instructions consecutive. Cleanup.std
eliminates all dependencies on the OptiTrust header file, performs arithmetic
simplifications and sets the size for integer (and floating point) types in order
to produce conventional C syntax as final output5.

Targets A target provides a way to concisely and robustly refer to one or
several code locations, at which to apply a transformation. The construct
Target.foreach, visible in figure 2.4, can also be used to explicitly iterate
over several code locations. A target consists of a list of constraints (pre-
fixed by “c”) that is satisfied by code paths that go through nodes satisfying
each constraint, in the given order. For example, the constraint cFunBody "
rowSum" requires visiting the body of a function definition with the name
"rowSum". The constraint cFor "c" requires visiting a for loop over an
index with the name "c". The constraint cMark "cn" requires visiting an
AST node that carries the mark "cn". Such marks are introduced by trans-
formations, on demand of the programmer.

Constraints may also take targets as arguments: cFor "i" ~body:[
cArrayWrite "D"] requires visiting a for loop over an index with
the name "i", whose body also writes in the array D. Besides, targets
may include special modifiers. The modifier nbMulti indicates that the
programmer expects to find not one but multiple AST nodes that match this
target. The modifier tBefore, which appears in the other two case studies,
allows targeting the interstice before an instruction.

Interactive visualization Each step of an evaluation script may be exe-
cuted interactively: with the cursor on a line, the OptiTrust user can press
a shortcut key in their code editor to visualize the diff associated with
the transformation on that line. Figure 2.5 shows the diff associated with
the Loop.scale_range transformation that appears near the middle of the
script from figure 2.4. This transformation reindexes a loop. In the present

2.2 The particle simulation case study 31

fi ✔

✔

✔

✔

✔

✔

✔

✔

✔

✔

fi

for (int c = 0; c < cn; c++) {

uint16_t s = (uint16_t)0;

for (int i = 0; i < w; i++) {

 s = s + (uint16_t)S[MINDEX2(n + w - 1, cn, i, c)];

 }

 D[MINDEX2(n, cn, 0, c)] = s;

for (int i = 0; i < n - 1; i++) {

 s = s + (uint16_t)S[MINDEX2(n + w - 1, cn, i + w, c)] -

 (uint16_t)S[MINDEX2(n + w - 1, cn, i, c)];

 D[MINDEX2(n, cn, i + 1, c)] = s;

 }

 }

for (int c = 0; c < cn; c++) {

uint16_t s = (uint16_t)0;

for (int i = 0; i < cn * w; i += cn) {

 s = s + (uint16_t)S[MINDEX2(n + w - 1, cn, exact_div(i, cn), c)];

 }

 D[MINDEX2(n, cn, 0, c)] = s;

for (int i = 0; i < cn * (n - 1); i += cn) {

 s = s + (uint16_t)S[MINDEX2(n + w - 1, cn, exact_div(i, cn) + w, c)] -

 (uint16_t)S[MINDEX2(n + w - 1, cn, exact_div(i, cn), c)];

 D[MINDEX2(n, cn, exact_div(i, cn) + 1, c)] = s;

 }

 }

ff

24

25

26

27

28

29

30

31

32

33

34

35

24

25

26

27

28

29

30

31

32

33

34

35

Figure 2.5: Diff for the Loop.scale_range transformation that appears near the middle of the script from figure 2.4. OptiTrust can also
produce a more verbose diff that includes contracts, and ghost instructions.

example, it modifies the indexing from for (int i = 0; i < w; i++) to
for (int i = 0; i < cn*w; i+=cn), and replaces every occurrence of
the index i with the expression exact_div(i,cn). In particular, the array
access S[MINDEX2(n + w - 1, cn, i, c)], becomes S[MINDEX2(n + w
- 1, cn, exact_div(i,cn), c)]. The final cleanup step of our script

unfolds the definition of MINDEX2 to obtain S[cn * exact_div(i, cn) +
c], then applies an arithmetic simplification to obtain the index S[c + i].

The latter expression appears in the final code presented in figure 2.2. Addi-
tionally, OptiTrust can produce a complete execution trace in the form of an
interactive tree. This tree reports the diff not only for every transformation
visible in the script, but also for all the internal transformations that are
leveraged in the process.6

Validity checks The transformation script from figure 2.4 consists of
combined transformations, whose evaluation triggers the application of a
chain of basic transformations. As said earlier, basic transformations are
those that directly modify the AST, whereas combined transformations are
defined as the composition of basic transformations. For every basic transfor-
mation being applied, OptiTrust checks that this transformation preserves
the semantics of the program, by leveraging resource typing information.
Because the checks performed by OptiTrust depend on resource typing,
every intermediate program must typecheck. In particular, if a transforma-
tion modifies the code, it may need to also modify the annotations, such as
the loop contracts and the ghost instructions. Correctness criterions and
preservation of typing are discussed in details in chapter 6.

2.2 The particle simulation case study

Particle-In-Cell (PIC) is a technique commonly used to simulate plasma,
where charged particles are in motion, by approximating the charge distri-
bution using a grid. Our case study is inspired by the work from [Bar+18],
who present a PIC implementation featuring state-of-the-art optimizations.
In the present case study, we consider a simplified PIC simulation, focusing
on the computations associated with one particular cell of the grid. Our
goal is to illustrate how OptiTrust can be used to derive a certain number of
transformations ubiquitous in particle simulation as well as other physics
simulation code.

Unoptimized code Figure 2.6 shows the unoptimized simulation kernel
that we consider. A number of particles, all with the same mass and charge,
move inside a cubic cell. For simplicity, we assume in this case study that
the particles do not leave the cube. The initial position and speed of every
particle is given. Positions are described with values in the range [0, 1], for

6: The traces showing the diff for every
major step of the script can be browsed
online at:
https://www.chargueraud.org/
softs/optitrust/traces/index.html.
Due to their large size, the traces that
include all the substeps are only available
by constructing them using a local
installation of OptiTrust.

[Bar+18]: Barsamian et al. (2018), Efficient
Strict-Binning Particle-in-Cell Algorithm for
Multi-Core SIMD Processors

https://www.chargueraud.org/softs/optitrust/traces/index.html
https://www.chargueraud.org/softs/optitrust/traces/index.html

32 2 OptiTrust in practice

7: Note that this is a simplification com-
pared to [Bar+18], as they also optimize
code for the “charge deposit”.

8: In the full-featured Particle-in-Cell
code [Bar+18], the array coeffs is entirely
eliminated by further optimizations, which
generate large-size arithmetic expressions
that may then be processed by vector in-
structions.

void simulate(vect* fieldAtCorners, int nbSteps, real deltaT, real pCharge, real pMass, int nbPart,
particle* part) {

__reads("fieldAtCorners ⇝ Matrix1(nbCorners)");
__modifies("part ⇝ Matrix1(nbPart)");
for (int idStep = 0; idStep < nbSteps; idStep++) {
for (int idPart = 0; idPart < nbPart; idPart++) {
// Each particle is updated at each time step
__xmodifies("&part[MINDEX1(nbPart, idPart)] ⇝ Cell");
__ghost_begin(part, particle_open, "&part[MINDEX1(nbPart, idPart)]");
// Interpolate the field based on the position relative to the corners of the cell
real* const coeffs = MALLOC1(real, nbCorners);
compute_corner_interpolation_coeffs(part[MINDEX1(nbPart, idPart)].pos, coeffs);
const vect fieldAtPos = matrix_vect_mul(coeffs, fieldAtCorners);
free(coeffs);
// Compute the acceleration: F = m*a and F = q*E gives a = q/m*E
const vect accel = vect_mul(pCharge / pMass, fieldAtPos);
// Compute the new speed and position for the particle
const vect speed2 = vect_add(part[MINDEX1(nbPart, idPart)].speed, vect_mul(deltaT, accel));
const vect pos2 = vect_add(part[MINDEX1(nbPart, idPart)].pos, vect_mul(deltaT, speed2));
// Update the particle
part[MINDEX1(nbPart, idPart)].speed = speed2;
part[MINDEX1(nbPart, idPart)].pos = pos2;
__ghost_end(part);

} } }

Figure 2.6: Unoptimized code for the particle simulation case study, with resource annotations.

each axis. We assume that the particles do not affect each other, and that an
external electric field affects the acceleration of the particles7. The electric
field is described by 8 vectors, one per corner of the cell. The electric field
that applies at a given position inside the cubic cell is obtained by linearly
interpolating the vectors associated with the corners—a standard technique
in particle-in-cell (PIC) simulations.

The simulation proceeds as follows. At each time step, all the particles are
updated. For a given particle, its speed is first updated, based on the value of
the acceleration at the position of this particle. Then, the position of the par-
ticle is updated, based on its speed. Observe how, in figure 2.6, these updates
are described at a high-level of abstraction, using vector operations, as well
as a matrix-vector product for computing the interpolation. The auxiliary
function compute_corner_interpolation_coeffs computes the interpo-
lation coefficients associated with the position of the particle.

Optimized code Figure 2.7 shows our optimized code for the func-
tion simulate. Two preliminary transformations are applied. First,
auxiliary functions are inlined. In particular, the first 14 lines of the
loop on idPart visible in the optimized code (involving the variables
rX, rY, rZ, as well as cX, cY, cZ) correspond to the code inlined from
compute_corner_interpolation_coeffs, whose implementation was
not shown in figure 2.6. Second, the allocation of the array coeffs, used to
store the interpolation coefficients, is moved outside the loop8. Then, two
key optimizations are applied.

First, the vector and matrix operations are replaced with operations over indi-
vidual fields (named pos.x, pos.y, pos.z, speed.x, speed.y, and speed.z).
Moreover, local vector variables are replaced with families of variables (e.g.,
fieldAtPos_x, fieldAtPos_y, and fieldAtPos_z).

2.2 The particle simulation case study 33

void simulate(vect* fieldAtCorners, int32_t nbSteps, double deltaT, double pCharge, double pMass,
int32_t nbPart, particle* part) {

const double fieldFactor = deltaT * deltaT * pCharge / pMass;
vect* const lFieldAtCorners = (vect*) malloc(nbCorners * sizeof(vect));
for (int32_t i = 0; i < nbCorners; i++) {
lFieldAtCorners[i].x = fieldAtCorners[i].x * fieldFactor;
lFieldAtCorners[i].y = fieldAtCorners[i].y * fieldFactor;
lFieldAtCorners[i].z = fieldAtCorners[i].z * fieldFactor;

}
for (int32_t i = 0; i < nbPart; i++) {
part[i].speed.x *= deltaT;
part[i].speed.y *= deltaT;
part[i].speed.z *= deltaT;

}
double* const coeffs = (double*) malloc(nbCorners * sizeof(double));
for (int32_t idStep = 0; idStep < nbSteps; idStep++) {
for (int32_t idPart = 0; idPart < nbPart; idPart++) {
const double rX = part[idPart].pos.x;
const double rY = part[idPart].pos.y;
const double rZ = part[idPart].pos.z;
const double cX = 1. - rX;
const double cY = 1. - rY;
const double cZ = 1. - rZ;
coeffs[0] = cX * cY * cZ;
coeffs[1] = cX * cY * rZ;
coeffs[2] = cX * rY * cZ;
coeffs[3] = cX * rY * rZ;
coeffs[4] = rX * cY * cZ;
coeffs[5] = rX * cY * rZ;
coeffs[6] = rX * rY * cZ;
coeffs[7] = rX * rY * rZ;
double fieldAtPos_x = 0.;
double fieldAtPos_y = 0.;
double fieldAtPos_z = 0.;
for (int32_t k = 0; k < nbCorners; k++) {
fieldAtPos_x += coeffs[k] * lFieldAtCorners[k].x;
fieldAtPos_y += coeffs[k] * lFieldAtCorners[k].y;
fieldAtPos_z += coeffs[k] * lFieldAtCorners[k].z;

}
const double speed2_x = part[idPart].speed.x + fieldAtPos_x;
const double speed2_y = part[idPart].speed.y + fieldAtPos_y;
const double speed2_z = part[idPart].speed.z + fieldAtPos_z;
part[idPart].pos.x += speed2_x;
part[idPart].pos.y += speed2_y;
part[idPart].pos.z += speed2_z;
part[idPart].speed.x = speed2_x;
part[idPart].speed.y = speed2_y;
part[idPart].speed.z = speed2_z;

}
}
free(coeffs);
for (int32_t i = 0; i < nbPart; i++) {
part[i].speed.x /= deltaT;
part[i].speed.y /= deltaT;
part[i].speed.z /= deltaT;

}
free(lFieldAtCorners);

}

Figure 2.7: Optimized code for the particle simulation case study.

34 2 OptiTrust in practice

9: Like in the previous example with inte-
ger sizes, this real type with infinite preci-
sion and its lowering to double is not yet
implemented.

Second, a scaling transformation is applied on the data in order to simplify
the arithmetic computations that need to be performed at every time step.

To understand how this scaling optimization works, consider a particle. For
simplicity, let us focus on its behavior on the 𝑥-coordinate. At a given time
step, its speed, written 𝑣 , and its position, written 𝑥 , are updated according to
the formulas: 𝑎=𝑞𝐸/𝑚 and 𝑣 +=𝑎Δ𝑡 and 𝑥 += 𝑣Δ𝑡 . Here, 𝐸 denotes the electric
field interpolated at the location of this particle. The constants 𝑞,𝑚, and Δ𝑡

corresponds to the program variables pCharge, pMass, and deltaT, respec-
tively. The idea is to store not the values of 𝐸 and 𝑣 , but instead the values 𝐸′
and 𝑣 ′ defined as: 𝐸′ = 𝑞𝐸Δ2

𝑡 /𝑚 and 𝑣 ′ = Δ𝑡𝑣 . The interest is that the speed
and position updates at a given time step are now described using much
simpler formulas that avoid the need for computing multiplications: 𝑣 ′ +=𝐸′
and 𝑥 += 𝑣 ′. To implement this scaling transformation, the components of the
field speed of the array part are multiplied, in-place, by a factor Δ𝑡 before
starting the simulation; symmetrically, at the end of the simulation, the
values are divided by Δ𝑡 . For the electric field array, which is read-only, the
scaling factor is applied on an auxiliary array named lFieldAtCorners, ob-
tained bymultiplying the values of fieldAtCorners by𝑞Δ2

𝑡 /𝑚. (An in-place
update would be disallowed because the array fieldAtCorners is described
using a read-only permission.) By linearity of the interpolation computa-
tions, this scaling propagates to the values computed for the electric field at
the particle location (fieldAtPos_x, fieldAtPos_y, and fieldAtPos_z).
Note that the unoptimized code for this example uses the special OptiC type
real that represents idealized infinitely precise computations instead of
regular floating-point numbers and their rounding between each operation.
On this type we allow ourselves to perform any kind of arithmetic rewriting
that is mathematically true for real numbers. At the last transformation step,
we decide to approximate those computations by using the type double cor-
responding to IEEE 754 binary649. This corresponds to a standard workflow
performed by some code performance experts, where the order of floating
point operation was not carefully chosen on the unoptimized code, and
numerical stability is checked a posteriori. Formal reasoning about precision
in the optimized code is an orthogonal challenge, which we leave to future
work.

Optimization script Figure 2.8 shows our optimization script. Let us
describe the key steps. The transformation Function.inline_multi inlines
auxiliary functions, in particular vector operations. Record.split_fields
turns record assignment operations into per-field assignment operations.
Variable.insert inserts a definition for the multiplicative factor 𝑞Δ2

𝑡 /𝑚,
which is applied to the electric field. Accesses.scale (as well as scale_var
and scale_mut) apply the relevant multiplicative factors on the values
stored in the various data structures at hand. Crucially, the correctness of
the scaling transformation relies on the knowledge that the same arrays
are not accessed by means of other (aliased) pointers. The verification of
this property relies on the separation logic information computed during
typechecking. Loop.fusion_targets fuses the several loops that applied
per-field scaling. Variable.unfold reveals the definition of a variable at
certain of its occurrences. Variable.inline eliminates a variable definition,
replacing all occurrences with the definition. Loop.hoist_alloc pulls the
allocation of the coeffs array outside the loop. Cleanup.std applies final
simplifications, as previously explained.

Benefits of using OptiTrust Applied mathematicians commonly write
optimized code such as that of figure 2.7 by hand. Revealing the 𝑥 , 𝑦 and 𝑧

2.3 The matrix-multiply case study 35

let ctx = cFunBody "simulate_single_cell" in
let find_var n = trm_find_var n [ctx] in
let vect = typ_find_var "vect" [ctx] in
let particle = typ_find_var "particle" [ctx] in
let dims = ["x"; "y"; "z"] in
Matrix.local_name_tile ~var:"fieldAtCorners"
~elem_ty:vect ~uninit_post:true ~mark_load:"loadField"
~local_var:"lFieldAtCorners" [ctx; cFor "idStep"];

Function.inline_multi [ctx; cCalls ["cornerInterpolationCoeff"; "matrix_vect_mul"; "vect_add"; "vect_mul"]];
Variable.inline_and_rename [ctx; cVarDef "fieldAtPos"];
Record.split_fields ~typs:[particle; vect] [tSpanSeq [ctx]];
Record.to_variables [ctx; cVarDefs ["fieldAtPos"; "pos2"; "speed2"; "accel"]];
let deltaT = find_var "deltaT" in
Variable.insert ~name:"fieldFactor" ~value:(trm_mul (trm_mul deltaT deltaT) (trm_exact_div (find_var "pCharge")
(find_var "pMass"))) [ctx; tBefore; cVarDef "lFieldAtCorners"];

let scaleFieldAtPos d =
Accesses.scale_var ~factor:(find_var "fieldFactor") [nbMulti; ctx; cVarDef ("fieldAtPos_" ^ d)] in

List.iter scaleFieldAtPos dims;
let scaleSpeed2 d = Accesses.scale_immut ~factor:deltaT [nbMulti; ctx; cVarDef ("speed2_" ^ d)] in
List.iter scaleSpeed2 dims;
let scaleFieldAtCorners d =
let address_pattern = Trm.(struct_access (array_access (find_var "lFieldAtCorners") (pattern_var "i")) d) in
Accesses.scale ~factor:(find_var "fieldFactor") ~address_pattern ~uninit_post:true
[ctx; tSpan [tBefore; cMark "loadField"] [tAfter; cFor "idStep"]] in

List.iter scaleFieldAtCorners dims;
let scaleParticles d =
let address_pattern =
Trm.(struct_access (struct_access (array_access (find_var "part") (pattern_var "i")) "speed") d) in

Accesses.scale ~factor:deltaT ~address_pattern ~mark_preprocess:"partsPrep" ~mark_postprocess:"partsPostp"
[ctx; tSpanAround [cFor "idStep"]]; in

List.iter scaleParticles dims;
List.iter Loop.fusion_targets [[cMark "partsPrep"]; [cMark "partsPostp"]];
Variable.unfold ~at:[cFor "idStep"] [cVarDef "fieldFactor"];
Variable.inline [ctx; cVarDefs (Tools.cart_prod (^) ["accel_"; "pos2_"] dims)];
Arith.(simpls_rec [expand; gather_rec]) [ctx];
Loop.hoist_alloc ~indep:["idStep"; "idPart"] ~dest:[tBefore; cFor "idStep"] [cVarDef "coeffs"];
Cleanup.std ();

Figure 2.8: Optimization script for the particle simulation case study.

coordinates triples the size of the code, and applying a scaling transformation
by hand is a highly error-prone task. The aim of OptiTrust is to provide
them with an alternative route, more productive and more trustworthy. As
we have already explained, for each of the transformations being applied,
OptiTrust exploits the separation logic invariants to check criterions that
guarantee that the transformations preserve the semantics of the code.

2.3 The matrix-multiply case study

TVM [Che+18] is the state-of-the-art, industrial-strength, interactive com-
piler for machine learning. The TVM tutorial presents an optimization
script10 (a.k.a. schedule) for optimizing a matrix multiplication function,
specialized for square matrices of size 1024. This script has been carefully
tuned to produce code optimized for specific Intel CPUs. On a 4-core In-
tel i7-8665U CPU with AVX2 support, the TVM experts thereby achieve a
speedup of 150× over a totally naive, sequential implementation of matrix
multiplication.11 The aim of this third case study is to demonstrate the abil-
ity of OptiTrust to produce code that matches the performance delivered
by TVM. More precisely, we show that we are able to generate code that
features the exact same optimization patterns as in the TVM case study, with
a reasonably short transformation script.

Moreover, we show on this example that OptiTrust is able to work with and

[Che+18]: Chen et al. (2018), TVM: An Au-
tomated End-to-End Optimizing Compiler
for Deep Learning

10: https://github.com/apache/
tvm/blob/v0.19.0/gallery/how_to/
optimize_operators/opt_gemm.py

11: The 150× speed up achieved us-
ing TVM does not quite match the 204×
speedup achieved by the proprietary In-
tel’s MKL, a library manually optimized
by Intel’s experts. Yet, keep in mind that
the MKL provides optimized implementa-
tion for a fixed set of functions, whereas
the TVM compiler can be used to opti-
mize entire classes of functions. We leave
it to future work to investigate the extent
to which OptiTrust could be used to de-
rive code that matches the performance of
MKL.

https://github.com/apache/tvm/blob/v0.19.0/gallery/how_to/optimize_operators/opt_gemm.py
https://github.com/apache/tvm/blob/v0.19.0/gallery/how_to/optimize_operators/opt_gemm.py
https://github.com/apache/tvm/blob/v0.19.0/gallery/how_to/optimize_operators/opt_gemm.py

36 2 OptiTrust in practice

void mm(float* C, float* A, float* B, int m, int n, int p) { // naive matrix-multiply
__reads("A ⇝ Matrix2(m, p), B ⇝ Matrix2(p, n)");
__writes("C ⇝ Matrix2(m, n)");
for (int i = 0; i < m; i++) {
__xwrites("for j in 0..n → &C[MINDEX2(m, n, i, j)] ⇝ Cell");
for (int j = 0; j < n; j++) {
__xwrites("&C[MINDEX2(m, n, i, j)] ⇝ Cell");
float sum = 0.0f;
for (int k = 0; k < p; k++) {
__ghost_begin(focusA, matrix2_ro_focus, "A, i, k");
__ghost_begin(focusB, matrix2_ro_focus, "B, k, j");
sum += A[MINDEX2(m, p, i, k)] * B[MINDEX2(p, n, k, j)];
__ghost_end(focusA);
__ghost_end(focusB);

}
C[MINDEX2(m, n, i, j)] = sum;

}
}

}
void mm1024(float* C, float* A, float* B) { // specialization to 1024x1024 matrices
__reads("A ⇝ Matrix2(1024, 1024), B ⇝ Matrix2(1024, 1024)");
__writes("C ⇝ Matrix2(1024, 1024)");
mm(C, A, B, 1024, 1024, 1024);

}

Figure 2.9: Unoptimized OptiC code for the matrix-multiply case study, using shape-only resource annotations.

preserve annotations that can have various levels of details, giving different
kind of guarantees on the output.

2.3.1 With shape-only annotations

First, like the two previous examples, we start with annotations that specify
only the shape of data behind pointers.

Unoptimized code Figure 2.9 shows the unoptimized and annotated
matrix-multiply code that we take as input. Note that contrary to the previous
case studies, we directly use the type float for matrix cells, which means
that the optimized codewill preserve the rounding behavior of the initial code.
Also note that, here again, some annotations could be inferred automatically
with additional tooling.

Optimized code TVM output code is expressed not as C code, but directly
in the intermediate representation of LLVM. We manually inspected the
TVM schedule, intermediate representation, and LLVM IR output to infer
what C code we should generate. The code we produce using OptiTrust is
shown in figure 2.10. Compared with the naive code from figure 2.9, the
optimized code from figure 2.10 integrates 7 key optimizations:

1. The body of the generic matrixmultiplication function mm is specialized
to the size 1024.

2. An auxiliary matrix named pB is allocated to store the coefficients of
the matrix B in a different order (creating a partial transpose of B). The
introduction of this auxiliary matrix induces a cost for the initial copy,
but then greatly improves the memory access patterns.

2.3 The matrix-multiply case study 37

void mm1024(float* A, float* B, float* C) {
float* pB = (float*)malloc(1048576 * sizeof(float));
#pragma omp parallel for
for (int bj = 0; bj < 32; bj++) {
for (int bk = 0; bk < 256; bk++) {
for (int k = 0; k < 4; k++) {
for (int j = 0; j < 32; j++) {
pB[32768 * bj + 128 * bk + 32 * k + j] = B[32 * bj + 4096 * bk + 1024 * k + j];

} } } }
#pragma omp parallel for
for (int bi = 0; bi < 32; bi++) {
for (int bj = 0; bj < 32; bj++) {
float* sum = (float*)malloc(1024 * sizeof(float));
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
sum[32 * i + j] = 0.f;

} }
for (int bk = 0; bk < 256; bk++) {
for (int i = 0; i < 32; i++) {
float s[32];
memcpy(&s[0], &sum[32 * i], 32 * sizeof(float));
#pragma omp simd
for (int j = 0; j < 32; j++) {
s[j] += A[32768 * bi + 4 * bk + 1024 * i] * pB[32768 * bj + 128 * bk + j];

}
#pragma omp simd
for (int j = 0; j < 32; j++) {
s[j] += A[32768 * bi + 4 * bk + 1024 * i + 1] * pB[32768 * bj + 128 * bk + j + 32];

}
#pragma omp simd
for (int j = 0; j < 32; j++) {
s[j] += A[32768 * bi + 4 * bk + 1024 * i + 2] * pB[32768 * bj + 128 * bk + j + 64];

}
#pragma omp simd
for (int j = 0; j < 32; j++) {
s[j] += A[32768 * bi + 4 * bk + 1024 * i + 3] * pB[32768 * bj + 128 * bk + j + 96];

}
memcpy(&sum[32 * i], &s[0], 32 * sizeof(float));

} }
for (int i = 0; i < 32; i++) {
for (int j = 0; j < 32; j++) {
C[32768 * bi + 32 * bj + 1024 * i + j] = sum[32 * i + j]; }}

free(sum);
} }
free(pB);

}

Figure 2.10: Our optimized code for the matrix-multiply case study. This code features the same optimization patterns as the reference output
of TVM.

38 2 OptiTrust in practice

Function.inline_def [cFunDef "mm"];
let tile (id, tile_size) =
Loop.tile (int tile_size) ~index:("b" ^ id) ~bound:TileDivides [cFor id] in

List.iter tile [("i", 32); ("j", 32); ("k", 4)];
Loop.reorder_at ~order:["bi"; "bj"; "bk"; "i"; "k"; "j"] [cPlusEq ()];
Loop.hoist_expr ~dest:[tBefore; cFor "bi"] "pB" ~indep:["bi"; "i"] [cArrayRead "B"];
Matrix.stack_copy ~var:"sum" ~copy_var:"s" ~copy_dims:1 [cFor ~body:[cPlusEq ()] "k"];
Loop.simd [cFor ~body:[cPlusEq ()] "j"];
Loop.parallel [cFunBody "mm1024"; cStrict; cFor ""];
Loop.unroll [cFor ~body:[cPlusEq ()] "k"];
Cleanup.std ();

Figure 2.11: Optimization script for the matrix-multiply case study.

3. The matrices are processed by blocks of size 32: each loop over a
range of size 1024 is replaced with 2 loops each of range 32. Blocking
improves locality in matrix-multiply.

4. Results are not accumulated into a scalar accumulator, but instead
into a stack-allocated array named sum of size 32 × 32 that contains
all scalar accumulators for a block.

5. Around the inner vectorized loops, the locally relevant row of sum is
promoted to a smaller array s that can be mapped onto a few 256-bit
vector registers. On every i iteration, two memcpy operations are used
for synchronizing s with sum.

6. The various loops are reordered in a particularmanner, both to improve
cache locality and to enable parallelization. The outermost loops are
executed in parallel by several cores. The instructions of the inner
loop are parallelized by means of SIMD operations.

7. The 4 loops tagged as #pragma omp simd in figure 2.10 are very
similar. However, if we attempt to factorize them into a loop with 4
iterations, then Intel’s compiler (ICX) produces slower code. Unfolding
the loops as shown makes relying on unrolling heuristics unnecessary.

Again, this particular set of optimizations directly comes from the TVM
case study. We demonstrate how to reproduce the same optimizations using
OptiTrust.

Optimization script Figure 2.11 shows our optimization script, which
consists of only 10 lines. Internally, though, the high-level transformations
mentioned in the script trigger the application of 55 basic transformations
and 61 transformations that only change annotations. An illustrative example
is the call to Loop.reorder_at on Line 4 of figure 2.11. This combined
transformation takes as argument a specific instruction (referred to as “an
instruction of the form +=”) as well as a description of the desired order for
the loops that surround this instruction (the list ["bi"; "bj"; "bk"; "i
"; "k"; "j"]). The reorder transformation iteratively “brings down” the
loops that need to be swapped closer to the instruction, starting from the
innermost loops, and processing the loops until the outermost one. The call
to reorder_at in our script triggers a total of 4 loop swaps, 6 loop fissions,
and 2 loop hoist operations. In particular, the effect of these 2 hoist operations
is to turn local variable named sum in figure 2.9 into the 2D-array named
sum in figure 2.10.

2.3 The matrix-multiply case study 39

k = tvm.reduce_axis((0, P))
A = tvm.placeholder((M, P))
B = tvm.placeholder((P, N))

pB = tvm.compute((N / 32, P, 32),
lambda bj, k, j:
B[k, bj * 32 + j])

C = tvm.compute((M, N),
lambda i, j:
sum(A[i, k] * pB[j // 32, k, j % 32],

axis=k))

CC = s.cache_write(C, "global")
bi, bj, i, j = s[C].tile(
C.op.axis[0], C.op.axis[1], 32, 32)

s[CC].compute_at(s[C], bj)
i2, j2 = s[CC].op.axis
(kaxis,) = s[CC].op.reduce_axis
bk, k = s[CC].split(kaxis, factor=4)
s[CC].reorder(bk, i2, k, j2)
s[CC].vectorize(j2)
s[CC].unroll(k)
s[C].parallel(bi)
bj3, _, j3 = s[pB].op.axis
s[pB].vectorize(j3)
s[pB].parallel(bj3)

Figure 2.12: TVM case study for matrix-multiply. On the left, input code in TVM’s domain specific language. On the right, TVM optimization
script (a.k.a. schedule). Both use Python syntax.

Comparison against TVM The TVMmatrix-multiply case study appears
in figure 2.12. We only comment on specific aspects and refer to TVM’s
tutorial for further details. In TVM, input programs are written in a domain-
specific language embedded in Python. Ideally, the matrix-multiply program
shown on the left-hand side of figure 2.12 would replace the definitions of
pB and C with a simpler definition of C:
C = tvm.compute((M, N), lambda i, j: sum(A[i, k] * B[k, j], axis=k))

Yet, TVM is unable to express the introduction of the transposed matrix of
B, named pB, as a code transformation. The programmer therefore needs to
introduce this auxiliary structure manually in the input code. Likewise, the
blocking strategy needs to be hardwired in the source code on the left-hand
side of figure 2.12. In contrast, our input program for matrix multiplication
shown in figure 2.9 builds upon familiar C-like syntax and, most importantly,
includes no optimization. Starting from totally unoptimized reference code
improves readability, trustworthiness, and maintainability. Besides, although
our input code for matrix-multiply is currently expressed using explicit
loops, in the future we could alternatively express it using higher-order
combinators as well.

The right-hand side of figure 2.12 shows TVM’s optimization script. Our
optimization script shown in figure 2.11 is not much more verbose than that
of TVM. TVM does not produce C code but directly outputs LLVM IR code.
However, we have carefully checked that the code produced using OptiTrust
features the same optimizations and delivers the same performance as the
LLVM IR code produced using TVM (as shown in table 2.1).

Finally, let us comment on interactivity. Guided by all the contents from
figure 2.12, TVM applies a monolithic compilation pass to produce optimized
code. TVM does not provide interactive, easily-readable feedback for the
transformations performed. In contrast, OptiTrust applies a series of local,
source-to-source transformations, directly manipulating OptiC programs.
Moreover, it provides human-readable diffs for every step and every substep
involved in the optimization process.

2.3.2 With full functional correctness annotations

Let us use the same example for illustrating one extra feature of OptiTrust:
its ability to preserve a proof of functional correctness through code trans-
formations. Usually, obtaining code that is at the same time competitively

median 90th %ile
Naive 1409.0ms 1409.8ms
TVM 9.2ms 9.4ms
OptiTrust 8.7ms 9.4ms

Table 2.1: Benchmark of the performance
of a single 1024 × 1024 matrix multipli-
cation over 200 runs on a 4-core Intel i7-
8665U CPU with AVX2 support for differ-
ent implementations. First column shows
themedian across 200 runs, second column
shows the 90th percentile. Both OptiTrust
and TVM reach the same performance that
corresponds to a 150× speedup compared
to the naive algorithm. (This benchmark’s
data was collected by Thomas Kœhler.)

40 2 OptiTrust in practice

__DECL(reduce_sum, "int * (int → float) → float");
__AXIOM(reduce_sum_empty, "forall (f: int → float) → 0.f =. reduce_sum(0, f)");
__AXIOM(reduce_sum_add_right, "forall (n: int) (f: int → float) (_: n >= 0) → reduce_sum(n, f) +.

f(n) =. reduce_sum(n + 1, f)");
__DEF(matmul, "fun (A B: int * int → float) (p: int) → fun (i j: int) → reduce_sum(p, fun k → A

(i, k) *. B(k, j))");

Figure 2.13: Axiomatization of iterated sum and definition of abstract matrix multiplication

optimized and formally verified is a task that requires too much effort to
be performed. This case study demonstrates that we can use OptiTrust to
reduce the amount of effort needed thanks to transformations that preserve
such a proof a functional correctness.

Axiomatization of matrix multiplication Before showing how we
preserve functional correctness properties across transformations, let us
comment on how the user provides an initial proof of functional correctness
about the unoptimized version of their source code. In OptiTrust, this initial
proof takes the form of annotations that are very similar to the shape-only
annotations we saw before, but are more precise. Those annotations are
then checked by our separation logic typechecker, and serve as the base for
justifying transformation correctness.

To add this extra precision, we provide separation logic predicates extended
with models. The most basic predicate 𝑝 ↦→ 𝑣 states that 𝑝 is a pointer to
a value modeled by 𝑣 . For matrices, we introduce an extended version of
the predicate Matrix2 with one additional argument. A resource a ⇝
Matrix2(m,n,A) states that 𝑎 is a pointer to an𝑚×𝑛 matrix which contains
at index (𝑖, 𝑗) the value modeled by 𝐴(𝑖, 𝑗).

In practice, to express the functional specification, we start with a definition
of what a matrix multiplication is. Figure 2.13 shows how we write this
definition as OptiC annotations. In this example, we decided to axioma-
tize iterated sums with the reduce_sum operator and two rewriting rules
reduce_sum_empty and reduce_sum_add_right, and define the matrix
multiplication matmul as an application of this operator at each cell.

One important design decision to notice is the fact that matrices are modeled
by functions taking two indices and returning one number, effectively creat-
ing infinite abstract matrices. These infinite matrices are easier to work with
in specifications since we do not need to ensure that indices are in range
when using the model. Observe how this design influence the arguments
of matmul that takes the model of two matrices A and B and the size of
the common dimension p along which the multiplication is performed, and
return the infinite matrix that corresponds to the multiplication.

Unoptimized annotated code With these definitions, we can annotate
the code of matrix multiplication like in figure 2.14. Compared to the simpler
version without models in figure 2.9, the extra work for full functional
correctness invariants consists in specifying values in function and loop
contracts and inserting a few more ghost rewriting operations.

The matrix multiplication function itself is annotated with a __requires
clause that declares two unspecified matrix models A and B, a __reads
clauses that assert that a and b point to matrices modeled by respectively
A and B, and a __writes clause that assert that c is a matrix that will be
completely overwritten with a matrix modelled by the result of the ma-
trix multiplication A · B. Then, the loops over i and j are annotated with a

2.3 The matrix-multiply case study 41

void mm(float* c, float* a, float* b, int m, int n, int p) {
__requires("A: int * int → float, B: int * int → float");
__reads("a ⇝ Matrix2(m, p, A), b ⇝ Matrix2(p, n, B)");
__writes("c ⇝ Matrix2(m, n, matmul(A, B, p))");

for (int i = 0; i < m; i++) {
__xwrites("for j in 0..n → &c[MINDEX2(m, n, i, j)] ↦→ matmul(A, B, p)(i, j)");

for (int j = 0; j < n; j++) {
__xwrites("&c[MINDEX2(m, n, i, j)] ↦→ matmul(A, B, p)(i, j)");

float sum = 0.f;
__ghost(rewrite_float_linear, "inside := fun v → &sum ↦→ v,
by := reduce_sum_empty(fun k → A(i, k) *. B(k, j))");

for (int k = 0; k < p; k++) {
__spreserves("&sum ↦→ reduce_sum(k, fun k0 → A(i, k0) *. B(k0, j))");

__GHOST_BEGIN(focusA, ro_matrix2_focus, "a, i, k");
__GHOST_BEGIN(focusB, ro_matrix2_focus, "b, k, j");
sum += a[MINDEX2(m, p, i, k)] * b[MINDEX2(p, n, k, j)];
__GHOST_END(focusA);
__GHOST_END(focusB);

__ghost(in_range_bounds, "k", "k_gt_0 <- lower_bound");
__ghost(rewrite_float_linear, "inside := fun v → &sum ↦→ v,
by := reduce_sum_add_right(k, fun k → A(i, k) *. B(k, j), k_gt_0)");

}

c[MINDEX2(m, n, i, j)] = sum;
}

}
}

Figure 2.14: Unoptimized OptiC code for matrix multiplication, with full functional correctness annotations.

__xwrites annotation asserting that each iteration writes the correct val-
ues in the output matrix row or cell. Finally, the loop over k is annotated
with a __spreserves annotation (the prefix s here stands for “sequen-
tially”) asserting that between each loop iteration, the variable sum contains∑𝑘

𝑘0=0𝐴(𝑖, 𝑘0) · 𝐵(𝑘0, 𝑗).

Compared to the initial code with shape-only annotations described in
figure 2.9, we need to add some ghost operations that rewrite models in
presence of functional correctness specifications. The ghost instruction
rewrite_float_linear rewrites a floating point expression inside a re-
source by using an equality. In this case study, those equalities directly stem
from the axioms declared for iterated sums (recall figure 2.13). In order to use
the reduce_sum_add_right axiom, we need to provide a proof that 𝑘 ≥ 0.
This fact stems from the fact that 𝑘 is a loop index, and therefore 𝑘 ∈ 0..𝑝 .
The ghost operation in_range_bounds allows extracting inequalities from
a range inclusion. Moreover, the ghost instructions that focus matrix cells
which were already present with shape-only specifications, are still needed
in the full functional correctness setup.

Optimization script To optimize such a program we reuse the optimiza-
tion script seen in figure 2.11. In OptiTrust, most transformations work
transparently with annotations featuring any level of detail, and preserve
that level of detail. Indeed, in this example, full functional correctness anno-
tations are preserved between each transformation step and can be used for

42 2 OptiTrust in practice

float* const pB = (float*)malloc(MSIZE4(32, 256, 4, 32) * sizeof(float));
#pragma omp parallel for
for (int bj = 0; bj < 32; bj++) {
__sreads("b ⇝ Matrix2(1024, 1024, B)");
__xwrites("for bk in 0..256 → for k in 0..4 → for j in 0..32 →

&pB[MINDEX4(32, 256, 4, 32, bj, bk, k, j)] ↦→ B(bk * 4 + k, bj * 32 + j)");
for (int bk = 0; bk < 256; bk++) {
__sreads("b ⇝ Matrix2(1024, 1024, B)");
__xwrites("for k in 0..4 → for j in 0..32 →
&pB[MINDEX4(32, 256, 4, 32, bj, bk, k, j)] ↦→ B(bk * 4 + k, bj * 32 + j)");

__ASSERT(tile_div_check_j512, "1024 == 32 * 32");
for (int k = 0; k < 4; k++) {
__sreads("b ⇝ Matrix2(1024, 1024, B)");
__xwrites("for j in 0..32 →
&pB[MINDEX4(32, 256, 4, 32, bj, bk, k, j)] ↦→ B(bk * 4 + k, bj * 32 + j)");

for (int j = 0; j < 32; j++) {
__sreads("b ⇝ Matrix2(1024, 1024, B)");
__xwrites("&pB[MINDEX4(32, 256, 4, 32, bj, bk, k, j)] ↦→ B(bk * 4 + k, bj * 32 + j)");
__ASSERT(tile_div_check_k13, "1024 == 256 * 4");
__ghost(tiled_index_in_range,

"tile_index := bk, index := k, div_check := tile_div_check_k13");
__ghost(tiled_index_in_range,

"tile_index := bj, index := j, div_check := tile_div_check_j512");
__ghost_begin(__ghost_pair_3, ro_matrix2_focus,
"matrix := b, i := bk * 4 + k, j := bj * 32 + j");

pB[MINDEX4(32, 256, 4, 32, bj, bk, k, j)] =
b[MINDEX2(1024, 1024, bk * 4 + k, bj * 32 + j)];

__ghost_end(__ghost_pair_3);
} } } }

Figure 2.15: Excerpt of our optimized code for matrix multiplication with full functional correctness annotations. This excerpt contains
annotated generated loops to pre-transpose the matrix b in pB before computation.

typechecking.

An important point to notice is that at any point during the optimization
script, our typechecker ensures that annotations are enough to deduce that
the function specification holds. Since in full functional correctness the func-
tion specification is complete, knowing that such function specification hold
is enough to ensure that our transformed code still computes the same ma-
trix multiplication. In particular, the implementation of the transformations
themselves need not be trusted, since the typechecker alone can guarantee
that the code respects its complete specification. In other words, OptiTrust
full functional correctness annotations form a proof of functional correctness,
and transformations are preserving this proof.

Resulting optimized code After the transformations the produced code
is a fully annotated program which typechecks. Two excerpts are reproduced
in figures 2.15 and 2.16. You may notice that our transformation script is
able to find invariants for all the generated loops with relevant models,
and it also adds all the ghost operations that correspond to the required
proof steps to establish those invariants. For instance, the lines starting with
__ASSERT statically check arithmetic facts needed later, the ghost operations
tile_index_in_range establish that an index expression introduced by a
tiling operation is in a given range, which is required for checking array
access bounds, and the ghost operation rewrite_int_linear performs an
arithmetic rewriting needed for syntactically matching the loop invariant.

Notice that the annotations in the optimized code are based on the
initial ghost operations placed by the user. For instance, the ghost pair

2.4 Comparison of OptiTrust with other interactive compilers 43

#pragma omp simd
for (int j = 0; j < 32; j++) {
__sreads("a ⇝ Matrix2(1024, 1024, A)");
__xconsumes("&s[MINDEX1(32, j)] ↦→
reduce_sum(0..(bk * 4 + 3), fun k0 → A(bi * 32 + i, k0) * B(k0, bj * 32 + j))");

__xproduces("&s[MINDEX1(32, j)] ↦→
reduce_sum(0..(bk * 4 + (3 + 1)), fun k0 → A(bi * 32 + i, k0) * B(k0, bj * 32 + j))");

__xreads("&pB[MINDEX4(32, 256, 4, 32, bj, bk, 3, j)] ↦→ B(bk * 4 + 3, bj * 32 + j)");
__ghost(tiled_index_in_range,"tile_index := bj, index := j, div_check := tile_div_check_j51221");
__ASSERT(tile_div_check_k1320, "1024 == 256 * 4");
__ghost(tiled_index_in_range, "tile_index := bk, index := 3, div_check := tile_div_check_k1320");
__ghost_begin(focusA3, ro_matrix2_focus, "matrix := a, i := bi * 32 + i, j := bk * 4 + 3");
s[MINDEX1(32, j)] +=
a[MINDEX2(1024, 1024, bi * 32 + i, bk * 4 + 3)] * pB[MINDEX4(32, 256, 4, 32, bj, bk, 3, j)];

__ghost_end(focusA3);
__ghost(in_range_bounds, "x := bk * 4 + 3", "k_gt_021 <- lower_bound");
__ghost(rewrite_float_linear, "inside := fun v → &s[MINDEX1(32, j)] ↦→ v,
by := reduce_sum_add_right(bk * 4 + 3, fun k → A(bi * 32 + i, k) * B(k, bj * 32 + j), k_gt_021
)");

__ghost(rewrite_int_linear, "inside := fun (k: int) → &s[MINDEX1(32, j)] ↦→
reduce_sum(0..k, fun k0 → A(bi * 32 + i, k0) * B(k0, bj * 32 + j)),

by := add_assoc_right(bk * 4, 3, 1)");
}

Figure 2.16: Excerpt of our optimized code for matrix multiplication with full functional correctness annotations. This excerpt corresponds to
the last of the four inner-loops accumulating in the local variable s.

focusA3 and the ghost operation rewrite_float_linear in figure 2.16
respectively comes from the ghost pair focusA and the second occurrence
of rewrite_float_linear in figure 2.14 with specialized indices.

Overall, we believe that this proof preserving workflow reduces significantly
the amount of work needed to formally verify a matrix multiplication imple-
mentation that matches the performance of TVM. Indeed, the initial proof
of correctness represented by full functional correctness annotations, is
performed on the very simple unoptimized code. Then, all proof elements
such as loop invariants or rewriting steps needed because the optimized
code is more complex are automatically inserted by the transformation
themselves.

2.4 Comparison of OptiTrust with other
interactive compilers

Now that we have given a tour of the features of the OptiTrust framework,
let us introduce a number of qualitative properties, before reviewing re-
lated tools for interactive compilation and finally explaining why OptiTrust
achieves a unique combination of features.

▶ Generality: How large is the domain of applicability of the tool?

▶ Expressiveness: How advanced are the code transformations sup-
ported by the tool? Is it possible to express state-of-the-art code opti-
mizations?

▶ Control: How much control over the final code is given to the user
by the tool? In particular, is there a monolithic code generation stage?

▶ Feedback: Does the tool provide easily readable intermediate code
after each transformation?

44 2 OptiTrust in practice

[Rag+13]: Ragan-Kelley et al. (2013),
Halide: A Language and Compiler for Opti-
mizing Parallelism, Locality, and Recompu-
tation in Image Processing Pipelines

[Che+18]: Chen et al. (2018), TVM: An Au-
tomated End-to-End Optimizing Compiler
for Deep Learning

[Hag+20a]: Hagedorn et al. (2020), Fire-
iron: a data-movement-aware scheduling
language for GPUs

[Ala+24]: Alabed et al. (2024), PartIR: Com-
posing SPMD Partitioning Strategies for Ma-
chine Learning

[Rag23]: Ragan-Kelley (2023), Technical
Perspective: Reconsidering the Design of
User-Schedulable Languages
[BI19]: Barham et al. (2019),Machine Learn-
ing Systems are Stuck in a Rut

[Ika+21]: Ikarashi et al. (2021), Guided Op-
timization for Image Processing Pipelines

[Hag+20b]: Hagedorn et al. (2020), Achiev-
ing high-performance the functional way:
a functional pearl on expressing high-
performance optimizations as rewrite strate-
gies

[Rag23]: Ragan-Kelley (2023), Technical
Perspective: Reconsidering the Design of
User-Schedulable Languages

[Ika+22]: Ikarashi et al. (2022), Exocompi-
lation for productive programming of hard-
ware accelerators

[Ika+25]: Ikarashi et al. (2025), Exo 2: Grow-
ing a Scheduling Language

▶ Composability: Is it possible to define transformations as the com-
position of existing transformations? Can transformations be higher-
order, i.e. parameterized by other transformations?

▶ Extensibility of transformations: Does the tool facilitate defining
custom transformations that are not expressible as the composition of
built-in ones?

▶ Modularity of analyses: for transformations whose correctness de-
pends on a code analysis, can the tool deal with specifications that
summarize the effects of each function, or are all functions inlined
during the analyses?

▶ Trustworthiness: Does the tool ensure that user-requested transfor-
mations preserve the semantics of the code? Can it moreover provide
mechanized proofs?

There exists other properties for optimization tools, such as the ease of
integration in an existing code base, the maintainability of optimized code,
or the steepness of the learning curve for new users. These are certainly
important aspects, yet they are even harder to evaluate objectively. Hence,
we omit them from the discussion, and focus on the aforementioned technical
properties.

2.4.1 Evaluation of other interactive compilers

This section summarizes the properties of existing approaches, highlighting
their diversity.

Halide [Rag+13] is an industrial-strength domain-specific compiler for image
processing, used e.g. to optimize code running in Photoshop and YouTube.
Halide popularized the idea of separating an algorithm describing what to
compute from a schedule describing how to optimize the computation. This
separation makes it easy to try different schedules. TVM [Che+18] is a tool
directly inspired by Halide, but tuned for machine learning applications; it is
used by most of the major CPU/GPU manufacturers. Other tools inspired by
Halide include Fireiron [Hag+20a], used at Nvidia, as well as PartIR [Ala+24],
used at Google. All these tools do not support higher-order composition
of transformations, and are not easily extensible [Rag23; BI19]. Moreover,
understanding their output is difficult as the applied transformations are not
detailed to the user, even though interactive scheduling systems have been
proposed to mitigate this difficulty [Ika+21].

Elevate [Hag+20b] is a functional language for describing optimization strate-
gies as composition of simple rewrite rules. Advanced optimizations from
TVM and Halide can be reproduced using Elevate. One key benefit is ex-
tensibility: adding rewrite rules is much easier than changing complex and
monolithic compilation passes [Rag23]. Elevate strategies are applied on
programs expressed in a functional array language named Rise, followed
by compilation to imperative code. The use of a functional array language
greatly simplifies rewriting, however it restricts applicability and makes
controlling imperative aspects difficult (e.g. memory reuse).

Exo [Ika+22] is an imperative DSL embedded in Python, geared towards
the development of high-performance libraries for specialized hardware.
The strength of Exo lies in externalizing target-specific code generation
to user-level code instead of compilation backends. Exo programs can be
optimized by applying a series of source-to-source transformations. These
transformations are described in a Python script, with a cursor mechanism
for targeting code points [Ika+25]. The user can add custom transformations,

2.4 Comparison of OptiTrust with other interactive compilers 45

possibly defined by (higher-order) composition. A major limitation of Exo
is that it is restricted to static control programs12, with quasi-affine array
indexing13. Another important limitation of Exo is that the transformations
are performed on code in which all functions are inlined. This approach,
which lacks modularity, may harm scalability to larger or more complex
programs. Because Exo code almost syntactically translates to C code, its
code generation stage makes few decisions beyond user control, and we
assume that understanding the output of Exo is relatively easy. Similarly
to Elevate rewrite rules, extending Exo transformations is easier since the
definition and correctness of each transformation is independent from other
ones.

Clay [Bag+16] is a framework to assist in the optimization of loop nests that
can be described in the polyhedral model [Fea92]. The polyhedral model only
covers a specific class of loop transformations, with restriction over the code
contained in the loop bodies, however it has proved extremely powerful for
optimizing code falling in that fragment. Clay provides a decomposition of
polyhedral optimizations as a sequence of basic transformations with integer
arguments. The corresponding transformation script can then be customized
by the programmer. Clint [ZHB18] adds visual manipulation of polyhedral
schedules through interactive 2D diagrams. LoopOpt [Che+21] provides an
interactive interface that helps users design optimization sequences (featur-
ing unrolling, tiling, interchange, and reverse of iteration order) that can be
bound in a declarative fashion to loop nests satisfying specific patterns.

ATL [Liu+22] is a purely functional array language for expressing Halide-
style programs. Its particularity is to be embedded into the Rocq proof assis-
tant. ATL programs can be transformed through the application of rewrite
rules expressed as Rocq theorems. With this approach, transformations are
inherently accompanied by machine-checked proofs of correctness. The
set of rules includes expressive transformations, some beyond the scope of
Halide, and can be extended by the user. Once optimized, ATL programs are
then compiled into imperative C code. Like Rise, generality and control are
restricted by the functional array language nature of ATL.

Alpinist [Sak+22] is a pragma-based tool for optimizing GPU-level, array-
based code. It is able to apply basic transformations such as loop tiling,
loop unrolling, data prefetching, matrix linearization, and kernel fusion. The
key characteristic of Alpinist is that it operates over code formally verified
using the VerCors framework [Blo+17]. Concretely, Alpinist transforms not
only the code but also its formal annotations. If Alpinist were to leverage
transformation scripts instead of pragmas, it might be possible to chain and
compose transformations; yet, this possibility remains to be demonstrated.

Clava [BC20] is a general-purpose C++ source-to-source analysis and trans-
formation framework implemented in Java. The framework has been instanti-
ated mainly for code instrumentation purpose and auto-tuning of parameters.
Clava can also be used in conjunction with a DSL called LARA [Sil+19] for
optimizing specific programs. LARA allows expressing user-guided trans-
formations by combining declarative queries over the abstract syntax tree
and imperative invocations of transformations, with the option to embed
JavaScript code. The application paper on the Pegasus tool [Pin+20] illus-
trates this approach on loop tiling and interchange operations.

2.4.2 The unique features of OptiTrust

When considering the aforementioned criterions and tools, OptiTrust
achieves a unique combination of features. To our knowledge, Exo is

12: Static control means that the control
flow cannot depend on data stored in ar-
rays
13: Quasi-affine indexing means that the
index of array accesses must be a linear
combination of loop variables and con-
stants with division and modulo by con-
stants allowed

[Bag+16]: Bagnères et al. (2016), Opening
Polyhedral Compiler’s Black Box

[Fea92]: Feautrier (1992), Some efficient so-
lutions to the affine scheduling problem: one
dimensional time

[ZHB18]: Zinenko et al. (2018), Visual Pro-
gram Manipulation in the Polyhedral Model

[Che+21]: Chelini et al. (2021), LoopOpt:
Declarative Transformations Made Easy

[Liu+22]: Liu et al. (2022), Verified Tensor-
Program Optimization via High-Level
Scheduling Rewrites

[Sak+22]: Sakar et al. (2022), Alpinist: An
Annotation-Aware GPU Program Optimizer

[Blo+17]: Blom et al. (2017), The VerCors
Tool Set: Verification of Parallel and Concur-
rent Software

[BC20]: Bispo et al. (2020), Clava: C/C++
source-to-source compilation using LARA

[Sil+19]: Silvano et al. (2019), The
ANTAREX domain specific language for
high performance computing

[Pin+20]: Pinto et al. (2020), Pegasus: Per-
formance Engineering for Software Applica-
tions Targeting HPC Systems

46 2 OptiTrust in practice

currently one of the best tool regarding expressiveness, control, feedback,
extensibility, and composability for the static control programs it can handle.
We think that the current version of OptiTrust is comparable to Exo on
those criterions. However, OptiTrust can handle more complex control
flow, but currently does not handle GPU architectures supported by Exo.
At the same time, we think that OptiTrust reaches the level of Alpinist for
modularity, and trustworthiness, by using the same idea of transforming
annotations along with the code. To our knowledge, Alpinist is one of the
best tools for modularity, and only ATL performs better on trustworthiness
by providing foundational proofs of transformation correctness.

Generality As pointed out in section 1.7, this release of OptiTrust has a
number of limitations: it supports a relatively limited imperative language,
it does not yet support defining custom separation logic representation
predicates, and there remains many useful transformations to implement.
Thus, OptiTrust in its current form does not yet demonstrate full generality.
Yet, every aspect of OptiTrust has been designed towards that goal.

Expressiveness OptiTrust supports a number of basic transformations
that, taken individually, might appear relatively straightforward. However,
by chaining such transformations in the desired manner, the OptiTrust user
is able to achieve state-of-the-art high-performance code, similar to what an
expert might have written by hand.

Let us summarize the transformations currently supported in OptiTrust. For
instruction-level transformations, we support: function inlining, constant
propagation, common subexpression elimination, instruction reordering,
switching between stack and heap allocation, and basic arithmetic simplifica-
tions. For control-flow transformations, we support: loop interchange, loop
tiling, loop fission, loop fusion, loop-invariant code motion, loop unrolling,
loop deletion and loop splitting. For data layout transformations, we support:
interchange of dimensions of an array, and array tiling.

Expressiveness also depends on the generality of the correctness criteri-
ons associated with every transformation. In practice, with shape-only or
incomplete functional correctness annotations, there could be situations
where the user might want to legitimately apply a basic transformation, yet
OptiTrust’s implementation is unable to recognize this application as correct.
One option is for the user to treat this particular step as “user-trusted”, and
to rely on human review of the diff associated with that step. For some
transformations, OptiTrust features correctness criterions that may require
complex reasoning steps and generate proof obligations. In that case, those
proof obligations must either be proved correct, or be admitted by the user. If
OptiTrust is unable to automatically verify a transformation, a third option
for the user is to enrich the annotations with full functional correctness
invariants. With such full functional correctness invariants, replacing any
piece of code with another piece of code that provably satisfies the same
specification is correct by definition.

Control Transformation scripts in OptiTrust empower the user with very
fine-grained control over how the code should be transformed. A challenge
when providing such level of control is to keep transformation scripts con-
cise. To that end, OptiTrust provides high-level combined transformations,
effectively recipes for combining the basic transformations provided by
OptiTrust. The matrix multiplication case study presented the example of
Loop.reorder, which attempts, using a combination of fission, hoist, and

2.4 Comparison of OptiTrust with other interactive compilers 47

swap operations, to create a reordered loop nest around a specified instruc-
tion. Overall, the use of combined transformations allows for reasonably
concise transformation scripts, with the user’s intention being described
at a relatively high level of abstraction. The user stays in control and can
freely mix the use of concise abstractions and precise fine-tuning transfor-
mations.

Moreover, OptiTrust is a source-to-source transformation framework. There-
fore, there is no monolithic code generation phase that can make arbitrary
choices for the user at the end of the transformation script.

Feedback For each step in the transformation script, OptiTrust delivers
feedback in the form of human-readable OptiC syntax. The user usually only
needs to read the diff against the previous code. Interestingly, OptiTrust
also records a trace that allows investigating all the substeps triggered by a
combined transformation. This information is critically useful when the result
of a high-level transformation does not match the user’s intention. Full traces
can also be very useful for third-party reviewing of an optimization process.
Besides, a key feature of OptiTrust is its fast feedback loop. The production
of fast, human-readable feedback in a system with significant control is
reminiscent of interactive proof assistants, and of the aforementioned ATL
tool [Liu+22].

Composability OptiTrust transformation scripts are expressed as OCaml
programs, and each transformation from our library consists of an OCaml
function. Because OCaml is a full-featured programming language, Op-
tiTrust users may define additional transformations at will by combining
existing transformations. User-defined transformations may query the ab-
stract syntax tree (AST), allowing to perform analyses before deciding what
transformations to apply. Furthermore, because OCaml is a higher-order
programming language, transformation can take other transformations as
argument. We use this programming pattern for example to customize the
arithmetic simplifications to be performed after certain transformations.

Extensibility If in need of a transformation that is not expressible as a
combination of transformations from the OptiTrust library, the user may
devise a custom transformation. Because OptiTrust does not rely on heuris-
tics, adding a new transformation to OptiTrust does not impact in any way
the behavior of existing scripts. To define relatively simple custom trans-
formations, OptiTrust provides a term-rewriting facility based on pattern
matching. For more complicated transformations, one can follow the pat-
terns employed in the OptiTrust library. For all custom transformations, it
is the programmer’s responsibility to work out the criterions under which
applying the transformation preserves the semantics of the code, and to
adapt the annotations if necessary in order to produce well-typed code.

Modularity The separation logic contract provided by the programmer
for a function f constitutes a complete summary of the side effects that
this function may perform. Hence, when a transformation operates on a
piece of code that contains a call to f, the analysis involved in checking the
correctness of that transformation needs not traverse the implementation
of f. In that sense, all our analyses, including the typechecking process, are
modular. This modularity has numerous benefits. First, it implies that one
may change the implementation of f without invalidating the optimization
script associated with another function g, provided that the optimization

[Liu+22]: Liu et al. (2022), Verified Tensor-
Program Optimization via High-Level
Scheduling Rewrites

48 2 OptiTrust in practice

of g was not relying on an inlining of the function f. Second, it means
that analyses can much more easily scale up to larger and more complex
programs, without computation costs blowing up. Third, it makes it easier
to devise clearer, more concise error messages. Indeed, in a modular system,
errors depend solely on local information.

In compiler design in general, there exists a tension between modularity
and optimizations, because certain key optimizations need to be applied
across abstraction barriers. OptiTrust handles this tension by leaving it up
to the user to decide where functions should be inlined—thereby deciding
on a per-need basis where modularity should be given up to the benefits of
performance.

Also note that annotating a function with (full or incomplete) functional
correctness properties can reduce the need for inlining functions by revealing
interesting properties at the calling site.

Trustworthiness OptiTrust leverages separation logic resource informa-
tion to check the correctness of transformations before applying them. In
practice, all the built-in OptiTrust transformations return an error if they
cannot check the correctness of their own application.

However, like all compilers, interactive optimization tools like OptiTrust
are highly subject to implementation bugs. To analyze in more detail the
level of trustworthiness of OptiTrust we need to distinguish two cases:
the optimization of functions with shape-only or incomplete functional
correctness specifications on one hand, and the optimization of functions
with full functional correctness annotations on the other hand.

With shape-only or incomplete functional correctness annotations, OptiTrust
mitigates the risks of transformation implementation bugs producing in-
correct code in two ways. First, the diff of every step can be thoroughly
scrutinized, and unit tests are checking the most common cases of transfor-
mations. Second, as explained in the introduction of this chapter, we have
organized the OptiTrust code base in such a way as to isolate the imple-
mentation of the basic transformations, which consist of transformations
that directly modify the AST. Only basic transformations need to be trusted.
We have been careful to systematically minimize the complexity of the in-
terface and of the implementation of our basic transformations. All other
transformations—the combined transformations—are not part of the trusted
computing base (TCB).

With full functional correctness annotations, none of the transformations
are part of the TCB. Indeed, program annotations can be viewed as a proof
of correctness of the algorithm with respect to its annotated specification,
which is valid whenever the program typechecks. Since transformations pre-
serve annotations, OptiTrust can be viewed as a transformation framework
preserving a proof of correctness in parallel with the code modifications.
By definition, full functional correctness contracts fully characterize the
expected properties of the manipulated algorithm, therefore checking that
such contract holds is enough to guarantee correctness. Therefore, with full
functional correctness annotations, a chain of transformations for a function
is correct if the optimized code typechecks with the same external contract
as the unoptimized code. In that case, OptiTrust’s TCB consists only of our
typechecker which implements the logical rules described in chapter 4. In
the future, we hope to reduce this TCB even further by allowing to export
annotated programs as foundational proofs embedded in a proof assistant
(such as Rocq) equipped with a separation logic framework (such as Iris).

2.4 Comparison of OptiTrust with other interactive compilers 49

This completes our high-level presentation of the OptiTrust framework.
The rest of this manuscript presents the implementation of OptiTrust: its
internal AST, its typechecking algorithm, and its transformations.

Syntax and semantics in
OptiTrust 3

3.1 Overview of the internal
encoding process 52

3.2 Opti𝜆: OptiTrust’s internal,
imperative 𝜆-calculus . . . 56

3.3 OptiC: a C-like, user-facing
language 60

3.4 Translation from OptiC to
Opti𝜆 62

3.5 Translation from Opti𝜆
back to OptiC 64

As illustrated in the previous chapter, in OptiTrust, input programs are
written in OptiC (the targeted subset of C, augmented with annotations),
and the same OptiC language is used to report the diff associated with every
transformation in terms of a concise syntax familiar to the programmer.

One difficulty for performing transformations on C-like languages, is that
they extensively use the concept of left-value. Expressions that are in left-
value position, like the subterm of an address-of operator (&) or on the left
of an assignment (e.g. = or +=) do not have the same semantics as if they
were in right-value position. Indeed, in left-value position, the expression
evaluates to its address and not to its value. This difference of semantics of
expressions in left-value position creates a burden for transformations that
need to handle differently expressions depending on whether they appear as
left- or right-values. Moreover, C-like languages feature constructions that
are redundant semantic-wise (such as if statement versus ternary operator)
but those can help a user navigate through the code.

We see here that there is a tension between the readability of user-facing
code and the desired simplicity of compiler intermediate representations.
Traditional fully automatic compilers avoid these issues by lowering the
code into simpler internal representations that are better suited for trans-
formations. This chapter shows that, even if we need to output readable
OptiC code at each step, we can still manipulate a simpler intermediate
representation, and translate back into readable OptiC whenever needed.
With this strategy, OptiC is reserved for user interactions, and a second
language, called Opti𝜆, is used internally by all code transformations. The
language Opti𝜆 is an imperative 𝜆-calculus with a special annotation feature
that enables a better round-trip translation to OptiC.

Another potential benefit of separating the internal language is that we
could more easily add support for other user-facing languages. Indeed, with
a different user-facing language, the implementation of the transformations,
which operate on Opti𝜆, would remain the same.

This chapter presents both languages OptiC and Opti𝜆, and the bidirectional
translation that exists between the two.

In section 3.1, we give an overview of how our bidirectional translationworks
on some examples. Such a translation is relatively standard: C compilers
generally include a phase that eliminates mutable variables and l-values.
The specificity of our translation is that it attaches annotations on certain
subterms to allow computing the reciprocal translation. In section 3.2, we
present a formal definition of the internal Opti𝜆 language, along with its
key design elements, and the underlying call-by-value semantics. Opti𝜆
constructs appear throughout the rest of the manuscript, from the statement
of the typing rules to the description of the transformations. Symmetrically,
in section 3.3, we describe the user-facing OptiC language and its associated
semantics. In section 3.4, we give the rules for the translation from OptiC
to Opti𝜆. In section 3.5, we give the rules for the reverse translation from
Opti𝜆 to OptiC, and describe the round-trip property for OptiC program.

52 3 Syntax and semantics in OptiTrust

3.1 Overview of the internal encoding process

This section gives an overview on the design choices for the internal language
Opti𝜆 and for the bidirectional translation required to convert between Opti𝜆
and OptiC.

Opti𝜆 is an imperative 𝜆-calculus, which crucially does not have a notion
of left-values. To ensure that, in Opti𝜆, all directly accessible variables are
immutable. Then, mutability is encoded by explicit accesses through pointers.
This explicit pointer manipulation must be introduced and removed by the
bidirectional translation. Let us present how this bidirectional translation
works on a few examples.

Translation with pure variables only We start with a simple function
norm2, that does not include any mutable variable. Immutable variables can
be encoded as a simple let binding when their address is never taken, as
shown in the following example. For the purpose of typechecking and of
computing reverse translations, the let bindings introduced by the transla-
tion carry the type of the bound variable. Such types appear as subscript
in the example Opti𝜆 code below. Remember that the translation is bidirec-
tional, so given only the imperative 𝜆-calculus term on the right, our tool is
capable of reproducing the exact same OptiC program on the left.

int norm2(int x, int y) { let norm2 = fun(x : int, y : int) ↦→ {
const int xsq = x * x; letint xsq = mul(x, x);
const int ysq = y * y; letint ysq = mul(y, y);
const int res = xsq + ysq; letint res = add(xsq, ysq);
return res; res

} };

On the example above, the return instruction that appears at the end of
the body of the function is translated into a terminal value at the end of
a chain of let bindings. As we explain later, in the syntax of our internal
imperative 𝜆-calculus, we exploit 𝑛-ary sequences instead of cascades of let
in constructs. Doing so makes it easier for programmers to target spans
of contiguous instructions, and simplifies the implementation of numerous
transformations.

We say that a variable is pure if its definition is translated into a plain let
binding. Technically, a variable x can only be pure if there is no assignment
operation on x and if the address of the variable x is never computed via
the operator &x. Equivalently, a variable x can be pure if and only if x could
have been declared with the modifiers const register, in the terminology
of the C standard.

That said, the programmer may want to translate variables that can be pure
into stack-allocated cells, to enable further code transformations. Hence, we
need to rely on a keyword (or attribute) to indicate which variables should
be translated without stack allocation. We could rely on const register,
yet for brevity we decided that, in OptiC, the keyword const alone would
indicate the intention of the programmer to introduce a pure variable.

Translation with impure variables Let us now present an example
involving impure variables. The function norm2Acc, shown below, computes
the same value as norm2, yet using a mutable accumulator named acc.

3.1 Overview of the internal encoding process 53

int norm2Acc(int x, int y) { let norm2Acc = fun(x : int, y : int) ↦→ {
int acc; letptr(int) acc = stackAllocUninitCellint ();
acc = x * x; set(acc, mul(x, x));
acc += y * y; inplaceAdd(acc, mul(y, y));
return acc; letint res = get(acc);

res
} };

In that case, our translation replaces the mutable variable acc with the
address to the stack space it occupies. The definition of the variable acc is
replaced by an explicit allocation of a cell on the stack materialized as a call to
stackAllocUninitCell. Then, all functions that modify a mutable variable such
as set or inplaceAdd take the address of the mutable variable as argument.
When the value of a mutable variable is read, such as in the return statement,
our translation inserts an explicit get operation. For reasons we explain later,
our internal language syntactically only allows using a variable as the result
of a sequence, and therefore the translation of the return adds a new pure
binding on a variable named res.

Figure 3.1 presents additional examples illustrating our translations. The
lines involving x and z summarize the treatment of pure and impure variables.
The lines involving a illustrate a heap allocated variable. A read operation *a
is encoded as the function call get(a), and an assignment *a = v is encoded
as set(a, v). Thus, heap-allocated variables and impure stack-variables are
treated essentially the same way in our internal 𝜆-calculus—with the main
difference that stack-allocated variables are implicitly deallocated. The name
of the primitive operation, whether stackAlloc or heapAlloc, is used to guide

const int x = 3; ←→ letint x = 3;
f(x); ←→ f(x);

int z; ←→ letptr(int) z = stackAllocUninitCellint ();
z = 6; ←→ set(z, 6);
const int v = z; ←→ letint v = get(z);

int* const a = malloc(sizeof(int)); ←→ letptr(int) a = heapAllocUninitCellint ();
*a = *a + 2; ←→ set(a, get(a) + 2);
free(a); ←→ free(a);

int y = 5; ←→ letptr(int) y = refint (5);
f(y); ←→ f(get(y));
y = y + 2; ←→ set(y, get(y) + 2);
y += 4; ←→ inplaceAdd(y, 4);
y++; ←→ ignore(getThenIncr(y));

int* const p = &y; ←→ letptr(int) p = y;
*p = *p + 2 ←→ set(p, get(p) + 2);

int* q = &y; ←→ letptr(ptr(int)) q = refptr(int) (y);
q = &z; ←→ set(q, z);
*q = *q + 2; ←→ set(get(q), get(get(q)) + 2);

Figure 3.1: Example translations from C code into the OptiTrust’s internal AST. We suppose that a function void f(int) is defined. We also
suppose that variables marked as const are never modified and that their address is never taken.

54 3 Syntax and semantics in OptiTrust

int* const t = malloc(9 * sizeof(int)); ←→ letptr(int) 𝑡 = heapAllocUninitArrayint (9) ();
t[1] = t[1] + 2; ←→ set(𝑡 ⊞ 1, get(𝑡 ⊞ 1) + 2);
f(t[1]) ←→ 𝑓 (get(𝑡 ⊞ 1));
free(t); ←→ free(𝑡);

int* u = malloc(9 * sizeof(int)); ←→ letptr(ptr(int)) 𝑢 =

refptr(int) (heapAllocUninitArrayint (9) ());
free(u); ←→ free(get(𝑢));
u = malloc(8 * sizeof(int)); ←→ set(𝑢, heapAllocUninitArrayint (8) ());
u[1] = u[1] + 2; ←→ set(get(𝑢) ⊞ 1, get(get(𝑢) ⊞ 1) + 2);

int v[9]; ←→ letptr(int) 𝑣 = stackAllocUninitArrayint (9) ();
t[1] = v[1] + 2; ←→ set(𝑡 ⊞ 1, get(𝑣 ⊞ 1) + 2);
int* const a = &v[1]; ←→ letptr(int) 𝑎 = 𝑣 ⊞ 1;
f(*a); ←→ 𝑓 (get(𝑎));

int* const m = malloc(MSIZE1(9) * sizeof(int)); ←→ letptr(int) 𝑚 = heapAllocUninitMatrix1int (9) ();
m[MINDEX1(9,1)] = m[MINDEX1(9,1)] + 2; ←→ set(𝑚 ⊞ mIndex1(9, 1),

get(𝑚 ⊞ mIndex1(9, 1)) + 2);
free(t); ←→ free(𝑡);

Figure 3.2: Additional example translations involving arrays. If 𝑎 corresponds to the address of an array, then the memory address of 𝑖-th cell
of the array 𝑎 can be computed by the operation 𝑎 ⊞ 𝑖 . We suppose that a function void f(int) is defined. We also suppose that variables
marked as const are never modified and that their address is never taken.

the reverse translation.

The lines of figure 3.1 involving y illustrate the encoding of operators. The
lines involving p show how we handle the address-of operator. Finally, the
lines involving q show how our translation handles a mutable variable that
stores pointers.

Translation in presence of arrays According to the C standard, after a
local declaration int t[2], the variable t is effectively an immutable pointer
to the first cell of the array. This fact guides our translation, and makes us
treat t as a pure pointer. Then, in Opti𝜆 all array cells are accessed through
pointer arithmetic. Figure 3.2 shows example of the bidirectional translation
in presence of arrays. In this figure, the lines involving t show how we
translate heap allocated arrays. The lines involving u show manipulations
on a mutable pointer to an array. The lines involving v show that only
the allocation function changes between stack allocated and heap allocated
array. Lines with a show how we handle address of array cells. Finally, lines
with m show that matrices are simply encoded as arrays with a slightly
different allocation and a primitive function (here mIndex1) to compute
index offset. As we saw in case studies, in OptiTrust, we do not support
native C multidimensional arrays and use MINDEX accesses instead as it is a
common practice to flatten arrays in manually micro-optimized code.

Translation in presence of structures Figure 3.3 shows examples of
translation with structures and field accesses. In this figure, the first lines
with a and b show how we encode manipulation of constant struct values.
Lines with c show our handling of mutable struct values. Notice that we
prefer to first compute a precise location for the field before reading the data
as this prevents reading fields that we are not interested in. Lines with u

3.1 Overview of the internal encoding process 55

typedef struct { int x; int y; } point; ←→ type point = {𝑥 : int, 𝑦 : int};
const point a = { 0, 1 }; ←→ letpoint 𝑎 = {x = 0, y = 1};
f(a.x) ←→ 𝑓 (𝑎.x);
const point b = a; ←→ letpoint 𝑏 = 𝑎;

point c = { 0, 1 }; ←→ letptr(point) 𝑐 = refpoint ({x = 0, y = 1});
f(c.x) ←→ 𝑓 (getint (𝑐 ⊡ x));
c.x = 2; ←→ setint (𝑐 ⊡ x, 2);
c = a; ←→ setpoint (𝑐, 𝑎)
point* const q = &c; ←→ letptr(point) 𝑞 = 𝑐

int* const p = &c.x; ←→ letptr(int) 𝑝 = 𝑐 ⊡ x

point* const u = malloc(9 * sizeof(point)); ←→ letptr(point) 𝑢 = heapAllocUninitArraypoint (9) ();
u[1] = c; ←→ setpoint (𝑢 ⊞ 1, getpoint (𝑐));
u[1].x = 2; ←→ setint ((𝑢 ⊞ 1) ⊡ x, 2);

Figure 3.3: Additional example translations involving structures, as well as arrays of structures. The operator 𝑝 ⊡ 𝑥 , where p is the address
of a structure, computes the address of the field x of this structure. In this figure, we made explicit the types for get and set operations, in
particular to show that one operation can read or write entire structures.

show how we handle arrays of structures. However, in the version presented
in this manuscript, we do not yet support structures containing arrays. This
is naturally an expected extension for future work.

Style annotations We next explain the last key ingredient of our bidirec-
tional translation: the use of style annotations. The issue stems from the fact
that Opti𝜆 features fewer language constructions than OptiC. For example,
OptiC features the construct ifwithout else, as well as C’s ternary operator
b ? x : y, whereas Opti𝜆 only features a plain if then else construct. To
enable going back from Opti𝜆 to OptiC, we allow certain Opti𝜆 terms to
carry style annotations written ⟨𝑡⟩𝐴 where 𝑡 is an Opti𝜆 term and𝐴 is the set
of style annotations. For example, we can annotate an if then else construct
with the annotation else to indicate that the else branch was absent in the
input OptiC code. The example below shows additional examples of style
annotations, with if-statements annotated using && or ?:, for keeping track
of specific OptiC constructions.

void f(int* p) { let 𝑓 = fun(𝑝 : ptr(int)) ↦→ {
if (p && *p == 0) { ⟨if (⟨if 𝑝 then eq(get(𝑝), 0) else false⟩&&) then {
*p = 1; set(𝑝, 1)

} } else {}⟩ else
if (p ? (*p == 2) : false) { if (⟨if 𝑝 then eq(get(𝑝), 2) else false⟩?:) then {
*p = 3; set(𝑝, 3)

} else {} } else {}
} };

The key point is that a style annotation never alters the semantics of a
construct. OptiTrust transformations do their best at preserving existing
annotations. Yet, semantics preservation remains guaranteed even if any of
the style annotation is dropped during a transformation.

56 3 Syntax and semantics in OptiTrust

𝑅 ∋ | range(𝑡start, 𝑡stop, 𝑡step) range for range-based for loops
𝜋 ∋ | seq | par execution mode for range-based for loops
𝑟 ∋ | ∅ | 𝑥 result of a sequence
𝑡 ∋ | 𝑥 variables

| 𝑏 | 𝑛 boolean values, and number values
| {𝑡1; ...; 𝑡𝑛 ; 𝑟 } sequence with result 𝑟
| let 𝑥 = 𝑡 variable definition
| fun(𝑎1, ..., 𝑎𝑛) ↦→ 𝑡 function definition
| 𝑡0 (𝑡1, ..., 𝑡𝑛) function call
| for𝜋 (𝑖 ∈ 𝑅) 𝑡 possibly parallel, range-based for loop
| if 𝑡0 then 𝑡1 else 𝑡2 conditional
| type 𝑥 = {𝑓1 : 𝜏1, ..., 𝑓𝑛 : 𝜏𝑛} definition of a structure type
| {𝑓1 = 𝑡1, ..., 𝑓𝑛 = 𝑡𝑛} structure as values
| 𝑡 .𝑓 projection from struct values
| 𝑡1 ⊞ 𝑡2 | 𝑡 ⊡ 𝑓 address computation

Figure 3.4: Grammar of Opti𝜆, the internal 𝜆-calculus of OptiTrust. 𝜏 is a restriction of 𝑡 to terms that can represent types, and 𝜏 is a restriction
of 𝜏 for types that correspond to an OptiC type. Some variables names 𝑥 are predefined for built-in types (e.g. int) or functions (e.g. heapAlloc).
Additionnally, we use infix notation for arithmetic operations internally represented as regular function calls (e.g. 𝑥1 + 𝑥2 = add(𝑥1, 𝑥2)). The
actual abstract syntax tree moreover features placeholders for carrying several kinds of annotations detailed later in this section.

3.2 Opti𝜆: OptiTrust’s internal, imperative
𝜆-calculus

This section describes Opti𝜆, the internal language of OptiTrust manipulated
by transformations, which is based on an imperative 𝜆-calculus.

Figure 3.4 gives the grammar of Opti𝜆. In this language, variables are bound
by let bindings and by function arguments, and they are always immutable.
Immutable variables allow for a straightforward implementation of substitu-
tion: variables may be substituted with values without concern on whether
occurrences appear as right- or left-values. We next describe the grammar,
starting with the less common features. The formal call-by-value semantics
of Opti𝜆, may be found in appendix A.

𝑛-ary functions Standard 𝜆-calculus usually only defines functions with
exactly one argument and one return value. We say that such functions
are unary. To express functions with more than one argument, 𝜆-calculus
usually relies on an encoding called currying. With such encoding, a function
taking two arguments is written as a function returning a function (if the
function takes two integers and returns an integer, this corresponds to the
type written int→ (int→ int)). To encode functions with zero arguments
or not returning any value, standard 𝜆-calculus define a unit type. This
unit type has only one possible value, therefore it does not convey any
information, and does not need any space in memory. Then, a function
taking zero argument and returning nothing can be encoded as a function
from unit to unit.

Although unary functions and currying are standard, Opti𝜆 does not use
those. Instead, the Opti𝜆 construction for function definition allows an
arbitrary number of arguments, and at most one return value. We say that
such functions are 𝑛-ary, and this pattern usually occurs in imperative
languages such as C.

3.2 Opti𝜆: OptiTrust’s internal, imperative 𝜆-calculus 57

This choice stems from the fact that wewant Opti𝜆 to be closer to themachine
than standard 𝜆-calculus. Semantically, unary functions are simpler, but the
currying pattern creates a lot of intermediate function closures1. In OptiTrust,
we want to reason about performance, and therefore we need the distinction
between a function that returns a closure and a function that simply takes
more than one argument, thus the support for 𝑛-ary functions.

With those 𝑛-ary functions, Opti𝜆 does not need a proper unit type, and
instead handles expressions that do not return a value inside sequences2.

Sequences A sequence is a term that consists of a list of subterms with
side effects or let bindings, to be executed in order. Additionally, after the
sequential execution of the subterms, a sequence may return a value. A
sequence is written {𝑡1; ...; 𝑡𝑛 ; 𝑟 }, where 𝑟 denotes the optional return value
for the sequence3. This return value may be absent, in that case we write
it ∅. We enforce that the expression 𝑟 does not perform side effects. In our
current implementation, the result value 𝑟 is syntactically restricted to be
either ∅ or a variable. We translate a statement of the form return 𝑡 that
appears in terminal position of a C function into “let 𝑥 = 𝑡 ; 𝑥” where 𝑥 is a
fresh variable name.

A sequence {𝑡1; ...; 𝑡𝑛 ; 𝑟 } introduces a lexical scope. If 𝑡𝑖 is of the form
let 𝑥 = 𝑡 , then the variable 𝑥 may occur in any 𝑡 𝑗 for 𝑗 > 𝑖 . The variable
𝑥 does not scope beyond the closing brace. In Opti𝜆, those let bindings
can only appear as instructions in a sequence. We also impose in Opti𝜆 the
invariant that every function body consists of a sequence block, even if the
sequence contains a single instruction.

Moreover, in Opti𝜆, we enforce that all the instructions in a sequence do not
have a return value. To do so, we insert calls to the built-in function “ignore”
around instructions that are not of type void in the OptiC code. Eliminating
the implicitly ignored returned values coming from the user-facing language
helps to simplify typechecking and transformations.

Sequences in Opti𝜆 may also include ghost instructions. A ghost instruc-
tion behaves, semantically, as a no-op. It guides, however, the typechecker
of OptiTrust, typically by altering the way the memory state is described
in the separation logic invariants. These invariants may be exploited for
guiding code transformations, and for checking their correctness. A key
interest of our design is that it allows placing instructions after the point at
which the return value is computed. Doing so is specifically useful for ghost
instructions that depend on the result value. From the perspective of our
bidirectional translation, ghost instructions are treated exactly like regular
function calls.

Manipulation of heap and stack cells To account for heap-allocated
data, OptiTrust provides the following standard primitive functions:
heapAllocUninitCell𝜏 for allocating an uninitialized cell of type 𝜏 on the
heap, get for reading a cell, set for writing a cell, and free for freeing
allocated cells. As usual, a read in an uninitialized memory cell is undefined
behavior. More generally, heapAlloc can be used for matrix allocation. For
example heapAllocUninitMatrix2int (5,8) allocates an uninitialized matrix of 5× 8
integers. Additionally, to account for stack-allocated variables, OptiTrust
includes special functions. The operation stackAllocUninitCell𝜏 () allocates
a memory cell of type 𝜏 on the stack without initializing its contents.
The corresponding space is automatically reclaimed at the end of the
surrounding sequence. Like for heapAlloc, stackAlloc can also be used to
allocate matrices on the stack. The operation ref(𝑡) also allocates a memory

1: Generally, compilers for languages with
unary functions automatically eliminate
the allocation of intermediate closures to
avoid performance slowdowns

2: That said, we will likely introduce a unit
type in the future since such type can be
very useful in presence of polymorphism.

3: This presentation of sequences is simi-
lar to that found in, e.g., the Rust language.

58 3 Syntax and semantics in OptiTrust

cell on the stack but initializes it with 𝑡 . These two special operations are
meant to occur as part of a let binding, for example let 𝑥 = ref(3), occurring
directly within a sequence. Note that a binding let 𝑥 = ref(𝑡) is semantically
equivalent to let 𝑥 = stackAllocCell𝜏 (); set(𝑥, 𝑡) where 𝜏 is the type of 𝑡 .
The two stack-allocation operators, apart from their implicit-free behavior,
are treated like other primitive functions.

Unbounded integers and infinitely precise reals In OptiTrust, the
type int can accept infinitely large integers, like in Python. This greatly
helps when proving properties about the code, and removes corner cases for
arithmetic optimizations that should normally deal with possible overflows.
In practice, such unbounded integers can have a significant performance cost,
and therefore they should be eliminated at some point during the interactive
compilation process. For now, we expect the user to choose a large enough
data type after all the transformations manipulating integer arithmetic. The
transformation that establishes this choice should insert assertions that
prevent overflow or prove the absence of such overflows. However, this
feature is left for future work, and we currently trust the choice of the user.
In such future work, we plan to leverage function specifications and a value
analysis to choose an actual bounded size for representing integers. To keep
things simple, the formalization does not include fixed size integer types in
the grammar.

Similarly, most arithmetic transformations only work with idealized real
numbers instead of floating point computations performing rounding at
every step. To handle that we use the type real that does never lose precision.
Such infinite precision types require symbolic reasoning which does not cor-
respond to actual CPU instructions. Therefore, like for integers, we currently
trust the user for choosing a precise enough floating point approximation
after all the transformations manipulating those idealized reals.

Possibly parallel range-based for loops The construct for𝜋 (𝑖 ∈
range(𝑡start, 𝑡stop, 𝑡step)) 𝑡body describes a range-based for loop. In such a
loop, the immutable variable 𝑖 denotes the loop index. The loop range
consists of the loop bounds and the per-iteration step, that are evaluated
only once before starting the loop. Following the convention used by Python
and other languages, the index goes from the start value inclusive to the
stop value exclusive. If the step value is negative, the loop index iterates
downwards. The loop is tagged with an execution mode 𝜋 that can be either
seq of par. If 𝜋 is set to seq, the loop is executed sequentially (i.e. one
iteration at a time). If 𝜋 to par, then the loop is treated as a parallel loop.
The flag par corresponds to the directive: #pragma openmp parallel.
The restrictions imposed by OpenMP on the ranges of parallel for loops
essentially constrain them to fit the format range(𝑡start, 𝑡stop, 𝑡step), which
is the format that we use for our range-based for loops. In this manuscript,
we omit the execution mode of a loop when it is irrelevant.

Structured data Like all variables, mutable record and arrays are allocated
by means of a call to the stackAlloc or heapAlloc functions. The construct
{𝑓1 = 𝑡1; ...; 𝑓𝑛 = 𝑡𝑛} can be used to build records as constant values, and
in the current version, constant array values are not supported. OptiTrust
features three operations to manipulate structured data.

If 𝑎 corresponds to the address of an array, then the memory address of 𝑖-th
cell of the array 𝑎 can be computed by the operation 𝑎⊞ 𝑖 . This operation cor-
responds to the C pointer arithmetic operation a+i, that is more intuitively

3.2 Opti𝜆: OptiTrust’s internal, imperative 𝜆-calculus 59

written &a[i]. The contents of that cell may be retrieved by evaluating
get(𝑎 ⊞ 𝑖).

Reading the field 𝑓 of a constant record 𝑟 is described by the operation 𝑟 .𝑓 ,
whereas the memory address of the field 𝑓 of a record 𝑟 allocated in memory
is described by the operation 𝑟 ⊡ 𝑓 . This operation corresponds to shifting
the pointer 𝑟 by the offset associated with the field 𝑓 .

All these projection and address-shifting operations are here presented as
constructs of the grammar. From the perspective of typechecking, however,
we treat these operations like function applications for better factorization.

Other language constructs The other language constructs of Opti𝜆 are
standard. They include function calls and conditionals. Our implementation
accounts for a diversity of literal types. For simplicity, we consider in the
formalization only two kinds of literals: the metavariable 𝑏 denotes a boolean
literal (either true or false), and the metavariable 𝑛 denotes an integer
literal.

Other primitive operations Besides the aforementioned primitive op-
erations for manipulating heap and stack cells, Opti𝜆 provides primitive
functions that correspond to the arithmetic and boolean operators of the C
language. One notable exception are the short-circuiting operators && and ||
from C. We encoded them in Opti𝜆 using conditionals, carrying annotations
for guiding the reverse translation as detailed further on. Indeed, we wish to
keep the simplest possible semantics for Opti𝜆.

Annotations In addition to the ghost instructions presented earlier, each
subterm of an Opti𝜆 program can carry a number of extra information that
do not affect the semantics in the form of annotations. Currently, our internal
AST carries the following information:

▶ the location of the subterm in the initial source code;

▶ user-placed marks allow referring to subterms by name in transfor-
mation script’s targets;

▶ separation logic contracts for functions and loops;

▶ type information for all bindings, operators, and for every subterm;

▶ style annotations to guide the reverse translation from Opti𝜆 to OptiC,
as described in more details in the next subsection.

Implementation of the AST The Opti𝜆 abstract syntax tree (AST) is
represented as an immutable tree data structure. A program transformation
takes as input such an immutable AST, and produces as output another
AST, which may share subtrees with the input AST. There are two major
benefits following a purely functional programming style using immutable
trees. First, this approach avoids numerous bugs typically associated with
inadvertent sharing of subtrees when modifying data structures in-place.
Second, this approach, by enabling sharing, can lead to a more compact
construction of complete execution traces, which are used for reporting to
the user all the intermediate ASTs constructed during the evaluation of the
user’s transformation script.

Another implementation choice of this AST is the encoding of variables. In
OptiTrust, we associate each variable binder with a unique ID. Then, we have

60 3 Syntax and semantics in OptiTrust

[Kre15]: Krebbers (2015), The C standard
formalized in Coq

a procedure to propagate such IDs to variable occurrences, following scope
and shadowing rules. These variable ID allows fast variable comparison, and
interestingly prevent unintended scope or shadowing issues when moving
around instructions in transformations. The only caveat is that transfor-
mations need to refresh binder IDs (and update the corresponding variable
occurrences) when duplicating terms.

3.3 OptiC: a C-like, user-facing language

We strive to make the user-facing language of OptiTrust as close to C as
possible, in order to make the tool accessible to most high performance
programmers. This section describes the OptiC language by comparison
with C, and without giving details about resource annotations that will be
discussed in chapter 4.

Comparison with C Syntactically, OptiC is a subset of C with custom
resource annotations and with a few extensions borrowed from C++. Our
current implementation of OptiTrust parses OptiC code using Clang. More-
over, OptiTrust users can benefit from the C or C++ support of their IDEs
to edit OptiC code. The exact grammar of the supported subset of C is not
explicitly given since the next section details all the supported constructions
along with their translation in Opti𝜆.

Semantically, OptiC admits a simpler semantics than C. Supporting all the
features of the C language would be extremely challenging. To see why, it
suffices to contemplate the size of the Rocq formalization of a significant
subset of C [Kre15]. OptiC features fewer undefined behaviors than C, in
particular with respect to evaluation order. Hence, it is incorrect to compile
OptiC code using an arbitrary C-compliant compiler. Instead, either a prior
translation to C is required, e.g. to bind intermediate expressions; or one
should translate OptiC code directly into a lower-level language, such as
CompCert’s Clight or LLVM IR. Currently, the cleanup transformation we
saw in chapter 2 tries to convert an OptiC input into C compatible code. As
of today, this procedure is probably incomplete and is not verified. We leave
for future work a more trustworthy backend for OptiC.

Strict order of evaluation for all operators In standard C, operators
do not necessarily behave like calls to primitive functions. Indeed, the stan-
dard allows for a more liberal argument evaluation order. This is visible for
pre-/post-increment/decrement operators such as i++. For example, it is
undefined whether the instruction u = u++; increments u or not. However,
when written as call-by-value function calls, set(&u, getAndIncr(&u)),
it is obvious that it cannot increment u. Since code transformations might
accidentally produce code such as u = u++, and we do not want to treat
operators in a special way, the OptiC language exposes fewer undefined
behaviors than standard C. In that case, we impose that operators behave
like function calls. This means that we do not guarantee any evaluation order
of the arguments, but we ensure that all arguments performed all their side
effects before the execution of an operator syntactically higher in the AST.
This is not a problem when importing C code because this only restricts the
number of possible behaviors of any given piece of code.

3.3 OptiC: a C-like, user-facing language 61

Types for unbounded integers and reals In OptiC, we consider that type
int corresponds to the unbounded Opti𝜆 type. Considering that unbounded
integers are the default specifically alleviates the burden of undefined behav-
iors when signed overflow occurs. We also support fixed size types such as
int32_t or uint64_t, but we do not yet support arithmetic simplification
on these types. However, we have no plans for supporting platform specific
data types such as short or long. For real arithmetic, we add a specific data
type real to OptiC, and we also support the classic floating point approxima-
tions float and double (again without arithmetic simplification). Neither
int not real yields executable code, but OptiTrust users can transform
them into fixed size integers or into regular floating point variables, as part
of a user trusted step.

Variables marked const and function arguments are pure As we saw
in section 3.1, it is important for our translation to understand whether a
variable is pure or impure. Since transformations may react differently in
presence of pure or impure variables, we want to syntactically distinguish
the variables that we treat as pure. To reduce the amount of syntactic noise,
our internal C-like language treats the keyword const as a request to handle
the variable as a pure variable. Moreover, we made the design decision to
always treat function arguments as pure variables. The mutation of function
arguments is allowed in C, yet it is a rarely used feature, which can easily be
avoided. We might, in future work, extend our translation to handle mutated
arguments by introducing an auxiliary fresh local mutable variable, and
turning the mutated argument into a constant argument.

Function types and function variables In C, a programmer can write
pointers to functions such as int (*fptr)(int);. This type can only accept
functions that do not capture their surrounding environment. The semantics
of the operators & and * when applied to C functions is not as simple as one
may hope. In OptiC, we chose instead to use the C++ function types, such as
std::function<int(int)>, which in this paper we write fun<int(int)>,
where fun is defined as an alias for std::function. A local variable with a
function type may be either pure or impure. However, all functions declared
using the syntax of C function definitions (e.g. int f(){ return 42; })
are represented as pure variables.

Syntax extensions for translating back from Opti𝜆 OptiTrust trans-
formations may generate ASTs in Opti𝜆 with arbitrary shapes. In particular,
the grammar of Opti𝜆 allows function abstractions and sequences with a
return value to appear anywhere as subterms in the AST. This flexibility
does not exist in the standard C. Yet, we wish to be able to display to the Op-
tiTrust user the corresponding AST in OptiC syntax. To that end, we consider
standard extensions of the C language; such extensions would probably be
already familiar to the OptiTrust user. For sequences, we consider the GNU
C extensions4, which supports the syntax ({ 𝑢1; ...; 𝑢𝑛 ; 𝑢𝑟 ; }), where 𝑢𝑟 is
an expression that corresponds to the return value. For functions, we borrow
the C++ syntax for closures, written [&](T_1 a_1, ..., T_n a_n){...}.
Moreover, we allow the nested functions from the GNU C extensions5.

Unsupported C features This present thesis aims at demonstrating the
interest of OptiTrust’s approach to code optimization. It does not aim at
covering all the features of the C language. Let us nevertheless comment on
three features that we look forward to support in the near future.

4: https://gcc.gnu.org/onlinedocs/
gcc-12.2.0/gcc/Statement-Exprs.
html

5: https://gcc.gnu.org/onlinedocs/
gcc-12.2.0/gcc/Nested-Functions.
html

https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Statement-Exprs.html
https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Statement-Exprs.html
https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Statement-Exprs.html
https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Nested-Functions.html
https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Nested-Functions.html
https://gcc.gnu.org/onlinedocs/gcc-12.2.0/gcc/Nested-Functions.html

62 3 Syntax and semantics in OptiTrust

[Cao+18]: Cao et al. (2018), VST-Floyd: A
Separation Logic Tool to Verify Correctness
of C Programs

We currently do not support structures containing arrays, this is due to the
additional complexity of field access of array type. If f is a non-array field,
the expression a.f reads the value at the address &(a.f). However, if f is
declared in the form int f[5], then the expression a.f returns the address
of the first cell without reading any memory. We could add support for these
array fields in the future by extending our bidirectional translation.

The current version of OptiTrust only supports range-based for loops on
a range fixed when entering the loop the first time. Indeed, as we discuss
in chapter 4, the OptiTrust typechecker ensures program termination, and
therefore more general loop patterns would require a more complex treat-
ment. In the future, we plan to add a single form of repeat loop in Opti𝜆 and
use it to encode while loops and general forms of C for loops. Likewise, due
to complication for termination checks, recursive functions are currently
not supported and should be added in the future.

To handle abrupt termination, as triggered by break, continue, and non-
final return statements, we would need a generalization of our typesystem.
The treatment of abrupt termination in separation logic is well-understood—
they are handled, for example, in the VST program verification framework
for C programs [Cao+18]. That said, abrupt termination support introduces
a fair amount of additional complexity, explaining why we have not covered
it yet. Note that our implementation handles the case of a function ending
with a conditional that has both branches ending with a return, but this
case is not covered in this manuscript for simplicity.

3.4 Translation from OptiC to Opti𝜆

This section describes the translation from OptiC into OptiTrust’s internal
𝜆-calculus. We call this operation the encoding.

As exposed in the overview, the translation from the user-facing language to
the internal 𝜆-calculus crucially depends on the notion of pure variables. We
can assume at this step that all pure variables are marked with the const
keyword in OptiC (recall that it corresponds to const register in C). This
means that pure variables can be considered immutable and without an
address.

The essence of the encoding process is to eliminate the notion of left-value
by replacing impure variables with their stack-allocated address. Then, the
encoding wraps the accesses to values of impure variables with a get oper-
ation. Such a process of elimination of the left-values is commonly found
in the implementation of compilers. However, compilers in general are not
concerned with supporting a reverse translation.

Figures 3.5 and 3.6 define our translation from OptiC to Opti𝜆. We write
⌊𝑢⌋ the encoding of an OptiC term 𝑢, which could be a statement or an
expression in right-value position. We write ⌊𝑢⌋& the encoding of an OptiC
term 𝑢 appearing in left-value position.

The encoding operation builds a global set Π that contains the identifiers
of all variables marked as pure. Recall that in particular, this includes the
names of arguments that appear in function definitions. Every right-value
occurrence of a variable that does not belong to Π becomes wrapped inside
a call to get. Note that this encoding fails if the invariants imposed by the
declared purity of a variable are not satisfied. Recall that this encoding adds
style annotations to the Opti𝜆 terms being produced.

3.4 Translation from OptiC to Opti𝜆 63

⌊𝑢⌋& = 𝑡 where ⌊𝑢⌋ is (guaranteed to be) of the form get(𝑡)

⌊𝑥⌋ =

{
𝑥 if 𝑥 ∈ Π
get(𝑥) otherwise

⌊𝑏⌋ = 𝑏

⌊𝑛⌋ = 𝑛

⌊𝑢1+𝑢2⌋ = add(⌊𝑢1⌋, ⌊𝑢2⌋)
⌊&𝑢⌋ = ⌊𝑢⌋&
⌊*𝑢⌋ = get(⌊𝑢⌋)
⌊𝑢1 = 𝑢2⌋ = set(⌊𝑢1⌋&, ⌊𝑢2⌋)
⌊𝑢1+= 𝑢2⌋ = inplaceAdd(⌊𝑢1⌋&, ⌊𝑢2⌋)
⌊𝑢0 (𝑢1, ..., 𝑢𝑛)⌋ = ⌊𝑢0⌋ (⌊𝑢1⌋, ..., ⌊𝑢𝑛⌋)
⌊𝑇 const𝑥 = 𝑢⌋ = let⌊𝑇 ⌋typ 𝑥 = ⌊𝑢⌋ (𝑥 ∈ Π)
⌊𝑇 𝑥 = 𝑢⌋ = letptr(⌊𝑇 ⌋typ) 𝑥 = ref⌊𝑇 ⌋typ (⌊𝑢⌋) (𝑥 ∉ Π)
⌊𝑇 𝑥⌋ = letptr(⌊𝑇 ⌋typ) 𝑥 = stackAllocUninitCell⌊𝑇 ⌋typ () (𝑥 ∉ Π)
⌊malloc(sizeof(𝑇))⌋ = heapAllocUninitCell⌊𝑇 ⌋typ ()
⌊𝑢0 ? 𝑢1 : 𝑢2⌋ = ⟨if ⌊𝑢0⌋ then ⌊𝑢1⌋ else ⌊𝑢2⌋⟩?:
⌊if(𝑢0) 𝑢1 else 𝑢2⌋ = if ⌊𝑢0⌋ then ⌊𝑢1⌋ else ⌊𝑢2⌋
⌊if(𝑢0) 𝑢1⌋ = ⟨if ⌊𝑢0⌋ then ⌊𝑢1⌋ else {}⟩ else
⌊𝑢1 && 𝑢2⌋ = ⟨if ⌊𝑢1⌋ then ⌊𝑢2⌋ else false⟩&&
⌊𝑢1 || 𝑢2⌋ = ⟨if ⌊𝑢1⌋ then true else ⌊𝑢2⌋⟩||
⌊for(int𝑥 = 𝑢1; 𝑥 < 𝑢2; 𝑥 += 𝑢3) 𝑢4⌋ = for (𝑖 ∈ range(⌊𝑢1⌋, ⌊𝑢2⌋, ⌊𝑢3⌋)) ⌊𝑢4⌋
⌊{𝑢1; ...; 𝑢𝑛 ; }⌋ = {⌊𝑢1⌋void; ...; ⌊𝑢𝑛⌋void; ∅}
⌊{𝑢1; ...; 𝑢𝑛 ; return; }⌋ = {⌊𝑢1⌋void; ...; ⌊𝑢𝑛⌋void; ⟨∅⟩return}

⌊{𝑢1; ...; 𝑢𝑛 ; return𝑢𝑟 ; }⌋ =

{
{⌊𝑢1⌋void; ...; ⌊𝑢𝑛⌋void; 𝑥} if ⌊𝑢𝑟 ⌋ is a variable 𝑥
{⌊𝑢1⌋void; ...; ⌊𝑢𝑛⌋void; ⟨let 𝑥 = ⌊𝑢𝑟 ⌋⟩res; 𝑥} otherwise (𝑥 is fresh)

⌊({𝑢1; ...; 𝑢𝑛 ; 𝑢𝑟 ; })⌋ =

{
{⌊𝑢1⌋void; ...; ⌊𝑢𝑛⌋void; 𝑥} if ⌊𝑢𝑟 ⌋ is a variable 𝑥
{⌊𝑢1⌋void; ...; ⌊𝑢𝑛⌋void; ⟨let 𝑥 = ⌊𝑢𝑟 ⌋⟩res; 𝑥} otherwise (𝑥 is fresh)

⌊𝑢⌋void =

{
⌊𝑢⌋ if 𝑢 is of type void
ignore(⌊𝑢⌋) otherwise

⌊𝑇0 𝑓 (𝑇1 𝑎1, ..., 𝑇𝑛 𝑎𝑛) 𝑢𝑓 ⌋ = let(⌊𝑇1 ⌋typ×...×⌊𝑇𝑛 ⌋typ)→⌊𝑇0 ⌋typ 𝑓 = fun(𝑎1, ..., 𝑎𝑛) ↦→ ⌊𝑢𝑓 ⌋
⌊[&](𝑇1 𝑎1, ..., 𝑇𝑛 𝑎𝑛) 𝑢𝑓 ⌋ = ⟨fun(𝑎1, ..., 𝑎𝑛) ↦→ ⌊𝑢𝑓 ⌋⟩□

⌊𝑇*⌋typ = ptr(⌊𝑇 ⌋typ)
⌊int⌋typ = int
⌊bool⌋typ = bool
⌊real⌋typ = real
⌊fun<𝑇0(𝑇1, ..., 𝑇𝑛)>⌋typ = (⌊𝑇1⌋typ × ... × ⌊𝑇𝑛⌋typ) → ⌊𝑇0⌋typ

Figure 3.5: Translation from OptiC to Opti𝜆. Translation rules for structured data are given in the following figure 3.6. A global, precomputed
set Π contains the identifiers of all pure variables—in OptiTrust, variables carry unique identifiers in addition to their names. Superscripts on
𝜆-terms represent style annotations for translating back to OptiC.

64 3 Syntax and semantics in OptiTrust

[BC25b]: Bertholon et al. (2025), Bidirec-
tional Translation between a C-like Lan-
guage and an Imperative Lambda-calculus

⌊typedef struct {𝑇1 𝑓1; ...; 𝑇𝑛 𝑓𝑛 ; } 𝑥⌋ = type 𝑥 = {𝑓1 : ⌊𝑇1⌋typ, ..., 𝑓𝑛 : ⌊𝑇𝑛⌋typ}
⌊(𝑇){𝑢1, ..., 𝑢𝑛}⌋ = {𝑓1 = ⌊𝑢1⌋, ..., 𝑓𝑛 = ⌊𝑢𝑛⌋}

where 𝑓𝑖 are the fields of the struct type 𝑇

⌊𝑢.𝑓 ⌋ =


𝑥 .𝑓 if 𝑢 = 𝑥 ∧ 𝑥 ∈ Π
⌊𝑢⌋ .𝑓 if 𝑢 is a constant structure
get(⌊𝑢.𝑓 ⌋&) otherwise

⌊𝑢.𝑓 ⌋& =

{
⟨⌊𝑢′⌋ ⊡ 𝑓 ⟩↛ if 𝑢 is of the form (*𝑢′)
⌊𝑢⌋& ⊡ 𝑓 otherwise

⌊𝑢→𝑓 ⌋ = get(⌊𝑢→𝑓 ⌋&)
⌊𝑢→𝑓 ⌋& = ⌊𝑢⌋ ⊡ 𝑓

⌊𝑇 𝑥 [𝑢]⌋ = letptr(⌊𝑇 ⌋typ) 𝑥 = stackAlloc⌊𝑢,𝑇 ⌋arr () (𝑥 ∈ Π)
⌊malloc(𝑢* sizeof(𝑇))⌋ = heapAlloc⌊𝑢,𝑇 ⌋arr ()
⌊𝑢1 [𝑢2]⌋ = get(⌊𝑢1 [𝑢2]⌋&)
⌊𝑢1 [𝑢2]⌋& = ⌊𝑢1⌋ ⊞ ⌊𝑢2⌋

⌊𝑢, 𝑇 ⌋arr =


UninitMatrix1⌊𝑇 ⌋typ (⌊𝑢𝑛⌋) if 𝑢 is of the form MSIZE1(𝑢𝑛)
UninitMatrix2⌊𝑇 ⌋typ (⌊𝑢𝑚⌋, ⌊𝑢𝑛⌋) if 𝑢 is of the form MSIZE2(𝑢𝑚, 𝑢𝑛)
UninitArray⌊𝑇 ⌋typ (⌊𝑢⌋) otherwise

Figure 3.6: Translation from OptiC to Opti𝜆 for arrays and structures. A global, precomputed set Π contains the identifiers of all pure
variables—in OptiTrust, variables carry unique identifiers in addition to their names. Superscripts on 𝜆-terms represent style annotations for
translating back to OptiC.

In this manuscript, we consider that the semantics of an OptiC program 𝑢 is
defined to be the same as the semantics of the corresponding Opti𝜆 program
⌊𝑢⌋. Ideas for assigning a direct semantics to OptiC and proving that the
translation is semantic-preserving are discussed in the workshop article
[BC25b, §4-6] which inspired most of this chapter. We believe that such a di-
rect semantics is not needed for formal reasoning and that a more interesting
future work would be to verify another semantic-preserving translation to a
language with an existing verified toolchain such as CompCert’s Clight.

3.5 Translation from Opti𝜆 back to OptiC

This section defines the reciprocal translation, which we call decoding. Fig-
ures 3.7 and 3.8 define this decoding operation. The notation ⌈𝑡⌉ denotes
the decoding of an Opti𝜆 term 𝑡 . The notation ⌈𝑡⌉* denotes an auxiliary
operation for decoding terms that appear in left-value contexts in the OptiC
output.

As mentioned earlier, during the encoding, a number of style annotations
are attached to the terms produced, in order to guide the decoding phase and
ensure the round-trip property. Importantly, these annotations are always
ignored by the semantics. It is therefore always safe to drop annotations in the
OptiTrust AST. Ignoring style annotations may even be necessary. Consider
for example a transformation that rewrites “𝑡0; ⟨if 𝑡𝑐 then {𝑡1} else {}⟩ else ”
into “⟨if 𝑡𝑐 then {𝑡0; 𝑡1} else {𝑡0}⟩ else ”, where the annotation else in the
input term indicates that the else branch was absent from the OptiC code.
There, the resulting term is a nonempty else branch, hence the annotation
else must be discarded.

There is one limitation with the current style annotation system expressed
by the notion of spurious pattern, which consists of an occurrence of an

3.5 Translation from Opti𝜆 back to OptiC 65

⌈𝑡⌉* =

{
𝑢 if ⌈𝑡⌉ is of the form &𝑢

* ⌈𝑡⌉ otherwise

⌈𝑥⌉ =

{
𝑥 if 𝑥 ∈ Π
&𝑥 otherwise

⌈𝑏⌉ = 𝑏

⌈𝑛⌉ = 𝑛

⌈add(𝑡1, 𝑡2)⌉ = ⌈𝑡1⌉ + ⌈𝑡2⌉
⌈get(𝑡)⌉ = ⌈𝑡⌉*
⌈set(𝑡1, 𝑡2)⌉ = ⌈𝑡1⌉* = ⌈𝑡2⌉
⌈inplaceAdd(𝑡1, 𝑡2)⌉ = ⌈𝑡1⌉* += ⌈𝑡2⌉
⌈𝑡0 (𝑡1, ..., 𝑡𝑛)⌉ = ⌈𝑡0⌉ (⌈𝑡1⌉, ..., ⌈𝑡𝑛⌉)
⌈let𝜏 𝑥 = 𝑡⌉ = ⌈𝜏⌉typ const𝑥 = ⌈𝑡⌉ (𝑥 ∈ Π)
⌈letptr(𝜏) 𝑥 = ref(𝑡)⌉ = ⌈𝜏⌉typ 𝑥 = ⌈𝑡⌉ (𝑥 ∉ Π)
⌈letptr(𝜏) 𝑥 = stackAllocUninitCell𝜏 ()⌉ = ⌈𝜏⌉typ 𝑥 (𝑥 ∉ Π)
⌈heapAllocUninitCell𝜏 ()⌉ = malloc(sizeof(⌈𝜏⌉typ))
⌈⟨if 𝑡1 then 𝑡2 else false⟩&&⌉ = ⌈𝑡1⌉ && ⌈𝑡2⌉
⌈⟨if 𝑡1 then true else 𝑡2⟩||⌉ = ⌈𝑡1⌉ || ⌈𝑡2⌉
⌈⟨if 𝑡0 then 𝑡1 else {}⟩ else ⌉ = if(⌈𝑡0⌉) ⌈𝑡1⌉ inside sequence
⌈⟨if 𝑡0 then 𝑡1 else 𝑡2⟩?:⌉ = ⌈𝑡0⌉ ? ⌈𝑡1⌉ : ⌈𝑡2⌉

⌈if 𝑡0 then 𝑡1 else 𝑡2⌉ =

{
if(⌈𝑡0⌉) ⌈𝑡1⌉ else ⌈𝑡2⌉ inside sequence
⌈𝑡0⌉ ? ⌈𝑡1⌉ : ⌈𝑡2⌉ otherwise

⌈for (𝑥 ∈ range(𝑡1, 𝑡2, 𝑡3)) 𝑡4⌉ = for(int𝑥 = ⌈𝑡1⌉; 𝑥 < ⌈𝑡2⌉; 𝑥 += ⌈𝑡3⌉) ⌈𝑡4⌉

⌈{𝑡1; ...; 𝑡𝑛 ; ⟨let 𝑥 = 𝑡𝑟 ⟩res; 𝑥}⌉ =

{
{⌈𝑡1⌉; ...; ⌈𝑡𝑛⌉; return ⌈𝑡𝑟 ⌉; } as function body
({⌈𝑡1⌉; ...; ⌈𝑡𝑛⌉; ⌈𝑡𝑟 ⌉; }) otherwise

⌈{𝑡1; ...; 𝑡𝑛 ; 𝑥}⌉ =

{
{⌈𝑡1⌉; ...; ⌈𝑡𝑛⌉; return𝑥 ; } as function body
({⌈𝑡1⌉; ...; ⌈𝑡𝑛⌉; 𝑥 ; }) otherwise

⌈{𝑡1; ...; 𝑡𝑛 ; ⟨∅⟩return}⌉ = {⌈𝑡1⌉; ...; ⌈𝑡𝑛⌉; return; } as function body
⌈{𝑡1; ...; 𝑡𝑛 ; ∅}⌉ = {⌈𝑡1⌉; ...; ⌈𝑡𝑛⌉; } inside sequence
⌈ignore(𝑡)⌉ = ⌈𝑡⌉
⌈let(𝜏1×...×𝜏𝑛)→𝜏0 𝑓 = ⟨fun(𝑎1, ..., 𝑎𝑛) ↦→ 𝑡𝑓 ⟩𝐴⌉ = ⌈𝜏0⌉typ 𝑓 (⌈𝜏1⌉typ 𝑎1, ..., ⌈𝜏𝑛⌉typ 𝑎𝑛) ⌈𝑡𝑓 ⌉ if □ ∉ 𝐴

⌈fun(𝑎1𝜏1 , ..., 𝑎𝑛𝜏𝑛) ↦→ 𝑡𝑓 ⌉ = [&](⌈𝜏1⌉typ 𝑎1, ..., ⌈𝜏𝑛⌉typ 𝑎𝑛) ⌈𝑡𝑓 ⌉

⌈ptr(𝜏)⌉typ = ⌈𝜏⌉typ*
⌈int⌉typ = int

⌈bool⌉typ = bool

⌈real⌉typ = real

⌈(𝜏1 × ... × 𝜏𝑛) → 𝜏0⌉typ = fun<⌈𝜏0⌉typ(⌈𝜏1⌉typ, ..., ⌈𝜏𝑛⌉typ)>

Figure 3.7: Translation from OptiTrust’s internal 𝜆-calculus back to C. Translation rules for structured data are given in the following figure 3.8.
A global, precomputed set Π contains the identifiers of all pure variables—in OptiTrust, variables carry unique identifiers in addition to their
names. Style annotations are silently ignored if no rule matches.

66 3 Syntax and semantics in OptiTrust

⌈type 𝑥 = {𝑓1 : 𝜏1, ..., 𝑓𝑛 : 𝜏𝑛}⌉ = typedef struct {⌈𝜏1⌉typ 𝑓1; ...; ⌈𝜏𝑛⌉typ 𝑓𝑛 ; } 𝑥

⌈{𝑓1 = 𝑡1, ..., 𝑓𝑛 = 𝑡𝑛}⌉ = (𝑇){⌈𝑡1⌉, ..., ⌈𝑡𝑛⌉} where 𝑇 is the struct type with fields 𝑓𝑖
⌈𝑡 .𝑓 ⌉ = ⌈𝑡⌉.𝑓
⌈⟨get(𝑡) ⊡ 𝑓 ⟩↛⌉ = &((* ⌈𝑡⌉*).𝑓)

⌈𝑡 ⊡ 𝑓 ⌉ =

{
&(𝑢→𝑓) if ⌈𝑡⌉* is of the form*𝑢
&(⌈𝑡⌉*.𝑓) otherwise

⌈letptr(𝜏) 𝑥 = stackAlloc𝐶𝜏
()⌉ = ⌈𝜏⌉typ 𝑥 [⌈𝐶⌉size] (𝑥 ∈ Π)

⌈heapAlloc𝐶𝜏
()⌉ = malloc(⌈𝐶⌉size* sizeof(⌈𝜏⌉typ))

⌈𝑡1 ⊞ 𝑡2⌉ = &(⌈𝑡1⌉ [⌈𝑡2⌉])

⌈UninitArray(𝑡)⌉size = ⌈𝑡⌉
⌈UninitMatrix1(𝑡𝑛)⌉size = MSIZE1(⌈𝑡𝑛⌉)
⌈UninitMatrix2(𝑡𝑚, 𝑡𝑛)⌉size = MSIZE2(⌈𝑡𝑚⌉, ⌈𝑡𝑛⌉)

Figure 3.8: Translation from Opti𝜆 to OptiC for arrays and structures. A global, precomputed set Π contains the identifiers of all pure variables.
Style annotations are silently ignored if no rule matches.

expression of the form &*u or *&u. Such spurious patterns are eliminated
during the process of encoding a program and do not generate any annota-
tion. Even though we could design a style annotation that preserves spurious
patterns, we believe that it is not worth the extra work, because spurious
patterns usually do not appear in human-written source programs.

We are now ready to state the round-trip property of our bidirectional
translation.

Proposition 3.5.1: Round-trip for OptiC programs

If 𝑢 is an OptiC program that does not contain spurious patterns, and
such that its encoding ⌊𝑢⌋ is well-defined, then decoding gives back the
original program: ⌈⌊𝑢⌋⌉ = 𝑢.

An actual mechanized proof of this round-trip property is left for future
work and should be doable by induction on the possible constructions for
OptiC programs.

Note that this roundtrip theorem is defined at the level of the ASTs. In our
current implementation, comments, blank lines, indentation, and macro
expansions, are not part of the AST. Hence, they are not preserved by our
translations. Indentation is not much an issue for users using code formatters.
Comments and blank lines could be attached to AST nodes, as style anno-
tation, if need be. Macros would be trickier to handle. One could imagine
a best-effort algorithm, which folds back macros for parts of the AST that
have not been altered by the transformations.

A very attentive readermight notice that the reverse round-trip (i.e. ⌊⌈𝑡⌉⌋ = 𝑡)
does not hold. For a pure variable 𝑥 of type ptr(𝜏) where 𝜏 is a structure type
with a field 𝑓 , the Opti𝜆 terms get(𝑥 ⊡ 𝑓) and get(𝑥).𝑓 are both decoded
as 𝑥→𝑓 . This is due to a fundamental ambiguity in C-like languages in
presence of structure accesses: there is no distinction between first reading
the full structure and extracting one field and directly reading only one field.
In the encoding, we always prefer the latter (i.e. ⌊𝑥→𝑓 ⌋ = get(𝑥 ⊡ 𝑓)) since
it corresponds to the most efficient code by limiting memory accesses. In
practice, we currently always normalize Opti𝜆 terms of the form get(𝑥).𝑓
into get(𝑥 ⊡ 𝑓), with an ad-hoc transformation, therefore this ambiguity of
OptiC is not yet an issue. In the future, if we want to keep a term of the form

3.5 Translation from Opti𝜆 back to OptiC 67

get(𝑥).𝑓 between two user interactions, we might change the semantics
of OptiC by giving different meanings to 𝑥→𝑓 and (*𝑥).𝑓 and to 𝑥 .𝑓 and
(*&𝑥).𝑓 .

Computing program resources:
Contexts 4

4.1 Grammar of resources . . . 69
4.2 Construction and opera-

tions on typing contexts . 73
4.3 Grammar of contracts . . . 76
4.4 Entailment 79
4.5 Subtraction 80
4.6 Typechecking of logical

expressions 81
4.7 Typechecking of terms . . 82
4.8 Type soundness 87

As we claimed in the introduction, resource typing is a key ingredient in
OptiTrust to obtain invariants expressed as separation logic resources be-
tween each line of code. Those invariants are then leveraged to justify the
correctness of code transformations. This chapter describes the details of
our separation logic resource typesystem.

Traditional typecheckers have a typing judgment of the form Γ ⊢ 𝑡 : 𝜏 .
Yet, the OptiTrust typechecker needs to account also for linear resources.
Following the presentation of separation logic, OptiTrust’s typing judgment
is written as a triple of the form {{Γ}} 𝑡 {{Γ′}}. The input context Γ decomposes
as ⟨𝐸 | 𝐹 ⟩, where 𝐸 consists of pure resources and 𝐹 consists of linear resources.
Symmetrically, the output context Γ′ contains both pure and linear resources.
The pure resources from Γ′ typically correspond to ghost return values and
to pure postconditions. We qualify as ghost, any entity that is useful during
program typechecking but is erased in the final executable code. Triples will
be later extended in chapter 5 to the form {{Γ}} 𝑡Δ {{Γ′}}, where Δ denotes a
usage map, providing a summary explaining which resources are used by
every subterm, and how they are used. This chapter presents the typing
entities and the algorithmic typing rules, ignoring usage maps.

We designed the OptiTrust typechecker such that it can be used for checking
shape-only or functional correctness properties, with only very minor varia-
tions. The key difference is that, with functional correctness assertions, the
typechecker needs to keep track of a model for each accessible memory cell.
Unless stated otherwise, everything that appears in this chapter applies both
for shape-only and for functional correctness assertions. The typechecker
makes no difference between full functional correctness and incomplete
functional correctness. Indeed, in both cases the typechecker validates all
the assertions written in the code.

The chapter is organized as follows. Section 4.1 presents the grammar of
pure resources and linear resources. Section 4.2 presents the grammar of
contexts. Section 4.3 presents the grammar of function contracts and loop
contracts. Section 4.4 presents the entailment relation. Section 4.5 presents the
subtraction procedure, which corresponds to an algorithmic implementation
of the entailment relation. Section 4.6 presents the typing judgment for
logical expressions. Section 4.7 presents our algorithmic typing rules, which
define the judgment {{Γ}} 𝑡 {{Γ′}}. Finally, section 4.8 presents soundness
results.

Throughout the rest of this manuscript, we assume a substitution operator for
every entity. Concretely, given a map 𝜎 associating variable names to values,
we write Subst{𝜎}(𝑋) the substitution of the bindings from 𝜎 throughout
𝑋 .

4.1 Grammar of resources

As mentioned earlier, a context Γ decomposes as ⟨𝐸 | 𝐹 ⟩, where 𝐸 contains
pure resources and 𝐹 contains linear resources. A pure resource describes a
fact that remains true until the end of the program, or describes a program
variable permanently bound to a given value. Pure resources may be freely
duplicated during typechecking. Linear resources describe the ownership

70 4 Computing program resources: Contexts

1: Function contracts may appear in typ-
ing contexts, while typing contexts are in-
volved in the statement function contracts.
This form of impredicativity is standard in
higher-order separation logic [Cha20a].
2: In formalizations of separation logic,
HProp is typically defined as “state −→logic
Prop”, where state denotes the type of
a memory state, however this definition
needs not be revealed to the OptiTrust user.

of a given subset of the memory. Each linear resource describes a fragment
of memory. Two full linear resources that appear in a same context must
describe disjoint parts of the memory. A given full linear resource may
be split into fractional resources, in which case several fractional linear
resources may cover the same parts of memory. Subsequently, resources
that were split may be joined back together. In any case, a linear resource
cannot be duplicated and cannot be silently dropped. We next describe the
grammar of pure and of linear resources.

Pure resources The pure part of a typing context contains resources that
are bindings of the form “𝑥 : 𝜏”, where 𝜏 corresponds either to an OptiC
type or to a logical type. An OptiC type is denoted by the meta-variable 𝜏 . A
logical type corresponds to a type from higher-order logic. Thus, intuitively,
the pure part of a typing context Γ can be thought of as an interleaving
of a traditional program typing context, which binds immutable program
variables to OptiC types, and a Rocq context, which binds ghost variables
to Rocq types. Let us give examples of bindings that may appear in a pure
context—that is, in the pure part of a context :

▶ “𝜏 : Type” quantifies a type variable, useful for expressing polymor-
phism in Opti𝜆.

▶ “𝑥 : 𝜏” quantifies a variable of type 𝜏 ; and “𝑥 : 𝜏” quantifies a variable
with the OptiC type 𝜏 .

▶ “𝑓 : 𝜏1 −→logic 𝜏2” quantifies a logical function that takes an argument of
type 𝜏1 and returns an argument of type 𝜏2. Logical functions cor-
responds to functions that are pure and terminating. “𝑓 : ∀(𝑥1 :
𝜏1) (𝑥2 : 𝜏2), 𝜏3” quantifies a type dependent logical function with
two arguments. In that example, 𝑥1 can appear in 𝜏2 and 𝜏3, and 𝑥2 can
appear in 𝜏3. In practice the non-dependent logical function syntax
“(𝜏1 × ... × 𝜏𝑛) −→logic 𝜏0” is syntactic sugar for “∀(𝑥1 : 𝜏1)...(𝑥𝑛 : 𝜏𝑛), 𝜏0”
with all 𝑥𝑖 fresh from all 𝜏 𝑗 .

▶ “𝑃 : Prop” quantifies an abstract proposition; and “𝑄 : 𝜏 −→logic Prop”
quantifies an abstract logical predicate over values of type 𝜏 .

▶ “𝑝 : 𝑃” quantifies a proof witness of a proposition 𝑃 ; for example
“𝑝 : 𝑖 > 0” captures the assumption that 𝑖 is positive.

▶ “𝑝 : Spec(𝑓 , [𝑎1, ..., 𝑎𝑛], 𝛾)” describes a function specification1 assert-
ing that the function 𝑓 expects arguments named 𝑎𝑖 and admits the
function contract 𝛾 .

▶ “𝐻 : HProp” quantifies an abstract heap predicate2, and “𝐼 : int −→logic
HProp” quantifies an abstract invariant parameterized by an integer.

Linear resources The linear part of a typing context contains resources.
A resource is described by a binding of the form “𝑦 : 𝐻”, where 𝐻 is a heap
predicate, and where 𝑦 is a name. For example, “𝑦 : 𝑝 ⇝ Cell” is a resource.
This name 𝑦 is used in particular to refer to resources in usage maps. A heap
predicate 𝐻 describes ownership of a memory region. When a linear context
contains several resources, each resource must describe a disjoint part of
the memory. Interestingly, heap predicates guarantee the absence of hidden
aliasing.

Table 4.1 gives the grammar of the currently supported heap predicates.
These heap predicates have already been discussed in chapter 2, but we
introduce here math notations making the type annotations explicit, and
give more details in the following paragraphs.

4.1 Grammar of resources 71

Table 4.1: Grammar of heap predicates. User-defined representation predicates are left to future work.

Syntax in OptiC Syntax in the theory Description

𝑝 ⇝ Cell 𝑝 ⇝ Cell𝜏 gives access to the cell at address 𝑝 of type 𝜏
𝑝 ↦→ 𝑣 𝑝 ↦→ 𝑣 gives access to the cell at address 𝑝 containing 𝑣

𝑝 ⇝ UninitCell 𝑝 ⇝ UninitCell𝜏 gives write-only access to the cell at address 𝑝
for 𝑖 in 𝑅 → 𝐻 (𝑖) ★𝑖∈𝑅 𝐻 (𝑖) union of resources 𝐻 (𝑖), for 𝑖 in the range 𝑅

_RO(𝛼, 𝐻) 𝛼𝐻 read-only version of the resource 𝐻 with fraction 𝛼
_Dealloc(𝑝, 𝐻) Dealloc(𝑝, 𝐻) allows to free 𝑝 by giving away the resource 𝐻
_Wand(𝐻1, 𝐻2) 𝐻1 −

★

𝐻2 allows transforming 𝐻1 into 𝐻2 once (using a ghost instruction)

Table 4.2: Syntactic sugar for frequently used heap predicates.

Syntax in OptiC Syntax in the theory Desugared version

𝑝 ⇝ Array(𝑛) 𝑝 ⇝ Array𝜏 (𝑛) ★𝑖∈0..𝑛 𝑝 ⊞ 𝑖 ⇝ Cell𝜏
𝑝 ⇝ Matrix1(𝑛) 𝑝 ⇝ Matrix1𝜏 (𝑛) ★𝑖∈0..𝑛 𝑝 ⊞ mIndex1(𝑛, 𝑖) ⇝ Cell𝜏

𝑝 ⇝ Matrix2(𝑚, 𝑛) 𝑝 ⇝ Matrix2𝜏 (𝑚,𝑛) ★𝑖∈0..𝑚★𝑗∈0..𝑛 𝑝 ⊞ mIndex2(𝑚,𝑛, 𝑖, 𝑗) ⇝ Cell𝜏
𝑝 ⇝ Array(𝑛, 𝑀) 𝑝 ⇝ Array(𝑛, 𝑀) ★𝑖∈0..𝑛 𝑝 ⊞ 𝑖 ↦→ 𝑀 (𝑖)

𝑝 ⇝ Matrix1(𝑛, 𝑀) 𝑝 ⇝ Matrix1(𝑛, 𝑀) ★𝑖∈0..𝑛 𝑝 ⊞ mIndex1(𝑛, 𝑖) ↦→ 𝑀 (𝑖)
𝑝 ⇝ Matrix2(𝑚, 𝑛, 𝑀) 𝑝 ⇝ Matrix2(𝑚, 𝑛, 𝑀) ★𝑖∈0..𝑚★𝑗∈0..𝑛 𝑝 ⊞ mIndex2(𝑚,𝑛, 𝑖, 𝑗) ⇝ 𝑀 (𝑖, 𝑗)
𝑝 ⇝ UninitArray(𝑛) 𝑝 ⇝ UninitArray𝜏 (𝑛) ★𝑖∈0..𝑛 𝑝 ⊞ 𝑖 ⇝ UninitCell𝜏

𝑝 ⇝ UninitMatrix1(𝑛) 𝑝 ⇝ UninitMatrix1𝜏 (𝑛) ★𝑖∈0..𝑛 𝑝 ⊞ mIndex1(𝑛, 𝑖) ⇝ UninitCell𝜏
𝑝 ⇝ UninitMatrix2(𝑚, 𝑛) 𝑝 ⇝ UninitMatrix2𝜏 (𝑚,𝑛) ★𝑖∈0..𝑚★𝑗∈0..𝑛 𝑝 ⊞ mIndex2(𝑚,𝑛, 𝑖, 𝑗) ⇝ UninitCell𝜏

The resource 𝑝 ⇝ Cell𝜏 corresponds to the ownership of a single cell of type
𝜏 , located at address 𝑝 . Table 4.2 presents syntactic sugar constructions for
commonly used heap predicates. For example, the resource 𝑝 ⇝ Array𝜏 (𝑛)
is syntactic sugar for★𝑖∈0..𝑛 𝑝 ⊞ 𝑖 ⇝ Cell𝜏 . This resource corresponds to
the ownership of the set of all the cells in the array. The big-star symbol cor-
responds to the iterated separating conjunction of separation logic. Likewise,
𝑝 ⇝ Matrix1𝜏 (𝑚) is the syntactic sugar for one-dimensional matrices, and
𝑝 ⇝ Matrix2𝜏 (𝑚, 𝑛) is syntactic sugar for two-dimensional matrices. This
pattern then generalizes for more dimensions.

We leave it to future work to provide mechanisms allowing the user to define
representation predicates [Rey02]

[Rey02]: Reynolds (2002), Separation Logic:
A Logic for Shared Mutable Data Structuresfor custom data types.

Alternative permissions with models For users wanting to work with
functional correctness invariants, instead of heap predicates of the form
𝑝 ⇝ Cell𝜏 we provide the more precise heap predicate 𝑝 ↦→ 𝑣 which
corresponds to the ownership of a cell located at address 𝑝 and containing
the value 𝑣 . We call such value 𝑣 a model for the cell. In practice, models
might be variables in the pure context, or pure expressions describing a
value, like we saw in section 2.3.2. Like for permissions without models, we
define 𝑝 ⇝ Array(𝑛, 𝑀), 𝑝 ⇝ Matrix1(𝑛, 𝑀) and 𝑝 ⇝ Matrix2(𝑚, 𝑛, 𝑀)
as syntactic sugar.

The rest of the heap predicates present in table 4.1 are common both with
and without models and are explained in the following paragraphs.

Read-only fractions Following standard separation logic, we represent
read-only resources using fractional resources [Boy03; Jun+18a]. Intuitively,
possessing a non-zero fraction of a memory region gives read-only access to
this region. Possessing the full fraction (i.e. 1) of a memory region gives read-
write exclusive access to this region. These memory regions are abstracted by

[Boy03]: Boyland (2003), Checking Interfer-
ence with Fractional Permissions
[Jun+18a]: Jung et al. (2018), Iris from the
ground up: Amodular foundation for higher-
order concurrent separation logic

72 4 Computing program resources: Contexts

3: Heap predicates using disjunction or
existential quantifiers cannot be merged
together in the general case. Indeed, the
ressource 1

2 (𝑝 ⇝ Cell ∨ 𝑞 ⇝ Cell) ★
1
2 (𝑝 ⇝ Cell ∨ 𝑞 ⇝ Cell) , does not im-
ply a permission to write in either 𝑝 or 𝑞,
while a permission 𝑝 ⇝ Cell ∨ 𝑞⇝ Cell
does. We discuss further in section 7.2 how
we could accomodate in the future more
complex heap predicates with disjunction
or existential quantification.

4: In standard separation logic, 1
2 (𝑝 ⇝

Cell) ★ 1
2 (𝑝 ⇝ Cell) is different from

1
2 (𝑝 ⇝ Cell ★ 𝑝 ⇝ Cell) because the
latter is never satisfiable. Indeed, 𝑝 ⇝
Cell★𝑝 ⇝ Cellmentions 𝑝 twice so it can-
not be true for any memory region, there-
fore taking a fraction 1

2 of such region is
not possible either. Unbounded separation
logic resolves the issue by considering that
temporary memory regions can possess a
resource with a fraction bigger than one,
but that such non-standard fractions are
forbidden on memory regions described
at the level of Hoare triples, ensuring the
usual non-aliasing properties.
[DMS22]: Dardinier et al. (2022), Fractional
resources in unbounded separation logic

5: Some separation logic frameworks
reuse the permission 𝑝 ↦→ 𝑣 to encode
uninitialized permissions by adding a spe-
cial uninitialized value often denoted ⊥.
Then when reading a cell, one must prove
that the value is not ⊥. We believe that
a dedicated uninitialized representation
predicate is easier to handle in our case.

heap predicates and therefore fractions can be used on those heap predicates
and form read-only linear resources.

For any fraction 𝛼 and heap predicate 𝐻 , if we have a resource 𝛼𝐻 at hand
in the context, we can split it into two disjoint read-only permissions 𝛽𝐻
and (𝛼 − 𝛽)𝐻 . This splitting operation can be performed for any fraction 𝛽

such that 0 < 𝛽 < 𝛼 . In that case, we can alternatively say that a subfraction
𝛽𝐻 was carved out of the initial permission 𝛼𝐻 .

For simple enough heap predicates3, such as all those built from construc-
tions presented in table 4.1, possessing both 𝛼𝐻 and 𝛽𝐻 is equivalent to
possessing the single resource (𝛼 +𝛽)𝐻 . In practice, OptiTrust currently only
manipulates heap predicates such that this equivalence holds. This means
that two fractions of the same heap predicate can always be merged together,
to reconstitute bigger fractions.

Every time our typechecker requires a read-only permission on𝐻 in a context
containing 𝛼𝐻 , it carves out a subfraction 𝛽𝐻 out of 𝛼𝐻 . This strategy
ensures that we always keep around a fraction of the read-only resources
initially available. These fractions may be useful for typing subsequent
terms. When a read-only permission is returned after being used, our typing
algorithm eagerly merges back 𝛽𝐻 and (𝛼 − 𝛽)𝐻 into the original form 𝛼𝐻 .
Interestingly, carve-out operations may be performed in cascade, and merge-
back operations can be performed in any order. To support this general
pattern, we introduce the operation CloseFracs, which appears in our typing
rules. The operation CloseFracs repeatedly applies the following rewrite
rule:

(𝛼 − 𝛽1 − ... − 𝛽𝑛)𝐻 ★ (𝛽𝑖 − 𝛾1 − ... − 𝛾𝑚)𝐻 −→
(𝛼 − 𝛽1 − ... − 𝛽𝑖−1 − 𝛾1 − ... − 𝛾𝑚 − 𝛽𝑖+1 − ... − 𝛽𝑛)𝐻

In general, if we start with a full permission 𝐻 , that is 1𝐻 , then whatever
the order in which we carve out and merge back all the fractions of 𝐻 , we
ultimately recover 1𝐻 .

To simplify carve, merge and unification operations, during typechecking
we normalize heap predicates of the form★𝑖∈𝑅 𝛼𝐻𝑖 into 𝛼 (★𝑖∈𝑅 𝐻𝑖). While
this operation can sometimes be unsound in classical separation logic4,
we decided to use a variant called unbounded separation logic [DMS22] to
circumvent this issue.

Resources for uninitialized cells Separation logic can guarantee that a
program never reads from an uninitialized memory cell.

In order to do so, allocation of a memory cell at address 𝑝 does not produce
the regular heap predicate 𝑝 ⇝ Cell or 𝑝 ↦→ 𝑣 but an uninitialized predicate
written 𝑝 ⇝ UninitCell in OptiTrust5.

Then, the specification of the read operation requires a permission of the
form 𝛼 (𝑝 ⇝ Cell) or 𝛼 (𝑝 ↦→ 𝑣), neither of which can be extracted from a
permission of the form 𝑝 ⇝ UninitCell.

On the contrary, the specification of a write operation requires a permission
of the form 𝑝 ⇝ UninitCell, and produces the full permission 𝑝 ⇝ Cell
(or alternatively a permission of the form 𝑝 ↦→ 𝑣). In order to be able to
execute a write operation when we already have a full permission, we allow
a permission 𝑝 ⇝ Cell (or 𝑝 ↦→ 𝑣) to be downgraded into 𝑝 ⇝ UninitCell
at any time.

4.2 Construction and operations on typing contexts 73

More generally, as detailed further on (in section 4.5), when our typechecker
encounters a term that requires 𝑝 ⇝ UninitCell in a context where the plain
resource 𝑝 ⇝ Cell or 𝑝 ↦→ 𝑣 is available, it weakens that plain resource into
𝑝 ⇝ UninitCell on-the-fly. This weakening can also be performed under
separating conjunctions. We write Uninit(𝐻) such weakening operation on
an arbitrary heap predicate 𝐻 . It returns a heap predicate when it succeeds
and ⊥ otherwise. If 𝐻 is already an uninitialized resource, then Uninit(𝐻) =
𝐻 .

Once again, we define uninitialized arrays and matrices as syntactic sugar for
iterated separating conjunction of uninitialized cells as stated in table 4.2.

Permission to free In OptiTrust, heap allocations return two permis-
sions: an uninitialized heap predicate 𝐻 of the form 𝑝 ⇝ UninitCell𝜏 , 𝑝 ⇝
UninitArray𝜏 (𝑛), 𝑝 ⇝ UninitMatrix1𝜏 (𝑛), or 𝑝 ⇝ UninitMatrix2𝜏 (𝑚, 𝑛)
and a second permission written Dealloc(𝑝, 𝐻). Such permission Dealloc(𝑝,
𝐻) can be later used together with 𝐻 to free the allocated cells. The sepa-
ration between the permission to write and the permission to free helps to
make specifications and transformations more generic: indeed, unless the
code needs to free memory, the permission Dealloc(𝑝, 𝐻) can be simply
ignored.

Magic wand permission As we saw in the case studies, the ghost opera-
tion focus that extracts a permission to a specific cell from a permission to
the full array also generates a second permission representing the rest of the
array. In separation logic, such remainder permission is usually modelled
by a heap predicate called magic wand. A magic wand is denoted 𝐻1 −

★

𝐻2
where𝐻2 is a big heap predicate from which𝐻1 was extracted. The predicate
𝐻1 −

★

𝐻2 can then be recombined with 𝐻1 to get 𝐻2 back. In OptiTrust, such
recombination of 𝐻1 with 𝐻1 −

★

𝐻2 is never performed automatically, but
can be performed by a ghost operation.

4.2 Construction and operations on typing
contexts

Construction of contexts A context Γ takes the form ⟨𝐸 | 𝐹 ⟩, where 𝐸
consists of a list of pure resources and 𝐹 consists of a set of linear resources. In
its expanded form, a context is written ⟨𝑥0 : 𝜏0, ..., 𝑥𝑛 : 𝜏𝑛 |𝑦0 : 𝐻0, ..., 𝑦𝑛 : 𝐻𝑛⟩,
where 𝑥𝑖 denotes a pure resource of type 𝜏𝑖 , and 𝑦𝑖 denotes a linear resource
with heap predicate 𝐻𝑖 . The names 𝑥𝑖 and 𝑦𝑖 must all be distinct. The pure
part 𝐸 is a telescope: the variable 𝑥𝑖 may occur in any 𝜏 𝑗 where 𝑖 < 𝑗 . Moreover,
all the pure variables 𝑥𝑖 scope over the linear formulas 𝐻 𝑗 . The order of the
linear resources is irrelevant.

The pure part 𝐸 of a context Γ may contain bindings of a special form, called
alias bindings. Such a binding takes the form “𝑥𝑖 := 𝑣𝑖 : 𝜏𝑖”. The intention
is that, in presence of such an alias, our typechecker eagerly replaces 𝑥𝑖
with 𝑣𝑖 during internal unification operations. An alias binding corresponds
exactly to a local definition in Rocq. An alias binding “𝑥𝑖 := 𝑣𝑖 : 𝜏𝑖” may also
be interpreted as a conventional binding that associates 𝑥𝑖 to a singleton
type whose sole inhabitant is 𝑣𝑖 .

Following standard practice in proof assistants, variable names that are
nowhere mentioned may be hidden. For example the context ⟨𝑝 : ptr(int), 𝑛 :
int, 𝑛 > 0 | 𝑝 ⇝ Cellint⟩ contains two anonymous resources: 𝑛 > 0 and

74 4 Computing program resources: Contexts

[Fla+02]: Flanagan et al. (2002), Extended
Static Checking for Java

[Fil03]: Filliâtre (2003), Why: a multi-
language multi-prover verification tool

𝑝 ⇝ Cellint. Internally, though, all context items are identified by a variable
name.

Bindings of the special result variable In contexts, we use a special
variable res as a canonical name to denote the result value of an expression.
Therefore, if 𝑡 has a non-void type 𝜏 then, in the triple {{Γ}} 𝑡 {{Γ′}}, this
variable res may be bound in Γ′ as an alias. The variable res also appears
in function contracts, to specify properties about the return value of the
function. The use of a dedicated name such as res is common practice in
program verification tools, such as ESC/Java [Fla+02] or Why3 [Fil03].

Projection of context components We define two projection functions.
For a context Γ = ⟨𝐸 |𝐹 ⟩, the projection “Γ.pure” returns 𝐸, and the projection
“Γ.linear” returns 𝐹 .

Syntax for contexts with one component As syntactic sugar, we define
[𝑥0 : 𝜏0, ..., 𝑥𝑛 : 𝜏𝑛] as ⟨𝑥0 : 𝜏0, ..., 𝑥𝑛 : 𝜏𝑛 | ∅⟩, for contexts that are entirely
pure. Furthermore, we allow ourselves to write 𝐹 to mean ⟨∅ | 𝐹 ⟩, where 𝐹
denotes a set of linear resources.

Separated conjunction of two contexts We write 𝐹1 ★ 𝐹2 the disjoint
union of two sets of linear resources. Furthermore, for two contexts Γ1 and
Γ2, we define Γ1 ⊙★ Γ2 as ⟨Γ1.pure, Γ2 .pure | Γ1.linear ★ Γ2.linear⟩, assuming
the variables in this result are well-scoped (that is, Γ1 and Γ2 have disjoint
domains and the formulas in Γ2 are well-scoped in Γ1 .pure). Observe that
[𝐸] ⊙★ 𝐹 = ⟨𝐸 | 𝐹 ⟩.

Iterated separating conjunction of a context Consider a linear context
𝐹 of the form (𝑦0 : 𝐻0, ..., 𝑦𝑛 : 𝐻𝑛). We define★𝑖∈𝑅 𝐹 as (𝑦0 :★𝑖∈𝑅 𝐻0, ..., 𝑦𝑛 :
★𝑖∈𝑅 𝐻𝑛), that is, the iterated separating conjunction distributes pointwise
over the set of linear resources.

We also define an iterated separating conjunction for contexts containing
pure resources. This notion is especially useful when working with models.
Before giving the formal definition, let us take a step back to understand
what such an iterated separating conjunction means in presence of pure
resources. Take the context Γ𝑖 = ⟨𝑛 : int, 0 < 𝑛 < 100 | 𝑝 ⊞ 𝑖 ↦→ 𝑛⟩ that
asserts that there is an integer 𝑛 between 0 and 100 such that 𝑝 ⊞ 𝑖 points to
𝑛. Intuitively, the iterated separating conjunction ⊙★𝑖∈𝑅 Γ𝑖 represents the fact
that Γ𝑖 holds on disjoint parts of memory for each 𝑖 in range 𝑅. In that case,
this means that each cell 𝑝 ⊞ 𝑖 can point to a different integer 𝑛. Therefore,
the conjunction must allow for a different choice of 𝑛 for each 𝑖 . In OptiTrust,
we allow that by using a function instead of the scalar 𝑛 in the conjunction.
On our example, this gives ⊙★𝑖∈𝑅 Γ𝑖 = ⟨𝑛 : int −→logic int, (∀(𝑖 : int) (𝑥𝑅 : 𝑖 ∈
𝑅), 0 < 𝑛(𝑖) < 100) |★𝑖∈𝑅 𝑝 ⊞ 𝑖 ↦→ 𝑛(𝑖)⟩.

Notice that, in ⊙★𝑖∈𝑅 Γ𝑖 , the resource 𝑛 is modelled by a simple function
of type int −→logic int whose values are irrelevant outside the range 𝑅. We
could alternatively consider modelling 𝑛 with a dependent function of type
∀(𝑖 : int) (_ : 𝑖 ∈ 𝑅), int, following the same pattern as the hypothesis
0 < 𝑛 < 100 in the example. Functions with irrelevant values outside the
range simplify resource handling compared to dependent function with
range checks by avoiding the need for providing a proof of range inclusion
as an extra argument at every coefficient access. However, such use of
irrelevant values outside the range only makes sense for bindings with

4.2 Construction and operations on typing contexts 75

obviously inhabited types such as int for which irrelevant arbitrary values
are easy to find. In this version of OptiTrust, we decided that obviously
inhabited types are the program types and the type of fractions frac. In
particular, all types in Prop (like 0 < 𝑛 < 100 in the example) are not
obviously inhabited, and therefore use dependent functions for iterated
separating conjunction.

In order to formally define a notion of iterated separating conjunction for
contexts that also contain pure resources, we need to generalize slightly
our iterated separating conjunction operator: the syntax★𝑥𝑅

𝑖∈𝑅 𝐻 allows
using a variable 𝑥𝑅 representing a proof of the fact that 𝑖 is in range 𝑅

(i.e. 𝑥𝑅 has type 𝑖 ∈ 𝑅) inside the expression 𝐻 . This generalized version
also distributes pointwise over sets of linear resources. Then, we define the
iterated separating conjunction over a context as follows:

𝑥𝑅⊙★
𝑖∈𝑅
⟨∅ | 𝐹 ⟩ =

𝑥𝑅

★
𝑖∈𝑅

𝐹

𝑥𝑅⊙★
𝑖∈𝑅
⟨𝑥 : 𝜏, 𝐸 | 𝐹 ⟩ =


[𝑥 : 𝜏] ⊙★ ⊙★𝑥𝑅

𝑖∈𝑅 ⟨𝐸 | 𝐹 ⟩ if 𝑥 does not occur in ⟨𝐸 | 𝐹 ⟩ and 𝑖 not occur in 𝜏
[𝑥 : int −→logic 𝜏] ⊙★ ⊙★𝑥𝑅

𝑖∈𝑅 Subst{𝑥 := 𝑥 (𝑖)}(⟨𝐸 | 𝐹 ⟩) if 𝜏 is obviously inhabited
[𝑥 : ∀(𝑖 : int) (𝑥𝑅 : 𝑖 ∈ 𝑅), 𝜏] ⊙★ ⊙★𝑥𝑅

𝑖∈𝑅 Subst{𝑥 := 𝑥 (𝑖, 𝑥𝑅)}(⟨𝐸 | 𝐹 ⟩) otherwise

Fraction of linear contexts Consider a linear context 𝐹 of the form
(𝑦0 : 𝐻0, ..., 𝑦𝑛 : 𝐻𝑛). We define 𝛼𝐹 as (𝑦0 : 𝛼𝐻0, ..., 𝑦𝑛 : 𝛼𝐻𝑛), that is, the
read-only fraction distributes pointwise over the set of linear resources.

For a context with pure resources, we can define 𝛼 ⟨𝐸 |𝐹 ⟩ as ⟨𝐸 |𝛼𝐹 ⟩. However,
this does not give the expected properties for merging two context fractions
since, for instance, in general, 12Γ⊙★

1
2Γ is not the same as Γ. A specific instance

where those differ is given by Γ = ⟨𝑝 : ptr(int) | 𝑝 ⇝ Cellint⟩. In that case,
the pure binding 𝑝 might refer to different locations in each occurrence of Γ.
In the rest of this manuscript, we therefore never take a fraction of a context
with pure resources.

Filtering on contexts We define a filtering operation, written𝐺 p·𝑋 , where
𝐺 is a set of resources (linear or pure) and 𝑋 is a set of variable names. This
operation computes a set of resources where only the entries from 𝐺 whose
name belongs to the set𝑋 are kept. Filtering also applies to contexts: ⟨𝐸 |𝐹 ⟩p·𝑋
is defined as ⟨𝐸p·𝑋 | 𝐹 p·𝑋 ⟩.

Specialization of contexts In order to adapt a function contract for a
specific call to that function, we introduce a specialization operation. At
function calls, function contracts are specialized on the arguments, as well as
on the ghost arguments, on which the function is applied. In case of a poly-
morphic function, type arguments are specialized as well. The specialization
operation takes the form SpecializeΓ0 {𝜎}(Γ). The definition of this operation
is fairly technical, yet it is a direct generalization of the process of typecheck-
ing function applications in higher-order logics. Rather than presenting a
technical definition here, let us illustrate the specialization operation on an
example. The technical definition is described in appendix B.

Consider a function 𝑓 whose input is described by a context Γ = ⟨𝐴 :
Type, 𝐶 : Type, 𝑛 : int, 𝑝 : ptr(𝐴), 𝑏 : 𝐴, 𝑐 : 𝐶 | 𝑝 ⇝ Matrix1𝐴 (𝑛)⟩, where
𝐴 and 𝐶 are type arguments, where 𝑝 and 𝑛 denote physical arguments,

76 4 Computing program resources: Contexts

and where 𝑏 and 𝑐 are ghost arguments. Consider a function call of the
form 𝑓 (7, 𝑞), where 𝑞 is a program variable of type ptr(int) in scope at the
call site. This call specializes 𝑛 to 7 and 𝑝 to 𝑞, hence it is described by a
substitution 𝜎 = (𝑛 := 7, 𝑝 := 𝑞). Let Γ0 be the context describing the pure
variables bound at the call site. In particular, we have (𝑞 : ptr(int)) ∈ Γ0.
For the example considered, the specialization operation yields the context:
⟨𝐶 : Type, 𝑏 : int, 𝑐 : 𝐶 | 𝑞 ⇝ Matrix1int (7)⟩. Observe how the types and
arguments being specialized (namely 𝐴, 𝑛 and 𝑝) are eliminated from the
pure part of the context, and the corresponding values (namely int, 7 and 𝑞)
are substituted in the entities that remain.

Note that in general, SpecializeΓ0 {𝜎}(Γ) can fail, because for instance the
arguments given for the function call do not have typesmatching the function
contract, or because 𝜎 contains bindings that are not in Γ.pure. In such cases,
the specialization operation generates a typing error.

Renaming on contexts A renaming operation is involved when the
programmer explicitly specifies the names to assign to the ghost variables
obtained as part of the result of a function call. The operation Rename{𝜌}(Γ)
renames certain keys from Γ. Here, 𝜌 denotes a map that associates resource
names to other resource names. The keys from 𝜌 may or may not be bound
in Γ. The values from 𝜌 must be fresh from Γ. For example, Rename{𝑥 :=
𝑥 ′, 𝑦 := 𝑦′}(⟨𝐸1, 𝑥 : 𝜏, 𝐸2 | 𝐹 ⟩), where 𝑦 has no occurrence in 𝐸1, 𝐸2
or 𝐹 , evaluates to ⟨𝐸1, 𝑥 ′ : 𝜏, Subst{𝑥 := 𝑥 ′}(𝐸2) | Subst{𝑥 := 𝑥 ′}(𝐹)⟩.
As another example, Rename{𝑦 := 𝑦′}(⟨𝐸 | 𝐹1, 𝑦 : 𝐻, 𝐹2⟩) evaluates to
⟨𝐸 | 𝐹1, 𝑦′ : 𝐻, 𝐹2⟩.

4.3 Grammar of contracts

Every function and every loop carry a contract to guide the typechecker. We
next detail the grammar of contracts.

Function contracts A function definition annotated with a function con-
tract 𝛾 takes the form fun(𝑎1, ..., 𝑎𝑛)𝛾 ↦→ 𝑡 . The contract 𝛾 consists of two
contexts, one for the precondition, written𝛾 .pre, and one for the postcondition,
written 𝛾 .post. Intuitively, a function 𝑓 with arguments named 𝑎𝑖 and with
contract 𝛾 satisfies the separation logic triple {𝛾 .pre} 𝑓 (𝑎1, ..., 𝑎𝑛) {𝛾 .post}.
This property is formally captured by the proposition Spec(𝑓 , [𝑎1, ..., 𝑎𝑛], 𝛾),
which may appear in contexts.

Technically, a function contract 𝛾 takes the form {pre = Γpre ; post = Γpost}.
The precondition Γpre must contain all the formal parameters 𝑎𝑖 , and may
refer to any of the free variables in scope. The postcondition Γpost may also
refer to all these variables, as well as to the pure variables bound in the
precondition Γpre.

OptiC syntax for function contracts As we saw in chapter 2, the Op-
tiTrust user needs to provide function contracts in OptiC by using anno-
tations. In practice a function contract annotation consists of a series of
contract clauses, each adding one or several resources to the contract fol-
lowing the pattern shown in the following table:

4.3 Grammar of contracts 77

{} heapAlloc𝐶𝜏
() {[res : ptr(𝜏)] ⊙★ res⇝ 𝐶𝜏 ⊙★ Dealloc(res, res⇝ 𝐶𝜏)}

{[𝜏 : Type, 𝑎 : ptr(𝜏), 𝛼 : frac] ⊙★ 𝛼 (𝑎⇝ Cell𝜏)} get(𝑎) {[res : 𝜏] ⊙★ 𝛼 (𝑎⇝ Cell𝜏)}
{[𝜏 : Type, 𝑎 : ptr(𝜏), 𝑏 : 𝜏] ⊙★ 𝑎⇝ UninitCell𝜏 } set(𝑎, 𝑏) {𝑎⇝ Cell𝜏 }

{[𝜏 : Type, 𝑎 : ptr(𝜏), 𝐻 : HProp] ⊙★ Dealloc(𝑎, 𝐻) ⊙★ 𝐻 } free(𝑎) {}

Figure 4.1: Contracts assigned to key primitive functions; 𝜏 denotes a C type; 𝑎 and 𝑏 denote program variables. 𝐶𝜏 is either UninitCell𝜏 ,
UninitArray𝜏 (𝑛) , UninitMatrix1𝜏 (𝑛) , or UninitMatrix2𝜏 (𝑚, 𝑛) , for size expressions𝑚 and 𝑛. When models are enabled, get and set get a
more precise contract described in figure 4.2.

OptiC clause 𝛾 .pre 𝛾 .post

__requires("𝑥 : 𝜏"); ⟨𝑥 : 𝜏 |⟩ ⟨|⟩
__ensures("𝑥 : 𝜏"); ⟨|⟩ ⟨𝑥 : 𝜏 |⟩

__consumes("𝑦 : 𝐻"); ⟨|𝑦 : 𝐻 ⟩ ⟨|⟩
__produces("𝑦 : 𝐻"); ⟨|⟩ ⟨|𝑦 : 𝐻 ⟩
__modifies("𝑦 : 𝐻"); ⟨|𝑦 : 𝐻 ⟩ ⟨|𝑦 : 𝐻 ⟩

__preserves("𝑦 : 𝐻"); ⟨|𝑦 : 𝐻 ⟩ ⟨|𝑦 : 𝐻 ⟩
__reads("𝑦 : 𝐻"); ⟨𝛼 : frac | 𝑦 : 𝛼𝐻 ⟩ ⟨|𝑦 : 𝛼𝐻 ⟩

__writes("𝑦 : 𝐻"); ⟨|𝑦 : Uninit(𝐻)⟩ ⟨|𝑦 : 𝐻 ⟩

Every function contract can be expressed using exclusively a combination of
__requires, __ensures, __consumes and __produces clauses. Although
not strictly needed, the other four clauses __modifies, __preserves,
__reads and __writes provide syntactic sugar for common patterns, to
avoid useless repetitions in contracts. In practice, one clause can specify mul-
tiple resources at once. For example, __requires("x1: int, x2: int");
is interpreted as __requires("x1: int"); __requires("x2: int");.
In the version of OptiTrust presented in this PhD, the clauses __modifies
and __preserves are identical, but they convey different intentions. In
fact, using only one keyword everywhere would be counter-intuitive. The
clause __modifies should be used for predicates without models because
having for example 𝑝 ⇝ Cell both in the pre- and the post-condition allows
modifying the value stored in the cell without restoring the initial value at
the end. Conversely, the clause __preserves should be used for predicates
with models because having for example 𝑝 ↦→ 𝑣 both in the pre- and the
post-condition forces to restore the initial value of the cell at the end of the
function.

Contracts for primitive functions Figure 4.1 gives the contracts that
we axiomatize for the operations on heap cells—technically, we present
not their contracts, but the triples derived from their contracts, to improve
readability. These contracts illustrate key mechanisms of the formalism. A
heap allocation produces an uninitialized permission over a single cell or
a matrix and a permission to free these allocated cells. A write operation
requires an uninitialized permission and returns a full permission. A read
operation requires a read-only permission and returns it. A free operation
requires a permission to free, the associated uninitialized permission and
returns nothing. Recall that a full permission can be split into read-only
resources, and that it may be downgraded at any time into an uninitialized
permission. Additionally, we can see that bindings on res appear in output
contexts.

When typechecking functional correctness assertions, we need to use a more
precise version of the contracts for get and set, as described in the figure 4.2.
In that case, a read specifies that the returned value is equal to the current

78 4 Computing program resources: Contexts

{[𝜏 : Type, 𝑎 : ptr(𝜏), 𝛼 : frac, 𝑣 : 𝜏] ⊙★ 𝛼 (𝑎 ↦→ 𝑣)} get(𝑎) {[res := 𝑣 : 𝜏] ⊙★ 𝛼 (𝑎 ↦→ 𝑣)}
{[𝜏 : Type, 𝑎 : ptr(𝜏), 𝑏 : 𝜏] ⊙★ 𝑎⇝ UninitCell𝜏 } set(𝑎, 𝑏) {𝑎 ↦→ 𝑏}

Figure 4.2: Contracts assigned to get and set primitive functions when models are enabled; 𝜏 denotes a C type; 𝑎 and 𝑏 denote program
variables.

model, and a write returns a full permission with the written value as the
model.

Contracts for arithmetic operations are described later on, in section 4.6.

Contracts for ghost functions In addition to contracts for primitive heap-
manipulating functions, OptiTrust provides contracts for primitive ghost
functions. For example, the ghost function swap_groups allows swapping
two iterators (iterated separating conjunctions). It is involved for example in
the loop-swap operation, which is used in our case studies (chapter 2), and
which is presented further on in section 6.5. The transformation is specified
as shown below, where𝐻 is a heap predicate that depends on the two indices
𝑖 and 𝑗 . The type range corresponds to the type of loop ranges.

{[𝑅𝑖 : range, 𝑅 𝑗 : range, 𝐻 : (int, int) −→logic HProp] ⊙★★𝑖∈𝑅𝑖★𝑗∈𝑅 𝑗
𝐻 (𝑖, 𝑗)}

swap_groups
{★𝑗∈𝑅 𝑗 ★𝑖∈𝑅𝑖 𝐻 (𝑖, 𝑗)}

The OptiTrust user can define custom ghost functions to factorize repeti-
tive resource-manipulation patterns. Ghost functions are written and type-
checked like regular C functions, but their bodies are composed only by calls
to other ghost functions, sequences and range-based for loops. Importantly,
the body of a ghost function does not need to be executed, and simply serves
as a proof witness.

Loop contracts A for loop annotated with a loop contract 𝜒 takes the
form for (𝑖 ∈ 𝑅)𝜒 {𝑡}. The loop contract 𝜒 consists of a record structured as
follows:
vars = 𝐸vars Pure variables, scoping over the other contract components
excl = 𝛾excl Exclusive per-iteration resources

shrd =

{
reads = 𝐹reads Read only resources shared between iterations
inv = Γinv Sequential invariant, threaded through iterations

We call 𝐸vars the loop ghost variables. The variables from 𝐸vars scope over
𝛾excl, 𝐹reads and Γinv.

We call 𝛾excl the exclusive per-iteration contract. This 𝛾excl has the same
structure as a function contract, and may (and typically does) refer to
the loop index. 𝛾excl .pre.linear correspond to the consumed per-iteration re-
sources, and 𝛾excl .post.linear corresponds to the produced per-iteration re-
sources. 𝛾excl .pre.pure corresponds to pure bindings whose value can depend
on the iteration, but that must be chosen once before the loop starts. These
bindings can be used inside 𝛾excl .pre.linear and in 𝛾excl .post. 𝛾excl .post.pure
is a pure context of pure resources ensured by each iteration independently
of each other. These resource bindings can be used inside 𝛾excl .post.linear.

We call 𝐹reads the shared reads. In practice this context consists of read-only
resources. Resources in 𝐹reads cannot refer to the loop index. Each loop

4.4 Entailment 79

iteration receives a subfraction of each resource in 𝐹reads, and must give it
back at the end.

Finally, we call Γinv the sequential invariant. It corresponds to a standard loop
invariant in sequential separation logic, and it typically depends on the loop
index. Γinv.pure corresponds to pure resources that are given or assumed
at the beginning of each iteration, and that each iteration must choose or
ensure for the next one with the subsequent loop index. Similarly, Γinv.linear
corresponds to linear resources that are consumed at the beginning of each
iteration and that must be produced at the end of the iteration for the next
loop index.

OptiC syntax for loop contracts Likewith function contract annotations,
loop contract annotations in OptiC consist of a series of loop contract clauses,
some of which are syntactic sugar for common patterns. The loop contract
clauses are described by the following table:

OptiC clause 𝜒.vars 𝜒.excl.pre 𝜒.excl.post 𝜒.shrd.reads 𝜒.shrd.inv

__requires("𝑥 : 𝜏"); 𝑥 : 𝜏 ⟨|⟩ ⟨|⟩ ∅ ⟨|⟩
__xrequires("𝑥 : 𝜏"); ∅ ⟨𝑥 : 𝜏 |⟩ ⟨|⟩ ∅ ⟨|⟩
__xensures("𝑥 : 𝜏"); ∅ ⟨|⟩ ⟨𝑥 : 𝜏 |⟩ ∅ ⟨|⟩

__xconsumes("𝑦 : 𝐻"); ∅ ⟨|𝑦 : 𝐻 ⟩ ⟨|⟩ ∅ ⟨|⟩
__xproduces("𝑦 : 𝐻"); ∅ ⟨|⟩ ⟨|𝑦 : 𝐻 ⟩ ∅ ⟨|⟩
__xmodifies("𝑦 : 𝐻"); ∅ ⟨|𝑦 : 𝐻 ⟩ ⟨|𝑦 : 𝐻 ⟩ ∅ ⟨|⟩

__xpreserves("𝑦 : 𝐻"); ∅ ⟨|𝑦 : 𝐻 ⟩ ⟨|𝑦 : 𝐻 ⟩ ∅ ⟨|⟩
__xreads("𝑦 : 𝐻"); 𝛼 : frac ⟨|𝑦 : 𝛼𝐻 ⟩ ⟨|𝑦 : 𝛼𝐻 ⟩ ∅ ⟨|⟩

__xwrites("𝑦 : 𝐻"); ∅ ⟨|𝑦 : Uninit(𝐻)⟩ ⟨|𝑦 : 𝐻 ⟩ ∅ ⟨|⟩
__sreads("𝑦 : 𝐻"); 𝛼 : frac ⟨|⟩ ⟨|⟩ 𝑦 : 𝛼𝐻 ⟨|⟩

__srequires("𝑥 : 𝜏"); ∅ ⟨|⟩ ⟨|⟩ ∅ ⟨𝑥 : 𝜏 |⟩
__smodifies("𝑦 : 𝐻"); ∅ ⟨|⟩ ⟨|⟩ ∅ ⟨|𝑦 : 𝐻 ⟩

__spreserves("𝑦 : 𝐻"); ∅ ⟨|⟩ ⟨|⟩ ∅ ⟨|𝑦 : 𝐻 ⟩

Parallel loop contracts A loop is parallelizable if it can be typechecked
with an empty sequential invariant Γinv. Hence, we say that a loop contract
𝜒 is parallelizable, and write parallelizable(𝜒), when 𝜒.shrd.inv = ⟨|⟩.

4.4 Entailment

We next introduce the entailment judgment, written Γ ⇒ Γ′. The entail-
ment judgment can be used to assert that a context Γ obtained at a given
program point corresponds to a context Γ′ expected at that same point. For
example, the context at the end of a function body must entail the context
described by the postcondition of that function. The entailment judgment
Γ ⇒ Γ′ is a declarative judgment, for which we will present our algorithmic
implementation in the next section.

The literature on separation logic includes two types of entailment: linear and
affine entailment relations. OptiTrust is based on a linear entailment relation,
disallowing resources to be silently “dropped”. The benefits of using linear
entailment is that it allows checking the absence of memory leaks—every
piece of heap allocated data must eventually be freed.

Usually, in separation logic, the entailment relation is defined on linear
resources only. In OptiTrust we extend this standard relation to apply over
contexts with pure resources. In the entailment ⟨𝐸1 | 𝐹1⟩ ⇒ ⟨𝐸2 | 𝐹2⟩ variables

80 4 Computing program resources: Contexts

from the pure context 𝐸1 can be used inside the resources in 𝐸2 and 𝐹2.
Intuitively, the aforementioned entailment can be read as “In a context with
pure resources 𝐸1, is it possible to choose values for bindings in 𝐸2 such
that any memory region described by 𝐹1 is also described by 𝐹2”. A formal
semantic definition of this entailment relation can be found in definition C.9
in the appendix.

For example, the following entailments hold:

▶ ⟨𝑥 : loc | 𝑥 ⇝ Cell⟩ ⇒ ⟨𝛼 : frac | 𝛼 (𝑥 ⇝ Cell), (1 − 𝛼) (𝑥 ⇝ Cell)⟩

▶ ⟨𝑦 : loc | 𝑦 ⇝ Cell⟩ ⇒ ⟨|𝑦 ⇝ UninitCell⟩

▶ ⟨𝐴 : loc, 𝑚 : int, 𝑛 : int |★𝑖∈0..𝑚★𝑗∈0..𝑛 𝐴 ⊞ mIndex2(𝑚,𝑛, 𝑖, 𝑗) ⇝
Cell⟩ ⇒ ⟨|★𝑗∈0..𝑛★𝑖∈0..𝑚 𝐴 ⊞ mIndex2(𝑚,𝑛, 𝑖, 𝑗) ⇝ Cell⟩

▶ ⟨𝑛 : int, 𝑛 even|⟩ ⇒ ⟨𝑚 : int, 𝑛 = 2𝑚 |⟩.

However, the entailment ⟨𝑥 : loc | 𝑥 ⇝ Cell⟩ ⇒ ⟨|⟩ does not hold because
linear resources cannot be dropped, and the entailment ⟨𝑥 : loc|𝑥 ⇝ Cell⟩ ⇒
⟨𝑥 : loc |𝑥 ⇝ Cell, 𝑥 ⇝ Cell⟩ does not hold because linear resources cannot
be duplicated.

As a shorthand, we write Γ ⇔ Γ′ to assert that entailment holds both ways,
that is, to assert that the conjunction (Γ ⇒ Γ′) ∧ (Γ′ ⇒ Γ) holds.

4.5 Subtraction

The subtraction operation provides a sound (yet incomplete) algorithmic
implementation of the entailment judgment. The subtraction operation not
only allows checking the validity of an entailment, it also enables a certain
amount of inference. At a high level, given Γ and Γ′, the subtraction operation
computes the frame, written 𝐹 , which denotes the set of linear resources
such that Γ ⇒ Γ′ ⊙★ 𝐹 . The subtraction operation also infers the instantiation
map 𝜎 providing the witnesses for the instantiations of the variables that are
bound (and therefore existentially quantified) in Γ′ .pure. Such a subtraction
operator is found in most—if not all—practical verification frameworks based
on separation logic.

The typing rules of OptiTrust actually make use of two variants of the sub-
traction operation. The core subtraction operation, written Γ ⊟ Γ′, is able
to convert uninitialized resources into full resources on-the-fly, however
it does not support splitting read-only resources on-the-fly. The carving
subtraction operation, written Γ ⊖ Γ′, extends the former with the feature of
carving out a fraction of a read-only permission from Γ every time a corre-
sponding read-only permission is requested in Γ′. (Carving was described in
section 4.1.)

The core subtraction operation Γ ⊟ Γ′ is formally specified as a partial
operation. It may fail (that is, return ⊥) if a resource in Γ′ cannot be matched
against a corresponding resource in Γ. Otherwise, the operation returns a
result of the form (𝜎, 𝐹). When Γ ⊟ Γ′ = (𝜎, 𝐹), then both the entailments
Γ ⇒ Γ′ ⊙★ 𝐹 and Γ ⇒ SpecializeΓ{𝜎}(Γ′) ⊙★ 𝐹 hold. In particular, the subtrac-
tion operation can be used to prove an entailment Γ ⇒ Γ′, by checking that
Γ ⊟ Γ′ evaluates to (𝜎, ∅) for some 𝜎 .

The subtraction operation is implemented following a standard scheme:

(1) The substitution map 𝜎 is initialized with bindings that associate each
of the pure variables of Γ′ to a fresh unification variable.

4.6 Typechecking of logical expressions 81

(2) Each of the linear resources from Γ′ are syntactically matched against a
corresponding resource from Γ. This process may trigger unifications,
resulting in partial or total resolution of certain unification variables.

If Γ′ requests an uninitialized linear resource 𝐻 ′ and if Γ contains a
resource 𝐻 such that Uninit(𝐻) unifies with 𝐻 ′, then our algorithm
applies this on-the-fly weakening from 𝐻 to Uninit(𝐻) to instantiate
𝐻 ′.

(3) The items from Γ that remain at the end are assigned to the frame 𝐹 .

The carving subtraction operation Γ ⊖ Γ′ behaves almost like Γ ⊟ Γ′ but
outputs a triple (𝐸frac, 𝜎, 𝐹) where 𝜎 and 𝐹 are the same as in core subtraction
and 𝐸frac is a pure context for generated fractions containing only bindings
of the form 𝛼 : frac. At step (1), 𝐸frac is initialized as an empty environment.
Compared to the core subtraction, the carving subtraction refines step (2)
as follows. If Γ′ requests a fractional resource 𝛼𝐻 , if 𝛼 is an unconstrained
unification variable that denotes a fraction, and if Γ contains a fractional
resource 𝛽𝐻 ′ for some fraction 𝛽 and where 𝐻 unifies with 𝐻 ′, then our
algorithm applies an on-the-fly splitting operation to convert 𝛽𝐻 ′ into the
conjunction of𝛼 ′𝐻 ′ and (𝛽−𝛼 ′)𝐻 ′ for a fresh𝛼 ′ added to 𝐸frac. Our algorithm
then adds the binding 𝛼 := 𝛼 ′ into 𝜎 . The interest of extracting a carved
fraction from 𝛽𝐻 rather than consuming the whole read-only permission
𝛽𝐻 is that the left-over fraction remains available in Γ, allowing to match
other resources of the form 𝛼 ′′𝐻 that might appear in the other elements
from Γ′. Note that when Γ ⊖ Γ′ = (𝐸frac, 𝜎, 𝐹), then both the entailments
Γ ⇒ Γ′ ⊙★ ⟨𝐸frac | 𝐹 ⟩ and Γ ⇒ [𝐸frac] ⊙★ SpecializeΓ{𝜎}(Γ′) ⊙★ 𝐹 hold.

4.6 Typechecking of logical expressions

A logical expression is an expression that may appear in specifications and
invariants; technically, a logical expression is an expressionwhose evaluation
terminates and does not depend on the memory state. Logical expressions
include program variables (which are always immutable in Opti𝜆), constant
literals, logical propositions, heap predicates, C types, logical types, pure

Var
(𝑥 : 𝜏) ∈ 𝐸
𝐸 ⊢ 𝑥 : 𝜏

Int

𝐸 ⊢ 𝑛 : int

Bool

𝐸 ⊢ 𝑏 : bool

IntType

𝐸 ⊢ int : Type

BoolType

𝐸 ⊢ bool : Type

Prop
𝑃 is a logical proposition
with free variables in 𝐸

𝐸 ⊢ 𝑃 : Prop

Hprop
𝐻 is a heap predicate
with free variables in 𝐸

𝐸 ⊢ 𝐻 : HProp

PtrType
𝐸 ⊢ 𝐴 : Type

𝐸 ⊢ ptr(𝐴) : Type

LogicFun
(𝐸, 𝑥1 : 𝜏1, ..., 𝑥𝑛 : 𝜏𝑛) ⊢ 𝑡 : 𝜏0

𝐸 ⊢ (fun(𝑥1 : 𝜏1, ..., 𝑥𝑛 : 𝜏𝑛) ↦→ 𝑡) : ∀(𝑥1 : 𝜏1)...(𝑥𝑛 : 𝜏𝑛), 𝜏0

LogicApp
𝐸 ⊢ 𝑡0 : ∀(𝑥1 : 𝜏1)...(𝑥𝑛 : 𝜏𝑛), 𝜏0

∀𝑖 ∈ [1, 𝑛], 𝐸 ⊢ 𝑡𝑖 : Subst{𝑥1 ↦→ 𝑡1; ...; 𝑥𝑖−1 ↦→ 𝑡𝑖−1}(𝜏𝑖)
𝐸 ⊢ 𝑡0 (𝑡1, ..., 𝑡𝑛) : Subst{𝑥1 ↦→ 𝑡1; ...; 𝑥𝑛 ↦→ 𝑡𝑛}(𝜏0)

Figure 4.3: Selected rules defining the typing judgment for logical expressions, written 𝐸 ⊢ 𝑡 : 𝜏 . Arithmetic operations such as 𝑡1 + 𝑡2 are
viewed as functions calls and are therefore handled by the rule LogicApp.

82 4 Computing program resources: Contexts

function definitions, and pure function calls. Figure 4.3 shows the main
typing rules for logical expressions. The judgment is written 𝐸 ⊢ 𝑡 : 𝜏 , where
𝐸 is a pure context.

An arithmetic expression (e.g. 𝑡1+𝑡2) can be considered as a logical expression
(e.g. the application of the logical function for addition) if its two arguments
are pure. This allows us to express the contract for the primitive arithmetic
operations by referring to the corresponding logical expression. For instance,
the contract for addition is: {[𝑎 : int, 𝑏 : int]} (𝑎 + 𝑏) {[res := 𝑎 +̂𝑏 : int]},
where for clarity we distinguished the addition operator from the program-
ming language denoted +, and the addition operator from the logic denoted
+̂. Partial primitive arithmetic functions have a contract expressed with
the corresponding logical expression, but those require an additional pre-
condition. For example, the contract for division is: {[𝑎 : int, 𝑏 : int, 𝑏 ≠

0]} (𝑎/𝑏) {[res := 𝑎 /̂𝑏 : int]} where /̂ denotes the logical integer division
operator. Following standard practice in proof assistants, the operator /̂ is
defined in the logic as a total function that returns unspecified results when
the divisor is equal to zero.

4.7 Typechecking of terms

Our typing judgment takes the form {{Γ}} 𝑡Δ {{Γ′}}, capturing the fact that,
in context Γ, the term 𝑡 is well typed and produces a context Γ′ with a usage
map Δ. Note that in OptiTrust, all well typed programs always terminate.
We are interested in describing the algorithmic typing rules exploited by
OptiTrust. Our typing algorithm takes Γ and 𝑡 as input, and produces Γ′
and Δ as output. The refinement with usage maps will be discussed further
in section 5.3. For now, we focus on describing typing rules for the judgment
{{Γ}} 𝑡 {{Γ′}}.

In general, in a valid triple {{Γ}} 𝑡 {{Γ′}}, variables from the postcondition
Γ′ may refer to variables from the precondition Γ. For the purpose of the
algorithmic typechecking, however, we design the typing rules in such a
way that Γ′ is always closed, meaning that variable occurrences in Γ′ refer
to variables that are all previously bound in Γ′. The purpose of this design
decision is tomaximize the amount of information that is propagated forward
during the typechecking.

In particular, in the algorithmic typechecking, all the logical bindings (ghost
variables and pure facts) from Γ are reproduced in Γ′. The pure bindings
that appear in Γ′ but not in Γ correspond either:

▶ to the binding for res, which denotes the result value produced by 𝑡 ,
as explained in section 4.3; or

▶ to logical bindings (ghost variables and pure facts) that correspond to
the pure part of the postcondition of 𝑡 .

The linear bindings of Γ′, compared with those in Γ, reflect the side effects
performed by 𝑡 . Linear resources that are bound with the same name in Γ′

as in Γ necessarily correspond to resources that have not been modified by
𝑡 .

Figure 4.4 presents our typing rules. The typing rule for function application
handles the particular case where the subterms are program variables (this
syntactic restriction for function call is often called A-normal form)—the
processing of effectful subterms depends on resource usage, and is explained
further in section 5.5. The soundness of most of these rules stems from the
fact that they correspond to an algorithmic reformulation of the standard

4.7 Typechecking of terms 83

Γ.pure ⊢ 𝑡 : 𝜏 𝑡 is a literal or a variable
{{Γ}} 𝑡 {{Γ ⊙★ [res := 𝑡 : 𝜏]}} LitOrVar

{{Γ0}} 𝑡 {{Γ1}} Γ2 = Rename{res := 𝑥}(Γ1)
{{Γ0}} let 𝑥 = 𝑡 {{Γ2}}

Let

∀𝑖 ∈ [1, 𝑛] . {{Γ𝑖−1}} 𝑡𝑖 {{Γ𝑖 }} Γ𝑟 =

{
Rename{𝑟 := res}(Γ𝑛) if 𝑟 ≠ ∅
Γ𝑛 if 𝑟 = ∅

{{Γ0}}
(
𝑡1; ...; 𝑡𝑛 ; 𝑟

)
{{Γ𝑟 }}

Seq

{{Γ0}}
(
𝑡1; ...; 𝑡𝑛 ; 𝑟

)
{{Γ𝑟 }} (∅, 𝐹) = Γ𝑟 ⊟ StackAllocCells(𝑡1, ..., 𝑡𝑛)
{{Γ0}}

{
𝑡1; ...; 𝑡𝑛 ; 𝑟

}
{{⟨Γ𝑟 .pure | 𝐹 ⟩}}

Block

{{[Γ0.pure] ⊙★ 𝛾 .pre}} 𝑡 {{Γ1}} (_, ∅) = Γ1 ⊟ 𝛾 .post
(res : 𝜏𝑟) ∈ 𝛾 .post 𝜏𝑓 = (𝜏1, ..., 𝜏𝑛) → 𝜏𝑟

{{Γ0}}
(
fun(𝑎1 : 𝜏1, ..., 𝑎𝑛 : 𝜏𝑛)𝛾 ↦→ 𝑡

)
{{Γ0 ⊙★ [res : 𝜏𝑓 , Spec(res, [𝑎1, ..., 𝑎𝑛], 𝛾)]}}

Fun

Spec(𝑥0, [𝑎1, ..., 𝑎𝑛], 𝛾) ∈ Γ0.pure
(𝐸frac, 𝜎 ′, 𝐹) = Γ0 ⊖ SpecializeΓ0 {𝑎𝑖 := 𝑥𝑖

𝑖∈[1,𝑛], 𝜎}(𝛾 .pre)
dom(𝜌) = dom(𝛾 .post) im(𝜌) ∩ dom(Γ0) = ∅

Γ𝑞 = Rename{𝜌}(Subst{𝑎𝑖 := 𝑥𝑖
𝑖∈[1,𝑛], 𝜎, 𝜎 ′}(𝛾 .post)) Γ𝑟 = CloseFracs([Γ0.pure, 𝐸frac] ⊙★ 𝐹 ⊙★ Γ𝑞)

{{Γ0}} 𝑥0 (𝑥1, ..., 𝑥𝑛)𝜎,𝜌 {{Γ𝑟 }}
App

Γoutpre = [𝜒.vars] ⊙★ (⊙★𝑖∈𝑅 𝜒.excl.pre) ⊙★ 𝜒.shrd.reads ⊙★ Subst{𝑖 := 𝑅.start}(𝜒.shrd.inv)
(𝐸frac, 𝜎out, 𝐹) = Γ0 ⊖ Γoutpre

Γinpre = [𝜒.vars] ⊙★ 𝜒.excl.pre ⊙★ 1
𝑅.len 𝜒.shrd.reads ⊙★ 𝜒.shrd.inv

{{[Γ0.pure, 𝑖 : int, 𝑖 ∈ 𝑅] ⊙★ Γinpre}} 𝑡 {{Γinpost}}
(𝜎 in

post, ∅) = Γinpost ⊟ 𝜒.excl.post ⊙★ 1
𝑅.len 𝜒.shrd.reads ⊙★ Subst{𝑖 := 𝑖 + 𝑅.step}(𝜒.shrd.inv)

Γoutpost = Subst{𝜎out}((⊙★𝑖∈𝑅 𝜒.excl.post) ⊙★ 𝜒.shrd.reads ⊙★ Subst{𝑖 := 𝑅.end}(𝜒.shrd.inv))
Γ𝑟 = CloseFracs([Γ0.pure, 𝐸frac] ⊙★ 𝐹 ⊙★ Γoutpost)

𝜋 = par =⇒ parallelizable(𝜒)
{{Γ0}} for𝜋 (𝑖 ∈ 𝑅)𝜒 𝑡 {{Γ𝑟 }}

For

{{Γ0}} 𝑡1 {{Γ1}} {{Learn{res = true}(Γ1)}} 𝑡2 {{Γ2}} {{Learn{res = false}(Γ1)}} 𝑡3 {{Γ3}}
(_, ∅) = Γ2 ⊟ Γ𝑟 (_, ∅) = Γ3 ⊟ Γ𝑟
{{Γ0}} ifΓ𝑟 𝑡1 then 𝑡2 else 𝑡3 {{Γ𝑟 }}

If

Figure 4.4: Algorithmic typing rules for establishing triples of the form {{Γ}} 𝑡 {{Γ′ }}. These rules are generalized in section 5.3 to derive
triples the form {{Γ}} 𝑡Δ {{Γ′ }}, where Δ describes the resource usage.

reasoning rules from separation logic. We next describe the rules individu-
ally.

Literals and variables Consider a term 𝑡 that corresponds either to a
program variable or to a literal. In its triple, of the form {{Γ}} 𝑡 {{Γ′}}, the
output context Γ′ is obtained by extending Γ with an alias binding from
res to 𝑡 itself. Alias bindings were defined in section 4.2. This is possible
since for literals and variables, 𝑡 is a logical expression and therefore can
directly appear in contexts. The type of 𝑡 is computed by means of the typing
judgment for logical expressions, defined in section 4.6.

Let bindings Consider an instruction of the form let 𝑥 = 𝑡 . Recall from
section 3.2 that such instructions only appear in sequences. The subexpres-
sion 𝑡 produces a value, hence the output context Γ1 associated with 𝑡 binds
the special variable res. The expression let 𝑥 = 𝑡 itself does not produce a

84 4 Computing program resources: Contexts

6: The implementation of StackAllocCells
forces all stack allocations to be directly
bound in a let instead of being allowed to
occur in subexpression. In the latter case,
the typing rule fails.

7: Wemight allow specifying a contract on
any block in the future to allow for interme-
diate abstractions, and avoid pure context
growing up too much in size.

value, hence its output context Γ2 does not bind res. However, the output
context Γ2 is extended with a binding on 𝑥 . Concretely, Γ2 is obtained by
replacing in Γ1 the bound name res with the bound name 𝑥 .

Sequence of instructions We decompose the treatment of sequences in
two rules: a first rule named Seq for handling the sequence of instructions
per se, and a second rule named Block for handling the disposal of stack-
allocated variables. The rest of this paragraph describes the Seq rule. Consider
a sequence (𝑡1; ...; 𝑡𝑛 ; 𝑟). Starting from an input context Γ0, each subterm 𝑡𝑖
makes the context evolves from Γ𝑖−1 to Γ𝑖 . Recall from section 3.2 that each
subterm 𝑡𝑖 must have unit type (a.k.a. void type), else it would have been
wrapped into a call to the “ignore” function. The sequence itself may return
a value identified by the optional result variable 𝑟 . If such a result variable
is set, the final context is patched to include a res binding instead of the
original 𝑟 binding.

Scope blocks The typing rule Block is responsible for collecting the re-
sources that corresponds to stack-allocated variables, when reaching the
end of a sequence, that is, the end of their scope. Recall from section 3.2
that stack allocation takes the form let 𝑥 = ref(𝑡) or let 𝑥 = stackAlloc𝐶 (),
with such instructions occurring directly within a sequence6. The auxil-
iary function StackAllocCells(𝑡1, ..., 𝑡𝑛) synthesizes, based on the syntax of
the terms 𝑡𝑖 that appear in the sequence at hand, a separated conjunction
of the uninitialized version of all the resources allocated in the sequence
𝑡1, ..., 𝑡𝑛 . Formally, StackAllocCells and its auxiliary function StackAllocCell
are defined as follows:

StackAllocCells(𝑡1, ..., 𝑡𝑛) = StackAllocCell(𝑡1) ★ · · ·★ StackAllocCell(𝑡𝑛)

StackAllocCell(𝑡) =


𝑝 ⇝ 𝐶 if 𝑡 is of the form “let 𝑝 = stackAlloc𝐶 ()”
𝑝 ⇝ UninitCell𝜏 if 𝑡 is of the form “let 𝑝 = ref(𝑡 ′)” with 𝑡 ′ : 𝜏
∅ if 𝑡 does not contain a stack allocation
typing error if 𝑡 contains a stack allocation that is not directly bound by a let

These resources described by StackAllocCells(𝑡1, ..., 𝑡𝑛) are subtracted from
the context available at the end of the sequence. Crucially, the subtraction
operation checks that the resources indeed appear in the resource set after
the execution of the sequence. Doing so ensures, in particular, that the
ownership of a stack-allocated piece of data is not stored in another heap
predicate at the end of the sequence.

We take a conservative approach for pure typing context scopes: when a
sequence is exited, each immutable program variable that goes out of scope
is generalized as a ghost variable, and all ghosts variables introduced in the
scope are kept. Generalizing immutable program variables as ghost variable
is a no-op in practice since all the program variables are already in the
pure context. For now, only contract annotations on function, loops and on
conditionals act as abstraction barriers that filter pure contexts7.

Function definition Consider a function definition fun(𝑎1 : 𝜏1, ...,

𝑎𝑛 : 𝜏𝑛)𝛾 ↦→ 𝑡 , with arguments 𝑎𝑖 of type 𝜏𝑖 , with body 𝑡 , and with contract 𝛾 .
Recall from section 4.3 that the function contract consists of a precondition
𝛾 .pre and a postcondition 𝛾 .post, both described as contexts. The function is
a closure that may capture free variables from the current context. In the
rule, the pure variables from the current context are described as Γ0 .pure.

4.7 Typechecking of terms 85

Note, however, that the function is not allowed to capture linear resources.
Hence, the body of the function is typechecked in an environment that
consists of the conjunction of Γ0 .pure and 𝛾 .pre. Ultimately, the body of
the function must produce a context Γ𝑟 that entails the postcondition
𝛾 .post. The postcondition of the function definition itself binds res with
the correct function type (res : 𝜏𝑓) and gives its specification hypothesis
(Spec(res, [𝑎1, ..., 𝑎𝑛], 𝛾)). As explained earlier in section 4.3, this
hypothesis captures {𝛾 .pre} res(𝑎1, ..., 𝑎𝑛) {𝛾 .post}, which is indeed the
triple intended for the function named res.

Function applications Consider a function application of the form 𝑥0 (𝑥1,
..., 𝑥𝑛), where the 𝑥𝑖 are program variables. (The general form will be dis-
cussed in section 5.5.) To typecheck it, the input context Γ0 must contain
a pure entry of the form Spec(𝑥0, [𝑎1, ..., 𝑎𝑛], 𝛾) for the function 𝑥0. This
same context Γ0 must entail the precondition 𝛾 .pre, specialized for the ar-
guments 𝑥𝑖 by means of the Specialize operations defined in section 4.2.
This entailment is checked by means of the carving subtraction operation
defined in section 4.5. The subtraction produces a frame 𝐹 that contains
the resources from Γ0 that are not used by the function call, and produces
a substitution named 𝜎 ′ that describes the instantiation of the ghost argu-
ments and resources. The final postcondition Γ𝑞 is obtained by considering
the postcondition 𝛾 .post, adding the frame 𝐹 and Γ0 .pure, then invoking
the CloseFracs operation described in section 4.1 for eagerly recombining
carved-out fractions.

Two additional technicalities are involved in the statement of the App rule.
They correspond to the handling of optional user-provided annotations,
named 𝜎 and 𝜌 , that may guide the typechecking of an application. Such
annotations are commonly found both in proof assistants and in program
verification frameworks. The map 𝜎 allows instantiating a subset of the
ghost arguments. Indeed, there could be situations where the subtraction
operation would fail to infer a unique possible instantiation, by the only
means of the unification process. Hence, user annotations are required to
resolve the instantiation. In all our case studies, 𝜎 is only used on ghost calls.
The map 𝜌 corresponds to a renamingmap. Its purpose is to give a name to all
the resources that are added to the context by the postcondition of the called
function, thus avoiding name conflicts. In practice, the map 𝜌 is partially
given by user annotations or by transformations and is extended with fresh
variable names for each missing entry during the first typechecking of each
function application. In all our case studies, 𝜌 is never manually provided,
but it is manipulated by certain transformations on some ghost calls.

Note that, in the definition of a function 𝑓 , recursive calls to 𝑓 would not
typecheck. Indeed, in that case, the context Γ0 cannot contain a hypothesis
of the form Spec(𝑓 , [𝑎1, ..., 𝑎𝑛], 𝛾). This fact explains how our typechecker
guarantees termination. In the future, we could add support for guarded
recursion, by extending the rule Fun for function definition with a variant
annotation.

Range-based for loops Consider a possibly-parallel for loop of the form
for𝜋 (𝑖 ∈ 𝑅)𝜒 𝑡 . The typechecking of such a loop is driven by the loop
contract annotation 𝜒 . The loop body 𝑡 is typechecked in a context that binds
an index 𝑖 of type int, a hypothesis of type 𝑖 ∈ 𝑅, the variables from 𝜒.vars,
the resources 𝜒.excl.pre, (subfractions of) the resources in 𝜒.shrd.reads, and
the resources in 𝜒.shrd.inv at the index 𝑖 . The loop body needs to produce
the resources 𝜒.excl.post and 𝜒.shrd.inv at the next loop index, and it needs
to give back the resources that it had received from 𝜒.shrd.reads.

86 4 Computing program resources: Contexts

The expression 𝑅.start corresponds to the first index in the range 𝑅, 𝑅.step
corresponds to the increment between two consecutive indices of the range
𝑅, and 𝑅.end corresponds to the one-past-end index of the range 𝑅. Note that
this 𝑅.end can differ from the stop index written in the source code denoted
by 𝑅.stop. For instance, range(0, 3, 2).stop = 3 but range(0, 3, 2).end =

4.

There are three complications. First, the shared-read resources, described by
𝜒.shrd.reads, are split into 1

𝑅.len subfractions, where 𝑅.len denotes the num-
ber of iterations associated with the range 𝑅. Note that, when typechecking
the body of the loop for a particular iteration 𝑖 ∈ 𝑅, the denominator 𝑅.len
can be assumed to be nonzero—indeed, 𝑖 ∈ 𝑅 is equivalent to 0 ≤ 𝑖 < 𝑅.len.
Second, like for function calls, the instantiation of the contract using the
resources from the input environment Γ0 is computed using a subtraction,
involving a frame 𝐹 as well as an instantiation map 𝜎 ′. Also, like for function
calls, the output context is obtained by invoking the CloseFracs operation.
Third, loops, like functions calls, feature optional annotations 𝜎 and 𝜌 , which
we have omitted from the statement of the rule, for simplicity. The map 𝜎

guides how the contract is instantiated in the input environment Γ0. The map
𝜌 can be used to explicit the names associated with the resources produced
by the loop. The two maps are handled in a similar way as in the App rule.

Conditionals Consider a conditional of the form if 𝑡1 then 𝑡2 else 𝑡3. The
condition 𝑡1 is evaluated in the input context Γ0 and produces a context
Γ1. Then, both branches 𝑡2 and 𝑡3 need to typecheck in the context Γ1. This
context needs to be patched to reflect the knowledge that 𝑡1 evaluated to
either true or false, depending on the branch. The patch is implemented
by means of the operation Learn{res = 𝑏}(Γ). This operation applies the
following three steps.

(1) If an aliasing binding of the form res := 𝑣 : bool appears in Γ, then the
operation replaces this binding with a conventional binding res : bool,
and extends Γ with an equality [res = 𝑣].

(2) It specializes the variable res with 𝑏, that is, it removes the binding
res : bool, and replaces all occurrences of res with the boolean value
𝑏.

(3) It applies basic simplifications on the expressions in which res has
been substituted with 𝑏.

For example, assume 𝑡1 is a test of the form x == y, and consider the evalu-
ation of Learn{res = true}(Γ1). The output context of 𝑡1 contains the alias
binding res := (x==y) : bool. At step (1), this alias binding is replaced with
an equality res = (x==y). At step (2), res is replaced with true, hence the
equality becomes true = (x==y). At step (3), this hypothesis is rewritten as
the logical equality x = y.

The then branch 𝑡2 produces an output context Γ2, and likewise the else
branch 𝑡3 produce an output context Γ3. What should be the output context
of the entire conditional if 𝑡1 then 𝑡2 else 𝑡3? It must be a context, call it Γ𝑟 ,
that both Γ2 and Γ3 entail. This context Γ𝑟 is usually called the join context
in program logics. In general, there is no way to automatically infer join
contexts—it is almost as hard as inferring contracts for loops. Therefore,
typechecking and verification tools must resort to a combination of user-
provided annotations and heuristics. For now, we assume join contexts
to be provided by the user. In our box-blur case study (section 2.1), the
conditionals appear in terminal position in the body of a function, hence our
typechecker can simply instantiate the join context using the (user-provided)

4.8 Type soundness 87

postcondition of that function. We leave it to future work to devise heuristics
well-suited for our typesystem, in order to reduce the number of situations
where OptiTrust users need to provide annotations.

4.8 Type soundness

The purpose of this section is to present formal statements that reflect the
design principles of our typesystem. This section may be safely skipped for
a first read. A number of auxiliary definitions, such as the evaluation rules
or the satisfaction of a linear resource by a heap fragment, may be found in
the appendix.

We follow the standard approach of justifying soundness of a separation
logic by providing a semantic interpretation of triples. The general pattern
asserts that: “a triple holds if and only if, in any input state satisfying the
precondition (i.e. the input context), the evaluation of the term terminates
and produces an output state satisfying the postcondition (i.e. the output
context)”. This statement relies on two central ingredients. First, a definition
of the semantics of a term. Second, a definition of what it means for a program
state to satisfy a context.

We formalize the semantics using an omni-big-step evaluation judg-
ment [Cha+23]. This judgment has been shown to simplify proofs of the
frame rule of separation logic, and proofs of compiler correctness results.
Concretely, the judgment 𝑡/(𝑠, 𝑚) ⇓ 𝑄 asserts that the term 𝑡 , in an input
program state (𝑠, 𝑚), evaluates to output program states that belong to the
set 𝑄 . A program state, written (𝑠,𝑚), consists of an immutable stack 𝑠 and
a store 𝑚. If 𝑡 produces an output value, then this value is bound in the
output immutable stack to the dedicated name res. For simplicity, we focus
on total correctness: 𝑡/(𝑠, 𝑚) ⇓ 𝑄 asserts that all possible evaluations of the
term 𝑡 do terminate, without error8. The evaluation rules may be found in
appendix A.

More concretely, in program states, the immutable stack 𝑠 is a map from
program variables to values. The store𝑚 is a map from memory addresses
to a possibly uninitialized value and a mode. Such mode can be either RO
(read-only) when the memory location is shared between several threads
and can only be read, or RW (read-write) when the memory location is only
accessible from the current execution thread.

Let us now focus on context satisfaction. As usual in separation logic that
involves fractional permissions (or more general forms of ghost state), one
asserts that a program state satisfies a context if and only if there exists a
logic state, which consists of this program state augmented with additional
(“ghost”) information, such that this logical state satisfies the context. A
logical state is one that may satisfy a context Γ. We define further an elision
function that extracts a program state from a logical state. We first describe
the representation of a logical state.

A logical state consists of a logical stack, written 𝜎 , and a logical store,
written 𝜇. A logical stack is similar to a program stack except that it includes
additional bindings for ghost variables. A logical store is similar to a program
store except that every memory location is tagged with a positive fraction,
written 𝛼 instead of a mode. As standard in realizations of separation logic,
a fraction less than one corresponds to a read-only permission. Since we
use unbounded separation logic [DMS22] fractions greater than one can
occur in logical stores, but a logical store containing such a fraction does
not correspond to any program state.

[Cha+23]: Charguéraud et al. (2023), Om-
nisemantics: Smooth Handling of Nondeter-
minism

8: As explained in the omnisemantics pa-
per [Cha+23], the omni-big-step evalua-
tion judgment is related to the standard
big-step judgment via the following equiv-
alence:

Theorem 4.8.1: Equivalence between
omni-big-step and big-step reductions

𝑡/(𝑠, 𝑚) ⇓ 𝑄 ⇐⇒

©­­­­­«
all possible executions of 𝑡
terminate without error

∧ ©­«
∀(𝑠′, 𝑚′),
𝑡/(𝑠, 𝑚) ⇓ (𝑠′, 𝑚′)

=⇒ (𝑠′, 𝑚′) ∈ 𝑄
ª®¬
ª®®®®®¬

[DMS22]: Dardinier et al. (2022), Fractional
resources in unbounded separation logic

88 4 Computing program resources: Contexts

As said, a context Γ corresponds to a specification of a logical state. We say
that a logical state (𝜎, 𝜇) satisfies a context Γ of the form ⟨𝐸 | 𝐹 ⟩, and write
(𝜎, 𝜇) ∈ Γ, if the bindings in 𝜎 have types that correspond to the bindings in
𝐸, and if the memory cells described by 𝜇 correspond to the linear resources
described in 𝐹 . If additionally, the logical store 𝜇 does not contain any fraction
strictly greater than one (i.e. it corresponds to a program state), we say that
𝜇 is bounded, and we write (𝜎, 𝜇) ∈ Γ. The technical details of the definitions
of (𝜎, 𝜇) ∈ Γ and (𝜎, 𝜇) ∈ Γ are given in appendix C.

To state the semantic interpretation of triples, we need a projection function
for extracting a program state out of a logical state. We write 𝜎 |prog the
operation that converts a logical stack 𝜎 into a program stack 𝑠 by restricting
the entries to program variables, or, equivalently said, by removing entries
associated with ghost variables. We write 𝜇 |prog the operation that turns a
bounded logical store 𝜇 into a program store𝑚 by replacing fraction with
the corresponding mode:

𝜇 |prog =

{
𝑙 ↦→ (M, 𝑣)

����� ∃𝛼, 𝜇 (𝑙) = (𝛼, 𝑣) ∧ M =

{
RO if 𝛼 < 1
RW if 𝛼 = 1

}
This operation is not defined on unbounded logical stores. By leveraging the
two operations, we define (𝜎, 𝜇) |prog as (𝜎 |prog, 𝜇 |prog), to convert a logical
state into a program state.

Before defining triples, we introduce AcceptableStates(𝜎, 𝜇, Γ′) to denote
the set of program output states satisfying the postcondition Γ′ and sat-
isfying certain constraints with respect to the input state (𝜎, 𝜇). The set
AcceptableStates(𝜎, 𝜇, Γ′) corresponds to the set of states that are the pro-
jection of a logical state (𝜎 ′, 𝜇′) such that:

1. the logical state (𝜎 ′, 𝜇′) satisfies the specification Γ′ with 𝜇′ bounded,
and

2. the read-only restriction of 𝜇′ is identical to the read-only restriction
of 𝜇, and

3. the stacks in 𝜎 ′ and 𝜎 agree on the intersection of their domain.

To formalize the second constraint, we let OnlyRO(𝜇) denote the restriction
of the logical store 𝜇 to the cells that are tagged with a fraction strictly less
than 1, that is, as {𝑙 ↦→ (𝛼, 𝑣) | 𝜇 (𝑙) = (𝛼, 𝑣) ∧ 𝛼 < 1}. We then define:

Definition 4.8.2: Acceptable states

AcceptableStates(𝜎, 𝜇, Γ′) =(𝜎 ′, 𝜇′) |prog
������ (𝜎 ′, 𝜇′) ∈ Γ′
∧ OnlyRO(𝜇) = OnlyRO(𝜇′)
∧ ∀𝑥 ∈ dom(𝜎) ∩ dom(𝜎 ′), 𝜎 (𝑥) = 𝜎 ′ (𝑥)


We are now ready to define logical triples, written {Γ} 𝑡 {Γ′}. Such a triple
asserts that for any bounded logical state satisfying Γ, starting in the program
state that corresponds to this logical state, all executions of 𝑡 terminate and
produce output states that belong to the set AcceptableStates(𝜎, 𝜇, Γ′). The
latter means that an output state must satisfy Γ′, must preserve read-only
entries, and must feature an output stack that agrees with the input stack.

Definition 4.8.3: Logical triples

{Γ} 𝑡 {Γ′} = ∀(𝜎, 𝜇) ∈ Γ, 𝑡/(𝜎, 𝜇) |prog ⇓ AcceptableStates(𝜎, 𝜇, Γ′)

4.8 Type soundness 89

The fundamental property of separation logic is the frame rule, which we
prove correct for our logical triples in appendix D. The contexts involved
here are dependently-typed, hence we need additional assumptions to ensure
that the composed contexts are well-typed, in the sense that every variable
that appears in a type or a resource is properly bound earlier in the context,
and that all the types that appear in the context are themselves well-typed.
(Well-typed contexts are formalized by definition D.3 in appendix.) The
statement of the frame rule is thus as follows:

Theorem 4.8.4: Frame property for logical triples

{Γ} 𝑡 {Γ′} ∧ Γ ⊙★ Γ′′ is well-typed ∧ Γ′ ⊙★ Γ′′ is well-typed =⇒
{Γ ⊙★ Γ′′} 𝑡 {Γ′ ⊙★ Γ′′}

Our typing rules presented earlier on in this section are designed as algo-
rithmic variants of the standard typing rules of separation logic. There is
one of our rules for which our presentation is not quite standard: the rule
For, which handles the typechecking of for loops by leveraging our loop
contracts. For this rule, we show in appendix E that it can be derived from
two standard separation logic rules: the rule for sequential loops with an
invariant, and the rule for parallel loops that split resources across iterations.
Overall, the soundness of our algorithmic typing rules stems from the sound-
ness of the standard typing rules of separation logic. Soundness is formally
stated as an implication from algorithmic triples to semantic triples:

Proposition 4.8.5: Soundness of the algorithmic typing rules

{{Γ}} 𝑡 {{Γ′}} =⇒ {Γ} 𝑡 {Γ′}

We leave to future work the completion of a mechanized proof of this state-
ment.

Computing program resources:
Usage maps 5

5.1 Grammar of usage maps . 91
5.2 Operations on usage maps 92
5.3 Computing usage maps . . 93
5.4 Minimization of triples . . 95
5.5 Typechecking of order-

irrelevant subexpressions 96
5.6 Formal properties of usage

maps 97

The first goal of this chapter is to formalize the usage maps, written Δ, and
to generalize triples from the form {{Γ}} 𝑡 {{Γ′}} to the form {{Γ}} 𝑡Δ {{Γ′}}. Sec-
tion 5.1 presents the grammar of usage maps. Section 5.2 presents operations
on usage maps. Section 5.3 explains how usage maps are computed by our
typing algorithm.

The second goal of this chapter is to formalize the triple minimization op-
erations, which plays a central role in the typechecking of function calls
involving effectful subexpressions. Triple minimization will also be useful
later on to minimize the loop contracts produced by transformations. Sec-
tion 5.4 presents the triple minimization procedure. Section 5.5 presents the
typing rule for subexpressions—this typing rule applies as a preprocessing
before the App rule presented earlier. Section 5.6 presents formal statements
about the contents of usage maps.

5.1 Grammar of usage maps

A usagemap, writtenΔ, is an associationmap that binds resource names to us-
age kinds. For a pure resource name, there are 2 possible usage kinds: required
and ensured. For a linear resource name, there are 5 possible usage kinds:
full, uninit, splittedFrac, joinedFrac and produced. In a triple {{Γ}} 𝑡Δ {{Γ′}},
the usage map Δ contains entries for resources that can be bound in Γ or Γ′,
or possibly in both. The usage map Δ only binds names of resources that
are effectively manipulated by 𝑡 . (In other words, the framed resources are
omitted from usage maps.) Let us now explain the meaning of each possible
binding in a usage map Δ associated with the triple {{Γ}} 𝑡Δ {{Γ′}}.

▶ “𝑥 : required” means that 𝑥 is a pure resource in Γ that was used during
the typing of 𝑡 .

▶ “𝑥 : ensured” means that 𝑥 is a pure resource added to the context Γ′
during the typing of 𝑡 . In such a situation, 𝑥 is not bound in Γ.

▶ “𝑦 : full” can arise when Γ contains a linear resource “𝑦 : 𝐻”, for
some predicate 𝐻 . The usage “𝑦 : full” means that this resource is
consumed during the typing of 𝑡 . As a result 𝑦 is not bound in Γ′. Even
if 𝑡 produces a linear resource with the same predicate 𝐻 , this new
occurrence of 𝐻 is assigned a fresh name, distinct from 𝑦.

▶ “𝑦 : uninit” is similar to “𝑦 : full” but moreover captures the informa-
tion that 𝑡 needs not read the original contents of the memory cells
associated with the resource named 𝑦. In particular, if 𝑡 performs a
write operation on all cells described by 𝑦 before any read operation
on 𝑦, then the usage of 𝑦 is uninit.

▶ “𝑦 : splittedFrac” can arise when Γ contains a linear resource “𝑦 : 𝐻”,
for some predicate 𝐻 . The usage “𝑦 : splittedFrac” means that 𝑡 uses
an unspecified subfraction of this resource. In such a situation, the
name 𝑦 is bound both in Γ and in Γ′. It may be the case, however, that
the resource named 𝑦 carries different fractions in Γ and Γ′.

▶ “𝑦 : joinedFrac” can arise when Γ contains a linear resource of the
form “𝑦 : (𝛼 − 𝛽1 − ... − 𝛽𝑛)𝐻”. The usage “𝑦 : joinedFrac” means that:

92 5 Computing program resources: Usage maps

1. the linear resource named 𝑦 is not used by 𝑡

2. 𝑡 produced a resource of the form (𝛽𝑖 − 𝛾1 − ... − 𝛾𝑚)𝐻

3. these two resources are merged, and the result appears in Γ′

under the name 𝑦

If a single merge operation is applied, then the resulting resource is
𝑦 : (𝛼−𝛽1− ...−𝛽𝑖−1−𝛾1− ...−𝛾𝑚−𝛽𝑖+1− ...−𝛽𝑛)𝐻 . (Recall section 4.1.)

▶ “𝑦 : produced” means that the linear resource 𝑦 has been produced by
𝑡 . In this case, 𝑦 is the name of a linear resource in Γ′, and does not
occur in Γ.

▶ If a resource name is bound in Γ but not in Δ, then its absence indicates
that the corresponding resource is not touched by 𝑡 . Such a resource
is bound under the same name in Γ and Γ′.

5.2 Operations on usage maps

Projections of usage maps We define Δ.full as the set of names 𝑦 such
that “𝑦 : full” appears in Δ. Likewise, we define Δ.required, Δ.ensured,
Δ.uninit, Δ.splittedFrac, Δ.joinedFrac and Δ.produced. In addition, we de-
fine the following operations.

Δ.consumed = Δ.full ∪ Δ.uninit
Δ.alter = Δ.consumed ∪ Δ.produced ∪ Δ.ensured

Intersection and filtering We define:

Δ1 ∩· Δ2 = dom(Δ1) ∩ dom(Δ2)
Γp·Δ = Γp·dom(Δ)
Γ\Δ = Γp·(dom(Γ)\dom(Δ))

Sequential composition of usage maps This paragraph defines the
usage composition operator, written Δ1; Δ2. This operator plays a central
role in computing the usage of a sequence of terms. Let us begin with an
example.

Consider the sequence “(let 𝑟 = heapAllocUninitCell ())Δ1 ; set(𝑟, 𝑣)Δ2 ; (let 𝑘 =

get(𝑟))Δ3 ; free(𝑟)Δ4”, and let us focus on resources that describe the tem-
porary cell 𝑟 . In Δ1, we have a binding “𝑦1 : produced” because the first
instruction produces the resource “𝑦1 : 𝑟 ⇝ UninitCell”. In Δ2, we have
two bindings “𝑦1 : uninit” and “𝑦2 : produced” because the second instruc-
tion consumes the resource “𝑦1 : 𝑟 ⇝ UninitCell” and produces a resource
“𝑦2 : 𝑟 ⇝ Cell”. In Δ3, we have a binding “𝑦2 : splittedFrac” because the in-
struction only reads with the permission 𝑦2 (thus it accepts any subfraction).
In Δ4, we have a binding “𝑦2 : uninit” because the instruction destroys the
resource 𝑦 without caring about the value of the Cell.

Let us give three examples of compositions. First, the usage map Δ1; Δ2
contains a binding “𝑦2 : produced” because the sequential composition
of those two instructions creates the resource 𝑦2. Second, the usage map
Δ3; Δ4 contains a binding 𝑦2 : full because, taken together, the third and the
fourth instructions consume the Cell, and read the value that was contained
inside. Third, the usage map Δ1; Δ2; Δ3; Δ4 contains no binding for 𝑦1 or
𝑦2 because the Cell cannot be seen from outside the sequence of those four
instructions.

5.3 Computing usage maps 93

Δ1; Δ2 ∅ required ensured

∅ ∅ required ensured
required required required ⊥
ensured ensured ensured ⊥

Δ1; Δ2 ∅ full uninit splittedFrac joinedFrac produced

∅ ∅ full uninit splittedFrac joinedFrac produced
full full ⊥ ⊥ ⊥ ⊥ ⊥

uninit uninit ⊥ ⊥ ⊥ ⊥ ⊥
splittedFrac splittedFrac full full splittedFrac splittedFrac ⊥
joinedFrac joinedFrac full uninit splittedFrac joinedFrac ⊥
produced produced ∅ ∅ produced produced ⊥

Figure 5.1: Tables for sequential composition of two usage maps, for pure and for linear resources. For example, in the second table, the cell on
the row “splittedFrac” and on the column “full” expresses that if “𝑥 : splittedFrac” is a binding from Δ1 and “𝑥 : full” is a binding from Δ2, then
“𝑥 : full” is a binding in Δ1;Δ2. The input or output ∅ corresponds to cases where the usage map contains no binding for the resource name
considered. The output ⊥ corresponds to cases that cannot arise according to our typechecking rules.

Formally, the usage composition operation Δ1; Δ2 is defined by merging
the two usage maps pointwise by resource name, using the table shown in
figure 5.1 to compute the combined usage in case a same resource name is
bound both in Δ1 and Δ2.

The input or output ∅ corresponds to cases where there is no binding for a
resource name in the usage map. Note that a resource produced in Δ1 and
then fully used in Δ2 will be absent from Δ1; Δ2. As illustrated in the earlier
example, a usage map abstracts away intermediate resources not present in
the final triple.

The output ⊥ corresponds to cases that cannot arise. For example, it is not
possible to have a linear resource used as full and used again afterwards,
since usage full corresponds to a removal from the context. Similarly, the
same resource name cannot be produced or ensured twice.

Finally, let us comment on the naming policy. If a linear resource is entirely
consumed, its name disappears. If a resource 𝑦 : 𝛽𝐻 is split as 𝛼𝐻 and
(𝛽 −𝛼)𝐻 , the (𝛽 −𝛼)𝐻 part keeps the initial resource name 𝑦 (and 𝛼𝐻 takes
a fresh resource name). If CloseFracs merges the fractions 𝑦 : (𝛽 − 𝛼)𝐻
and 𝑦′ : 𝛼𝐻 , it produces a resource 𝛽𝐻 with the name 𝑦 (and the name 𝑦′
disappears).

Let us illustrate how these rules play out on a concrete example. Assume
a term 𝑡1 uses a resource named 𝑦 to only perform a read operation, and
subsequently a term 𝑡2 uses the same resource to perform a write operation.
Then, thanks to the fact that the name 𝑦 was preserved during the carve-out
and subsequent CloseFracs operation, the usage map of the sequence 𝑡1; 𝑡2
contains, as one would naturally expect, the binding 𝑦 : full.

5.3 Computing usage maps

Usage of a context subtraction Each time a typing rule performs a
subtraction, we add entries to the usage map of the term invoking this rule.
This paragraph explains the usage map associated with a subtraction. The
usage map of a subtraction (𝜎, 𝐹) = Γ1 ⊟ Γ2 contains:

94 5 Computing program resources: Usage maps

▶ One entry required for each pure variable of Γ1 mentioned in 𝜎 .

▶ One entry uninit or full for each linear resource of Γ1 that was uni-
fied with a resource of Γ2. The entry is uninit if the resource in Γ2 is
composed only of uninitialized cells. Otherwise, it is a full.

For a subtraction performing read-only carving Γ1 ⊖ Γ2, the usage map is
defined in the same way as Γ1 ⊟ Γ2 except that if a linear resource from
Γ2 is found by carving a resource of Γ1, the entry for that resource from Γ1
has kind splittedFrac, and each newly generated fraction gets an ensured
entry.

Usage of a CloseFracs When closing fractions, we need to add entries
to the usage map to account for the modifications on the context. We try
to do so in a way that preserves as much information as possible. When
CloseFracs finds a possible reduction on two resources𝑦1 : (𝛼−𝛽1− ...−𝛽𝑛)𝐻
and 𝑦2 : (𝛽𝑖 − 𝛾1 − ... − 𝛾𝑚)𝐻 it keeps the name 𝑦1 for the merged resource
(𝛼 − 𝛽1 − ... − 𝛽𝑖−1 − 𝛾1 − ... − 𝛾𝑚 − 𝛽𝑖+1 − ... − 𝛽𝑛)𝐻 . On the one hand, the
resource 𝑦2 disappears from the context. Therefore, we have to put the usage
𝑦2 : full in the usage map. On the other hand, the resource 𝑦1 remains in the
context. Since the absence of 𝑦1 would not have blocked the typechecking, it
gets the usage 𝑡1 : joinedFrac. Note this is currently the only way joinedFrac
usage are generated. Note also that the order of reduction does not matter
for the final usage map (all the fractions that disappear will have a usage
full, and all the fractions that got bigger will have a usage joinedFrac).

Computing usage during term typing In order to produce triples of
the form {{Γ}} 𝑡 {{Γ′}}, we need to patch our typing rules to record the usage
information.

Here is the full version of the rules LitOrVar and Let described earlier:

Γ.pure ⊢ 𝑡 : 𝜏
𝑡 is a literal or a variable Δ = {res : ensured}

{{Γ}} 𝑡Δ {{Γ ⊙★ [res := 𝑡 : 𝜏]}} LitOrVar

{{Γ0}} 𝑡Δ {{Γ1}}
Γ2 = Rename{res := 𝑥}(Γ1) Δ′ = Rename{res := 𝑥}(Δ)

{{Γ0}} (let 𝑥 = 𝑡)Δ′ {{Γ2}}
Let

For the rule LitOrVar, the usage map contains a single binding res : ensured
to account for the alias added in the context. For the rule Let, the typechecker
uses the operator Rename{𝑥 := 𝑥 ′}(Δ), that renames the key 𝑥 into 𝑥 ′ inside
the map Δ. This renaming is applied on the usage map of the body to follow
the renaming in the context.

For the interested reader, we now explain how usage maps are computed
in practice. Instead of rewriting each typing rule with explicit usage maps,
which would be quite verbose, we simply explain how the rules are extended.
We reuse the variables names of the rules described in figure 4.4.

▶ For the rule Seq, if each instruction 𝑡𝑖 has a usage map Δ𝑖 , the usage
map of the sequence Δ is given by:

Δ =

{
Rename{𝑟 := res}(Δ1; ...; Δ𝑛) if 𝑟 ≠ ∅
(Δ1; ...; Δ𝑛) if 𝑟 = ∅

5.4 Minimization of triples 95

▶ For the rule Block, if we name Δ𝑟 the usage map of the sequence, and
Δ𝑐 the usage map of the subtraction of StackAllocCells, the usage map
of the whole block is (Δ𝑟 ; Δ𝑐).

▶ For the rule Fun, if we name Δ1 the usage map of the function body,
Δ2 the usage map of the subtraction Γ1 ⊟ 𝛾 .post, and 𝑆 the generated
specification hypothesis, then the usage map of the function defini-
tion is ((Δ1; Δ2)p·dom(Γ0.pure)) ∪ {𝑥 : required | 𝑥 ∈ fv(𝛾)} ∪ {res :
ensured, 𝑆 : ensured}. Indeed, viewed from outside the only depen-
dencies of the function definition are the pure resources captured from
the surrounding context.

▶ For the rule App, if Δ𝜎 is a usage map containing an entry required
for each 𝑥𝑖 and each pure resource from Γ0 mentioned in 𝜎 , Δ𝑝 is the
usage map of the subtraction on Γ0, Δ𝑞 is a usage map containing one
produced (resp. ensured) for each linear (resp. pure) resource in Γ𝑞 ,
and Δ𝑓 the usage map of the CloseFracs operation, the usage map of
the application is (Δ𝜎 ; Δ𝑝 ; Δ𝑞 ; Δ𝑓).

▶ For the rule For, only the outer contract instantiation and the required
pure variables needed to typecheck the loop body are considered for
computing the usage map. If Δout

pre is the usage map of the subtraction
Γ0 ⊖ Γoutpre , Δin

body is the usage of the body of the loop, Δin
post is the

usage of the subtraction on Γinpost, Δout
post is a usage map containing one

produced (resp. ensured) for each linear (resp. pure) resource in Γoutpost,
and Δ𝑟 is the usage of the CloseFracs operation, then (Δout

pre ; ((Δin
body;

Δin
post)p·dom(Γ0 .pure)); Δout

post; Δ𝑟) is the usage map of the for loop.
Note that the ((Δin

body; Δ
in
post)p·dom(Γ0 .pure)) part of this usage map

correspond to the usage of pure resources from outside the loop in
the body of the loop (they all have a required usage kind).

▶ For the rule If, applied to a conditional ifΓ𝑟 𝑡1 then 𝑡2 else 𝑡3, it is
always sound (though possibly imprecise) to combine the usage map
Δ0 of the condition expression 𝑡1 to another usage map Δ1 that gives
a full usage to each linear resource in Γ1 (the output context of 𝑡1)
and a usage map Δ𝑟 that contains a produced usage for each linear
resource of Γ𝑟 . For the usage of pure resources, we name Δ2 (resp.
Δ3) the required usage from 𝑡2 (resp. 𝑡3). Then, we take all the pure
facts from Γ𝑟 that are not in Γ1 as ensured in a usage map Δ′𝑟 . In
summary, we compute the usage map of the whole conditional as
(Δ0; Δ1; Δ2; Δ3; Δ𝑟 ;Δ′𝑟).

5.4 Minimization of triples

The triple minimization operation is used for typing function calls with
effectful arguments and for minimizing loop contracts produced by trans-
formations. The operation Minimize(Γ, Γ′, Δ) is defined when its input
corresponds to a valid triple {{Γ}} 𝑡Δ {{Γ′}}. The output of the operation is a
quadruplet (𝐸fracs, 𝐹 , 𝐹 ′, 𝐹 framed).

▶ 𝐹 is the minimized linear precondition: a linear context containing
resources from Γ.linear that are needed to typecheck 𝑡 .

▶ 𝐹 ′ is the minimized linear postcondition: a linear context produced
after typechecking 𝑡 if we give only 𝐹 as the linear precondition.

96 5 Computing program resources: Usage maps

▶ 𝐹 framed is themaximal frame: a linear context of resources from Γ.linear
that were superfluous in the typechecking of 𝑡 . It means resources
in 𝐹 framed can be framed during the typechecking of 𝑡 . Since these
resources are not touched by 𝑡 , they must also occur in Γ′ .linear.

▶ 𝐸fracs is the generated fraction set: a set of pure fractions that are created
by theMinimize algorithm to give only an arbitrary subfraction of the
resource in Γ.linear in 𝐹 when such a fractional resource suffices to
typecheck 𝑡 .

Concretely, the result of Minimize is guided by the entries in the usage map
Δ, which is computed when typechecking 𝑡 .

▶ If 𝑡 can typecheck without a linear resource 𝐻 , then 𝐻 should be put
in the frame 𝐹 framed.

▶ If 𝑡 can typecheck with only an uninitialized version of 𝐻 (because,
for instance, it starts by overwriting the data accessible through 𝐻),
then such uninitialized version of 𝐻 should be placed in 𝐹 .

▶ If 𝑡 can typecheck with only an arbitrary subfraction of 𝐻 (because,
for instance, 𝑡 only reads using 𝐻), then a fresh fraction 𝛼 should be
created and placed in 𝐸fracs, the resource 𝛼𝐻 should be placed in 𝐹 ,
and (1 − 𝛼)𝐻 should remain in 𝐹 framed.

Detailed examples and an algorithmic description of Minimize can be found
in appendix F. From the perspective of establishing soundness results, the
following three properties about the quadruplet (𝐸fracs, 𝐹 , 𝐹 ′, 𝐹 framed) are
useful:

▶ {{⟨Γ.pure, 𝐸fracs | 𝐹 ⟩}} 𝑡 {{⟨Γ′ .pure, 𝐸fracs | 𝐹 ′⟩}}, which corresponds to
the minimized triple.

▶ Γ ⇒ ⟨Γ.pure, 𝐸fracs | 𝐹 ★ 𝐹 framed⟩, which describes the decomposition
of Γ.

▶ ⟨Γ′ .pure, 𝐸fracs |𝐹 ′★𝐹 framed⟩ ⇒ Γ′, which describes the decomposition
Γ′.

5.5 Typechecking of order-irrelevant
subexpressions

We next explain how to leverage the minimization procedure for typecheck-
ing functions calls that are not in A-normal form, but possibly include
effectful subexpressions. In C, and in our subset OptiC, the arguments of a
function call may be evaluated in an arbitrary order. The fact that the order
is not fixed is interesting because it leaves additional flexibility for optimiza-
tions. Our typesystem checks that, for well-typed OptiTrust programs, the
order of evaluation is indeed irrelevant. To that end, we consider a sufficient
condition: that the arguments can be evaluated in parallel, in the sense that
the side effects performed by one argument should not interfere with the
evaluation of any other argument.

Remark that there exist OptiC programs that fail to typecheck because
our condition is slightly more restrictive than evaluation order irrelevance.
For example, the expression add(getAndIncr(𝑥), getAndIncr(𝑥)) has an
irrelevant order of evaluation but the two occurrences of getAndIncr have
conflicting side effects. However, such programs are quite rare and may be
easily rewritten to avoid this issue by creating intermediate variables before
the function call. Besides, parallel evaluation of function arguments gives

5.6 Formal properties of usage maps 97

even more flexibility for transformations compared to undefined evaluation
order.

The rule Subexpr reduces the typechecking of a term with possibly effectful
subexpressions to the typechecking of a term whose subexpressions are
program variables. In particular, the rule may be used to compute the output
context associated with a call of the form 𝑓 (𝑡1, ..., 𝑡𝑛) in an input context Γ0,
by reducing the problem to the typechecking of a call of the form 𝑓 (𝑥1, ..., 𝑥𝑛),
in an input context Γ𝑝 that binds the fresh variables 𝑥𝑖 .

The rule Subexpr, shown below, applies to a term of the form Ê [𝑡0, ..., 𝑡𝑛],
where Ê denotes a multi-evaluation-context, and where each 𝑡𝑖 denotes a
subterm in evaluation position. A multi-evaluation-context is a term with
ordered holes that are all in evaluation position. We write Ê [𝑡0, ..., 𝑡𝑛] the
operation that fills the holes with terms 𝑡0 to 𝑡𝑛 . For example, if Ê denotes
the multi-evaluation-context □(□, ..., □), then the application Ê [𝑓 , 𝑡1, ..., 𝑡𝑛]
produces the function call 𝑓 (𝑡1, ..., 𝑡𝑛).

The goal of the rule Subexpr is to distribute the linear resources from the
input context Γ0 between the subterms 𝑡𝑖 . If several subterms read the same
resource, then this resource needs to be split. If one subterm reads a resource
and another subterm modifies that same resource, the rule must fail to
apply. The key idea is to typecheck the subterms one after the other, taking
advantage of the Minimize operation to remove the minimal amount of
resources from the input context, thereby leaving as many resources as
possible for the remaining subterms.

Subexpr
∀𝑖 ∈ [1, 𝑛] . {{Γ𝑖−1}} 𝑡Δ𝑖

𝑖
{{Γ′𝑖 }} ∧ (𝐸fracs𝑖 , 𝐹𝑖 , 𝐹

′
𝑖
, 𝐹 framed

𝑖) = Minimize(Γ𝑖−1, Γ′𝑖 , Δ𝑖) ∧ 𝑥𝑖 fresh
∀𝑖 ∈ [1, 𝑛] . Γ𝑖 = ⟨ Γ𝑖 .pure, 𝐸fracs𝑖 | 𝐹 framed

𝑖 ⟩ ∧ Γ̂′
𝑖
= ⟨ Γ′𝑖 .purep·Δ𝑖 .ensured | 𝐹 ′𝑖 ⟩

Γ𝑝 = CloseFracsΔ𝑝

(
Γ𝑛 ⊙★ ⊙★𝑖∈[1,𝑛] Rename{res := 𝑥𝑖 }(Γ̂′𝑖)

)
{{Γ𝑝 }} Ê [𝑥1, ..., 𝑥𝑛]Δ𝑞 {{Γ𝑞}}

Δ = Rename{res := 𝑥1}(Δ1); ...; Rename{res := 𝑥𝑛}(Δ𝑛); Δ𝑝 ; Δ𝑞

{{Γ0}} Ê [𝑡1, ..., 𝑡𝑛]Δ {{Γ𝑞}}

Appendix G presents an example application of this rule.

5.6 Formal properties of usage maps

To conclude this section, we present three propositions that specify the
contents of usage maps computed by our typing algorithm. These propo-
sitions have guided all our definitions. We claim that these propositions
hold by design; we leave to future work a thorough mechanized proof of the
claims.

Consider an algorithmic triple {{Γ}} 𝑡Δ {{Γ′}}, where Γ decomposes as ⟨𝐸 | 𝐹 ⟩
and Γ′ decomposes as ⟨𝐸′ | 𝐹 ′⟩. The first proposition explains how 𝐹 and 𝐹 ′

are partitioned by the usage map.

Proposition 5.6.1: Decomposition by usage

𝐹 = 𝐹 p·Δ.full★ 𝐹 p·Δ.uninit★ 𝐹 p·Δ.splittedFrac★ 𝐹 p·Δ.joinedFrac★ 𝐹\Δ
𝐹 ′ = 𝐹 ′p·Δ.produced★ 𝐹 ′p·Δ.splittedFrac★ 𝐹 ′p·Δ.joinedFrac★ 𝐹 ′\Δ

98 5 Computing program resources: Usage maps

The second proposition explains how 𝐸′ extends 𝐸, and how the frame
resources from 𝐹 are preserved in 𝐹 ′. Besides, the proposition captures the
fact that a resource with usage splittedFrac or joinedFrac in 𝐹 must also
appear in 𝐹 ′, albeit with a possibly different fraction.

Proposition 5.6.2: Preserved parts of typing contexts

{{⟨𝐸 | 𝐹 ⟩}} 𝑡Δ {{⟨𝐸′ | 𝐹 ′⟩}}
=⇒ 𝐸′ = (𝐸, 𝐸′p·Δ.ensured)
∧ 𝐹 ′\Δ = 𝐹\Δ

∧
(
∀𝑦, ∀𝐻,

(∃𝛼, (𝑦 : 𝛼𝐻) ∈ 𝐹 p·Δ.splittedFrac)
⇐⇒ (∃𝛽, (𝑦 : 𝛽𝐻) ∈ 𝐹 ′p·Δ.splittedFrac)

)
∧

(
∀𝑦, ∀𝐻,

(∃𝛼, (𝑦 : 𝛼𝐻) ∈ 𝐹 p·Δ.joinedFrac)
⇐⇒ (∃𝛽, (𝑦 : 𝛽𝐻) ∈ 𝐹 ′p·Δ.joinedFrac)

)
The third proposition explains that the entries of the usage map Δ imply
that the term 𝑡 may be well-typed in a context with smaller footprint. If
a resource 𝐻 appears in 𝐹 but is not used, then it is omitted. If a resource
𝐻 appears in 𝐹 but is used only as uninit (i.e. the corresponding cells are
written before being read), then the resource is replaced with its uninitialized
counterpart. If a resource 𝐻 is only read, then it is replaced with a fractional
resource 𝛼𝐻 , where 𝛼 is a constant that can be chosen arbitrarily small.
These operations are formally captured in the following statement, which
also covers additional complications related to the case where a set of input
resources are split or merged together for producing certain output resources.
Below, {Γ̂} 𝑡 {Γ̂′} corresponds to a semantic triple, a notion introduced in
section 4.8 and the 𝐹 variables are explained afterwards.

Proposition 5.6.3: Minimization with usage maps

{{⟨𝐸 | 𝐹 ⟩}} 𝑡Δ {{⟨𝐸′ | 𝐹 ′⟩}}
=⇒ ∀𝛼, ∃𝐹 SP, ∃𝐹 ST, ∃𝐹 JS, ∃𝐹 JF,

let Γ̂ =

〈
𝐸p·Δ.required

������ 𝐹 p·Δ.full
★ IntoUninit(𝐹 p·Δ.uninit)
★ 𝛼 (𝐹 p·Δ.splittedFrac)

〉
in

let Γ̂′ =
〈
𝐸p·Δ.required,
𝐸′p·Δ.ensured

���� 𝐹 ′p·Δ.produced
★ 𝐹 SP ★ 𝐹 JS ★ 𝐹 JF

〉
in

{Γ̂} 𝑡 {Γ̂′}
∧ 𝛼 (𝐹 p·Δ.splittedFrac) ⇔ 𝐹 SP ★ 𝐹 ST

∧ 𝐹 ′p·Δ.splittedFrac⇔ (1 − 𝛼) (𝐹 p·Δ.splittedFrac) ★ 𝐹 SP ★ 𝐹 JS

∧ 𝐹 ′p·Δ.joinedFrac⇔ (𝐹 p·Δ.joinedFrac) ★ 𝐹 JF

We explain the role of the 𝐹𝑋 variables at a high level, bymeans of example:

▶ Assume a resource 𝑦 : (𝛽 − 𝛾)𝐻 from 𝐹 with usage joinedFrac in Δ
meaning that 𝑡 does not read this resource. It must be the case that
𝑡 produces (directly or indirectly) a resource 𝛾𝐻 that is immediately
merged into 𝑦. This produced resource appears in 𝐹 JF, short for joined-
framed.

▶ Assume a resource 𝑦 : (𝛽 − 𝛾)𝐻 from 𝐹 with usage splittedFrac in Δ
meaning that 𝑡 reads this resource. Assume moreover 𝑡 produces a
resource𝛾𝐻 that is immediately merged into𝑦. This produced resource
appears in 𝐹 JS, short for joined-split.

▶ Assume a resource 𝑦 : 𝛽𝐻 from 𝐹 with usage splittedFrac in Δ. In
the minimized triple for 𝑡 , which takes an arbitrarily-small fraction
𝛼 of the splittedFrac resources, (up to) two subfractions of 𝛼𝛽𝐻 may

5.6 Formal properties of usage maps 99

be involved. A first subfraction corresponds to a subresource of 𝑦
that 𝑡 does not alter; this subfraction appears in 𝐹 SP, short for split-
preserved. A second subfraction corresponds to a subresource of 𝑦 that
𝑡 alters; this subfraction appears in 𝐹 ST, short for split-transformed. The
line 𝛼 (𝐹 p·Δ.splittedFrac) ⇔ 𝐹 SP ★ 𝐹 ST captures that the splittedFrac
resources from 𝐹 divide between 𝐹 SP and 𝐹 ST.

Again, we leave it to future work to carry out a mechanized proof of these
propositions.

Implementation of trustworthy
transformations 6

6.1 Transformations on
sequences of instructions 103

6.2 Transformations exploit-
ing equalities 106

6.3 Transformations on
bindings 106

6.4 Transformations on
storage 108

6.5 Transformations on loops 110
6.6 Transformations on

annotations 115
6.7 Correctness of transfor-

mations 118

In this chapter, we explain how OptiTrust leverages resource typing infor-
mation to check the correctness of the transformations requested by the
programmer. The aim of this section is not to cover all the transformations
implemented in OptiTrust, but to present a representative subset thereof. We
focus in particular on transformations that leverage the resource information
in an interesting way. All the transformations presented in this section are
invoked multiple times in our case studies from chapter 2.

In OptiTrust, most code transformations support two modes of operation:
semantic preservation and specification preservation. The main difference
between those modes comes from the trust model and the complexity of the
correctness analysis. With semantic preservation, transformations rely on a
conservative correctness criterion checked by the transformation implemen-
tation. With specification preservation, transformations themselves do not
need to check anything, they are not allowed to change the specification
of the top-level functions, and they fail if their output does not typecheck.
This specification preservation mode only makes sense in presence of full
functional correctness invariants, because transformations are considered
correct whenever their output satisfies the same top-level specification. In
both cases, the transformations are responsible for preserving annotations so
that their output code typechecks whenever their conditions of applicability
are met.

Also recall that, in any case, we only need to check the correctness of basic
transformations, because combined transformations are defined as the com-
position of basic transformations. Unless said otherwise, all transformations
presented in this section have the same implementation in semantic and
specification preservation modes. In specification preservation mode, the
correctness criterion checks are skipped and replaced by a typechecking
of the output code. That said, in semantic preservation mode, a successful
typechecking of the output code may or may not be required by the cor-
rectness criterion. Nevertheless, even when typechecking is not required
for checking the correctness, OptiTrust needs to re-typecheck the program
after every transformation, in order to allow the application of subsequent
transformations.

A number of basic transformationmight seem “simple” to the reader. This sim-
plicity is precisely a strength of OptiTrust. As explained in the introduction,
we aim to minimize the trusted code base, by considering the simplest possi-
ble basic transformations and by implementing as many transformations as
possible as composition of basic transformations. Other transformations are
more involved. In fact, for certain loop transformations, we have considered
only simplified correctness criterions, which we could further generalize in
future work.

Before presenting the key aspects of specific transformations, we introduce
notation for describing transformations. Transformations apply to instruc-
tions or groups of instructions; they depend on typing context and usage
information; and they produce code with possibly updated loop contracts,
and possibly including new ghost instructions. Hence, we need a convenient
way to visualize all these entities.

102 6 Implementation of trustworthy transformations

Notation for well-typed programs Transformations leverage typing
information, not only for checking correctness, but also for guiding the
generation of the output code. Recall from the previous section that our
typechecking algorithm computes, for every subterm 𝑡 , its input context Γ1,
its output context Γ2, and its usage map Δ, establishing triples of the form
{{Γ1}} 𝑡Δ {{Γ2}}. In this section, we use an alternative syntax, better-suited for
describing the input of transformations. If 𝑡 denotes an instruction, we write
Γ1 𝑡 ; Δ Γ2 as straight-line syntax for {{Γ1}} 𝑡Δ {{Γ2}}, where any of Γ1, Δ, or Γ2
can be omitted if not needed by the transformation.

Groups of instructions Some transformations operate on groups of con-
secutive instructions. We let the meta-variable 𝑇 range over a (possibly
empty) group of instructions. We generalize our alternative syntax by writ-
ing Γ1 𝑇 ; Δ Γ2, where Γ1 and Γ2 denotes the initial and final contexts, and
Δ denotes the composition of the usages from the group of instructions, as
defined in section 5.3:

Γ0 𝑇 ; Δ Γ𝑛 = Γ0 𝑡1; Δ1 Γ1 𝑡2; Δ2 Γ2 ... Γ𝑛−1 𝑡𝑛 ; Δ𝑛 Γ𝑛

where 𝑇 = 𝑡1; 𝑡2; ...; 𝑡𝑛
and Δ = Δ1; Δ2; ...; Δ𝑛

Program contexts Transformations generally apply to a program sub-
term, that is, apply under a program context. Unlike evaluation contexts,
program contexts can reach subterms that are not in evaluation position. We
let the meta-variable E range over program contexts. For example, evaluat-
ing a subexpression 1 + 1 that appears in a program context E is described
as the transition from E[1 + 1] to E[2]. We also allow program contexts
to denote a hole in the middle of a sequence. For example, swapping two
instructions that appear inside a sequence is described as the transition from
E[𝑡1; 𝑡2] to E[𝑡2; 𝑡1], to be interpreted as a transition from E′ [{𝑇0; 𝑡1; 𝑡2;𝑇3}]
to E′ [{𝑇0; 𝑡2; 𝑡1;𝑇3}], where E′ denotes the program context associated with
the outer sequence that contains 𝑡1; 𝑡2. We will only explicitly mention the
surrounding program context E for the first few transformations.

Evaluation contexts Some transformations operate on subexpressions
that appear inside an instruction. For those, we may need to restrict the
form of the program contexts in which the subexpression may appear, to
avoid nontrivial control-flow arising from, e.g., a conditional. Recall from sec-
tion 5.5 that an evaluation context, written Ê, denotes a program context
whose holes (possibly just one) are in evaluation position. For example,
𝑓 (𝑔(□, 2), 𝑔(3, 𝑎 + 4)) is an evaluation context with a single hole written
□.

One key property is that the rewrite is correct for any evaluation context Ê:

Ê [𝑡] ↦−→
let 𝑥 = 𝑡 ;
Ê [𝑥]

The reciprocal rewrite holds only if Ê [𝑡] is well-typed in our typesystem.

The validity of this rewrite rule, and more generally the interest of evalu-
ation contexts for transformations, crucially relies on the hypothesis that
the input code typechecks against our typing rules. Indeed, the Subexpr

6.1 Transformations on sequences of instructions 103

rule ensures that, if a function has multiple arguments, then the available
resources are distributed across the arguments—only read-only resources
can be distributed onto several arguments. For example, 𝑓 (𝑔1 (), 𝑔2 (), 𝑔3 ())
is equivalent to let 𝑥 = 𝑔2 (); 𝑓 (𝑔1 (), 𝑥, 𝑔3 ()) because, if the former term is
well-typed, then the effects of 𝑔2 () do commute with the effects of 𝑔1 () and
𝑔3 ().

Notation for introducing ghost calls Recall that a call to a ghost function
is an instruction that semantically behaves as a no-op, yet updates the context
available. In the output of transformations, we write ghost(Γ −→ Γ′) to
mean the insertion of an appropriate ghost call 𝑔(), such that 𝑔 admits Γ as
precondition, and that the call to 𝑔 adds the resources in Γ′ to the context1.
Concretely, the effect of ghost(Γ −→ Γ′) is to consume the resources Γ
then to produce the resources Γ′.

We are now ready to present transformations.We begin with transformations
on instructions and variable bindings, then move on to transformations on
storage, and transformations on loops.

6.1 Transformations on sequences of
instructions

Moving instructions The basic transformation Instr.move allows mov-
ing a group of instructions to a given destination within the same sequence.
Doing so amounts to swapping a group of instructions 𝑇1 with an adjacent
group of instructions 𝑇2. The move transformation turns a program of the
form E[𝑇1;𝑇2] into E[𝑇2;𝑇1], where E denotes a program context. The trans-
formation is formalized as shown below. The variables Δ1 and Δ2 denote
the usage associated with 𝑇1 and 𝑇2. The correctness criterion, stated on the
right-hand-side, is explained next.

E[𝑇1; Δ1; 𝑇2; Δ2] ↦−→ E[𝑇2; 𝑇1]
correct if:{
Δ1.alter ∩· Δ2 = ∅
Δ2.alter ∩· Δ1 = ∅

The expression Δ1 .alter denotes the resources that 𝑇1 adds or removes (con-
sumes, produces, or ensures). It excludes resources that remained unaltered
(carving or merging a fraction does not count as an alteration). The property
Δ1 .alter ∩· Δ2 = ∅ captures the idea that if a resource is altered by 𝑇1, then
𝑇2 must not use it (this includes “write after read” dependencies), otherwise
swapping𝑇1 and𝑇2 might not be correct. (The resource intersection operator
∩· was defined in section 5.2.) The second property, namely Δ2.alter∩· Δ1 = ∅,
captures the symmetrical property: if a resource is altered by 𝑇2, then 𝑇1
must not use it (this includes “read after write” dependencies). When both
conditions are met, the only resources that both 𝑇1 and 𝑇2 depend on are
accessed in read-only mode, and 𝑇1 and 𝑇2 may be safely swapped without
impacting their evaluation result.

Recall that such correctness criterion needs not to be checked in specification
preservation mode that can be used in presence of full specifications.

Also note that the current version of Opti𝜆 does not feature primitives
performing external side effects such as input/output system calls. In order
to guarantee that such side effects are preserved by transformations, those

1: Technically, the ghost function 𝑔 admits
a context Γ′′ as its postcondition and the
call inserted by the transformation spec-
ifies a renaming map 𝜌 such that Γ′ =

Rename{𝜌 } (Γ′′) . Recall that these renam-
ing maps are used by the typing rule App
described in section 4.7.

104 6 Implementation of trustworthy transformations

side effects will need to be captured by resources and therefore appear in
the usage map.

Annotations on the left represent resource information read by the transfor-
mation (here the usage maps Δ1 and Δ2, in green), and annotations on the
right represent resource annotations written by the transformation (here no
information is produced, it would be colored in orange).

Deleting instructions The basic transformation Instr.delete allows
deleting a group of instructions 𝑇 from a sequence. It therefore maps a
program E′ [{𝑇0;𝑇 ;𝑇2}] to a program E′ [{𝑇0;𝑇2}], for a program context E′.
Following our convention that program contexts may describe subsequences,
we may also describe the transformation as mapping E[𝑇] to E[∅], for a
program context E.

Intuitively, the deletion operation preserves program semantics if the re-
sources altered by 𝑇 are not observed by the rest of the program or required
by the postcondition. This intuition holds because our typechecker ensures
that the deleted sequence of instructions always terminates. More precisely,
if 𝑇 has been typechecked as Γ 𝑇 ; Δ, then we start with the resources Γ
corresponding to not executing 𝑇 , then forget the contents of the resources
that might be different when not executing𝑇 . The resources to “uninitialize”
Γ𝑚 are computed by the filtering operation Γp·Δ.alter. (Filtering was defined
in section 5.2.) Finally, we typecheck the auxiliary program E[𝐺], in which
the 𝑇 is replaced with a ghost instruction 𝐺 casting the Γ𝑚 resources into
their corresponding “uninitialized form”, as performed by the IntoUninit
operator. If a resource𝐻 is consumed by𝑇 , then𝐺 consumes𝐻 and produces
Uninit(𝐻).

The transformation can therefore be formalized as follows:

E[Γ 𝑇 ; Δ] ↦−→ E[∅]
correct if
E[ghost(Γ𝑚 −→ IntoUninit(Γ𝑚))]
typechecks, where Γ𝑚 = Γp·Δ.alter

If the auxiliary program E[𝐺] typechecks, then we can discard this program,
and safely replace the original program E[𝑇] with E[∅]. Note that this
pattern of introducing an auxiliary program for the purpose of evaluating a
correctness criterion will appear again for other transformations.

Inserting instructions The transformation Instr.insert refines a pro-
gram from E[∅] to E[𝑇], where𝑇 denotes the group of inserted instructions.
The correctness criterion, described below, is essentially the same as that for
instruction deletion. Indeed, for E[𝑇] to admit the same semantics as E[∅],
it suffices that E[∅] admits the same semantics as E[𝑇].

E[∅] ↦−→ E[𝑇]
correct if:

1. the program E[𝑇] typechecks as E[Γ 𝑇 ;Δ] for some Γ and Δ
2. the program E[ghost(Γ𝑚 −→ IntoUninit(Γ𝑚))] typechecks, where

Γ𝑚 = Γp·Δ.alter, for the above values of Γ and Δ

Thereafter, for brevity, we omit the program context surrounding the code
snippets, previously written E.

6.1 Transformations on sequences of instructions 105

Idempotent terms A number of transformations depend on the notion of
idempotence. In the C23 standard, an expression is said to be “idempotent” if,
intuitively, evaluating this expression multiple times in immediate sequence
produces the same results. In OptiTrust, we leverage our resource analysis
to capture a practical sufficient condition for idempotence.2 A term can be
considered idempotent if all the resources that this term produces correspond
either:

▶ to uninitialized resources that were consumed by this term; or

▶ to read-only resources that the term consumes and returns with the
exact same fraction.

These criterions may be formalized as follows:

A term𝑇 that appears in a
program E[Γ1 𝑇 ; Δ Γ2] is
idempotent iff:


Δ.full = ∅
(Γ2p·Δ.produced) ⊟ (Γ1p·Δ.uninit) = (𝜎, ∅)

for some 𝜎
Γ1p·Δ.reads = Γ2p·Δ.reads

In particular, these criterions rule out terms that consume full resources, or
produce resources they did not consume. To understand this definition, recall
that a heap predicate 𝐻 from the context can be downgraded on-the-fly into
Uninit(𝐻) when computing context subtractions. Therefore, a term that only
consumes Uninit(𝐻), and produces𝐻 is considered idempotent according to
our definition, and can indeed be executed twice in a row without changing
the result. To give more concrete examples, x = y+1, which reads y and
assigns x is idempotent; however x++, which modifies x, is not idempotent.
One key property that holds for an idempotent term 𝑡 is that the following
program equivalence holds:

let 𝑥 = 𝑡 ;
let 𝑦 = 𝑡 ;
E[𝑥, ..., 𝑦, ...]

↔
let 𝑥 = 𝑡 ;
E[𝑥, ..., 𝑥, ...]

Duplicating and deduplicating instructions If an instruction 𝑇 (or
possibly a group of instructions) is idempotent, then after a first instruction
𝑇 , a second instruction 𝑇 may be inserted or removed without affecting the
semantics. The transformation Instr.dup and its reciprocal Instr.dedup
are formalized, for the general case of groups of instructions, as follows:

𝑇 ; ↔
𝑇 ;
𝑇 ;

correct if 𝑇 is idempotent

Similarly, if a term 𝑡 is idempotent, then after the instruction let 𝑥 = 𝑡 , an
instruction let 𝑦 = 𝑡 may be inserted or removed, for a fresh variable 𝑦.
The corresponding transformations are named Instr.dup_let and Instr.
dedup_let.

let 𝑥 = 𝑡 ; ↔
let 𝑥 = 𝑡 ;
let 𝑦 = 𝑡 ;

correct if 𝑡 is idempotent and 𝑦 fresh

2: The C23 standard defines a number of
related notions. In particular, an expres-
sion is said to be “effectless” iff “any store
operation that is sequenced during the exe-
cution is the modification of an object that
synchronizes with the call”. An expression
is said to be “reproducible” iff it is both ef-
fectless and idempotent. Reproducibility is
essentially equivalent to the notion of pure
expression in GCC’s terminology [AG22].
Due to our resource typing discipline, all
OptiTrust terms can be considered “effect-
less”. Hence, in the context of OptiTrust,
“idempotent” and “reproducible” are equiv-
alent.

106 6 Implementation of trustworthy transformations

Deduplicating expressions is a building block for common subexpression
elimination, which is detailed further on. Duplicating expressions can also
improve performance in certain situations: recomputing a simple expression
may be cheaper than storing its value in memory and subsequently retrieving
this value, especially if the redundant computations are scattered in distinct
loops.

6.2 Transformations exploiting equalities

Read after write The transformation Eq.read_after_write captures
the fact that reading immediately after writing yields the value that was
written. On its own, this transformation may seem of little interest; however,
it is useful when combined with moves of the read or the write instruction.

set(𝑝, 𝑣);
Ê [get(𝑝)];

↦−→
set(𝑝, 𝑣);
Ê [𝑣];

correct if Ê is an evaluation
context and 𝑣 is a logical ex-
pression

Results of idempotent expressions The transformation Eq.
idempotent captures the fact that evaluating an idempotent expression
twice yields equal results.

let 𝑥 = 𝑡 ;
let 𝑦 = 𝑡 ;
E[𝑥]

↦−→
let 𝑥 = 𝑡 ;
let 𝑦 = 𝑡 ;
E[𝑦]

correct if E is a program con-
text and 𝑡 is idempotent.

6.3 Transformations on bindings

Inlining/binding for logical expressions The basic transformation
Variable.inline_pure eliminates a binding of the form let 𝑥 = 𝑣 , where
𝑣 is a logical expression, by replacing all occurrences of 𝑥 with 𝑣 . This
transformation is always correct and requires no check. The reciprocal trans-
formation, Variable.bind_pure, introduces a binding for one or several
occurrences of a logical expression 𝑣 . Likewise, it is always correct.

Inlining a binding with a single occurrence, in the next instruc-
tion The basic transformation Variable.inline_one eliminates a bind-
ing let 𝑥 = 𝑡 in programs where 𝑥 has exactly one occurrence, and this
occurrence is contained in the immediately succeeding instruction, under an
evaluation context Ê. As mentioned earlier, the correctness of this inlining
transformation critically relies on the fact that our typing rules ensure that
the order of evaluation of subexpressions is irrelevant.

let 𝑥 = 𝑡 ;
Ê [𝑥];

↦−→ Ê[𝑡];

correct if the evaluation context Ê
contains no other occurrence of 𝑥
than the one in its hole, and the
output program typechecks

6.3 Transformations on bindings 107

Inlining a binding with multiple occurrences, in the next instruction
The transformation Variable.inline_dup expands a binding at one of its
occurrences, without removing the binding. Here again, we consider an
occurrence appearing in an immediately succeeding evaluation context. This
transformation is implemented as a combined transformation, decomposed
as shown below. Recall that we do not need to devise correctness criterions
for combined transformations.

let 𝑥 = 𝑡 ;
Ê [𝑥];

↦−→
Instr.dup_let

let 𝑥 = 𝑡 ;
let 𝑦 = 𝑡 ;
Ê [𝑥];

↦−→
Eq.idempotent

let 𝑥 = 𝑡 ;
let 𝑦 = 𝑡 ;
Ê [𝑦];

↦−→
Variable.
inline_one

let 𝑥 = 𝑡 ;
Ê [𝑡];

Inlining a binding in the scope of a sequence The combined trans-
formation Variable.inline eliminates a binding let 𝑥 = 𝑡 in the general
case. If 𝑡 is a logical expression, then Variable.inline_pure is invoked.
Otherwise, we implement the inlining as a combination of several of the
aforementioned transformations. Indirectly, our combined transformation
enforces the minimal checks required for eliminating a binding let 𝑥 = 𝑡

without affecting the semantics.

▶ If 𝑥 has no occurrences, the effects of 𝑡 need to be irrelevant to the
rest of the program.

▶ If 𝑥 has exactly one occurrence, then the effects of 𝑡 needs to commute
with all the instructions located between the binding on 𝑥 and the
occurrence of 𝑥 .

▶ If 𝑥 has several occurrences, then, in addition to the requirement from
the previous case, 𝑡 moreover needs to be idempotent.

Concretely, our transformation proceeds as follows. If there are no occur-
rences of 𝑥 , it invokes the transformation Instr.delete. If there is exactly
one occurrence of 𝑥 , it attempts to move, using Instr.swap, the binding on
𝑥 just in front of this binding, then invoke Variable.inline_one. If there
are several occurrences of 𝑥 in the sequence, then it moves the binding to the
front of the first instruction that contains occurrences of 𝑥 ; then it applies
the transformation Variable.inline_dup; then it repeats the process until
reaching the last occurrence of 𝑥 . We show below an example decomposition
of Variable.inline, where 𝑡 is assumed to be idempotent.

let 𝑥 = 𝑡 ; 𝑔(); set(𝑎, 𝑥); set(𝑏, 𝑥);
↦−→ 𝑔(); let 𝑥 = 𝑡 ; set(𝑎, 𝑥); set(𝑏, 𝑥); (Instr.swap)
↦−→ 𝑔(); let 𝑥 = 𝑡 ; set(𝑎, 𝑡); set(𝑏, 𝑥); (Variable.inline_dup)
↦−→ 𝑔(); set(𝑎, 𝑡); let 𝑥 = 𝑡 ; set(𝑏, 𝑥); (Instr.swap)
↦−→ 𝑔(); set(𝑎, 𝑡); set(𝑏, 𝑡); (Variable.inline_one)

We leave to future work the support, in a combined transformation, of more
complex patterns where occurrences of a non-pure binding appear in depth
under control flow constructs.

Binding introduction The basic transformation Variable.bind_one is
essentially the reciprocal of Variable.inline_one.

108 6 Implementation of trustworthy transformations

Ê [𝑡]; ↦−→
let 𝑥 = 𝑡 ;
Ê [𝑥];

Folding for additional occurrences The combined transformation
Variable.bind_dup is essentially the reciprocal of Variable.inline_dup.
(We implement it as a combination of Variable.bind_one, Instr.swap,
Eq.idempotent, and Instr.delete.)

let 𝑥 = 𝑡 ;
𝑇 ;
Ê [𝑡];

↦−→
let 𝑥 = 𝑡 ;
𝑇 ;
Ê [𝑥];

Common subexpression elimination The combined transformation
Variable.bind is essentially the reciprocal of Variable.inline. Inter-
nally, it exploits the transformations Variable.bind_one and Variable
.bind_dup to introduce a binding that factorizes the evaluation of com-
mon subexpressions. For example, if 𝑡 is idempotent and commutes with
𝑔(), the program “𝑔(); set(𝑎, 𝑡); set(𝑏, 𝑡)” can be transformed into “let 𝑥 =

𝑡 ; 𝑔(); set(𝑎, 𝑥); set(𝑏, 𝑥)”.

6.4 Transformations on storage

The purpose of this section is to present transformations for introducing,
eliminating, and converting between various forms of storage. We present
transformations operating on single cells, and omit from the discussion the
generalizations to arrays and 𝑁 -dimensional matrices.

Recall from chapter 3 that a pure program variable written const int
x = 3 in OptiC is represented in the manipulated Opti𝜆 AST as let 𝑥 =

3, that a non-pure stack-allocated variable int x = 3 is represented as
let 𝑥 = ref(3), and that an uninitialized variable int x is represented as
let 𝑥 = stackAllocCell (). For stack-allocated data, the resources produced by
stackAlloc are automatically reclaimed at the end of the scope. For heap-
allocated data, the resources produced by heapAlloc are consumed by the
matching call to free.

Separating declaration from initialization For a stack-allocated vari-
able, the basic transformation Variable.init_detach separates its decla-
ration from its initialization. This transformation is useful as a preliminary
step for the combined transformation that hoists a variable declaration ap-
pearing inside a loop into an array allocated outside that loop. The basic
transformation Variable.init_attach applies the reciprocal operation.

let 𝑥 = ref(𝑡); ↔
let 𝑥 = stackAllocCell ();
set(𝑥, 𝑡);

6.4 Transformations on storage 109

Converting between stack and heap allocation The basic transforma-
tion Variable.to_heap transforms an uninitialized stack-allocated storage
into a corresponding heap-allocated storage. The transformation takes as
optional argument the target at which the free instruction should be inserted;
by default, it is placed at the end of the scope. The reciprocal transformation
is named Variable.to_stack.

{
𝑇1;
let 𝑥 = stackAlloc𝐶 ();
𝑇2;
}

↔

{
𝑇1;
let 𝑥 = heapAlloc𝐶 ();
𝑇2;
free(𝑥);
}

Removal of unused storage If a stack-allocated storage is never used, it
may be removed by means of the operation Instr.delete. Concretely, the
instruction let 𝑥 = stackAllocCell () may be deleted if 𝑥 has no occurrences,
and the instruction let 𝑥 = ref(𝑒) may be deleted if moreover the effects
performed by 𝑒 are not observed by the rest of the program.

If a heap-allocated space is never used, then it may also be removed. To
that end, one needs to delete both the heapAlloc and the corresponding
free instructions. Neither of them can be removed independently, because
both depend on each other. However, if we move using Instr.move the
heapAlloc instruction next to the free instruction, or vice versa, then the
group made of the two instructions may be removed at once by means of
Instr.delete. The combined transformation Variable.delete, described
below, performs this task.

let 𝑥 = heapAlloc𝐶 ();
𝑇 ;
free(𝑥);

↦−→
Instr.move

let 𝑥 = heapAlloc𝐶 ();
free(𝑥);
𝑇 ;

↦−→
Instr.delete

𝑇

Temporary alternative storage The transformation Variable.
local_name is the most complex that we have implemented in terms
of operations on plain sequences of instructions. The transformation
Variable.local_name operates over a specified group of instructions, say
𝑇 , for a specified storage, say 𝑥 . Over this scope, a fresh storage, call it 𝑦,
is allocated. Just before executing 𝑇 , the contents of 𝑥 are copied into 𝑦.
All instructions from 𝑇 are updated to use 𝑦 instead of 𝑥 . Just after these
instructions, the possibly-updated contents of 𝑦 is copied into 𝑥 . Depending
on the situation, the initial copy from 𝑥 to 𝑦, or the final copy from 𝑦

into 𝑥 might be unnecessary—and even ill-typed. Such unnecessary copy
operations are omitted.

The variable 𝑥 may be allocated either on the stack or on the heap. The
user may choose to allocate 𝑦 on the stack or on the heap. Moreover, our
implementation supports the general case where 𝑥 is not just a variable but
an 𝑁 -dimensional matrix. In case where 𝑥 is a matrix, 𝑦 may correspond
to only a subset (i.e. a tile) of the matrix. The interest of the local_name
transformation is to enable the program to operate on a local piece of data.
Crucially, the memory layout of this data may be refined by subsequent

110 6 Implementation of trustworthy transformations

Γ1

E[𝑥, ..., 𝑥];
Γ2

↦−→

let 𝑦 = stackAllocCell ();
𝑇1;
E[𝑦, ..., 𝑦];
𝑇2;

where E is a multi-hole program context with one hole per occurrence of 𝑥 , and where:{
𝑇1 = set(𝑦, get(𝑥)); if 𝑥 ⇝ Cell or 𝛼 (𝑥 ⇝ Cell) appears in Γ1

𝑇1 = ∅ if 𝑥 ⇝ UninitCell appears in Γ1{
𝑇2 = set(𝑥, get(𝑦)); if 𝑥 ⇝ Cell appears in Γ2

𝑇2 = ∅ if 𝑥 ⇝ UninitCell or 𝛼 (𝑥 ⇝ Cell) appears in Γ2

correct if the program to the right typechecks success-
fully, where 𝐻𝑥 is:
▶ 𝑥 ⇝ Cell
▶ 𝛼 (𝑥 ⇝ Cell)
▶ or 𝑥 ⇝ UninitCell

depending on what appears in Γ1

let 𝑦 = stackAllocCell ();
𝑇1;
ghost(⟨∅ | 𝐻𝑥 ⟩ −→ ⟨𝐻𝑔 : HProp | 𝐻𝑔, (𝐻𝑔 −

★

𝐻𝑥)⟩);
E[𝑦, ..., 𝑦];
ghost(⟨∅ | 𝐻𝑔, (𝐻𝑔 −

★

𝐻𝑥)⟩ −→ ⟨∅ | 𝐻𝑥 ⟩);
𝑇2;

Figure 6.1: Description of the basic transformation Variable.local_name. In this figure, 𝛼 < 1 and all 𝑥 ⇝ Cell can be replaced by 𝑥 ↦→ 𝑣

for any 𝑣.

transformations, for example to store the transposed of a matrix in a cache
friendly way (as in section 2.3), or to enable vectorization.

The transformation is described in figure 6.1. There, the group of instructions
𝑇 is represented as E[𝑥, ..., 𝑥], i.e. as a program context with multiple
occurrences of 𝑥 . The typing context Γ1 describes the resources available
before 𝑇 , and Γ2 the resources available after 𝑇 . This typing information is
used not only for checking the correctness criterion, but also for guiding the
generation of the output code.

The correctness criterion appears at the bottom of figure 6.1. An essential
aspect of this criterion is to check that, during the execution of 𝑇 , the re-
source 𝐻𝑥 corresponding to the full permission on 𝑥 is “frozen” (i.e. made
unavailable) in order to ensure that no operation may be performed on 𝑥 via
potential aliases of this pointer. The first ghost call uses a standard technique
for enforcing such a “freeze” in separation logic: introducing a magic wand
operator (−★), guarded by a token named 𝐻𝑔 in the rest of the sequence.
The heap predicate 𝐻𝑔 admits the type HProp, which is the type of all heap
predicates in separation logic. This heap predicate 𝐻𝑔 serves the role of a
key for unfreezing 𝐻𝑥 at the desired point—here, the end of the scope on
which 𝑦 is used in place of 𝑥 , where the second ghost call is placed.

6.5 Transformations on loops

Loop transformations depend on the contracts associated with the loops from
the input code. For every loop being modified or introduced, the transforma-
tions also need to produce appropriate contracts. In what follows, we present
details for loop tiling, loop interchange, loop fission, and loop hoisting. We
then list other loop transformations that we have implemented.

6.5 Transformations on loops 111

for (𝑖 ∈ Ri)𝜒𝑖 {
𝑇 ;
}

↦−→

ghost(★𝑖∈Ri 𝜒𝑖 .excl.pre −→ ★𝑗∈Rj★𝑘∈Rk 𝜒𝑘 .excl.pre);
ghost(Subst{𝑖 := 0}(𝜒𝑖 .shrd.inv) −→ Subst{ 𝑗 := 0}(𝜒 𝑗 .shrd.inv));
for (𝑗 ∈ Rj)𝜒 𝑗 {

for (𝑘 ∈ Rk)𝜒𝑘 {
ghost(⟨|⟩ −→ [RecoverIndex(𝑗, 𝑘) ∈ Ri]);
𝑇 ′;
ghost(Subst{𝑖 := RecoverIndex(𝑗, 𝑘) + 1}(𝜒𝑖 .shrd.inv) −→

Subst{𝑘 := 𝑘 + 1}(𝜒𝑘 .shrd.inv));
}
ghost(Subst{𝑘 := Rk .end}(𝜒𝑘 .shrd.inv) −→
Subst{ 𝑗 := 𝑗 + Rj .step}(𝜒 𝑗 .shrd.inv));

}
ghost(Subst{ 𝑗 := Rj .end}(𝜒 𝑗 .shrd.inv) −→ Subst{𝑖 := Ri .end}(𝜒𝑖 .shrd.inv));
ghost(★𝑗∈Rj★𝑘∈Rk 𝜒𝑘 .excl.post −→ ★𝑖∈Ri 𝜒𝑖 .excl.post);

where:

𝑇 ′ = Subst{𝑖 := RecoverIndex(𝑗, 𝑘)}(𝑇)
𝜒𝑘 = Subst{𝑖 := RecoverIndex(𝑗, 𝑘)}(𝜒𝑖)

𝜒 𝑗 =


vars = 𝜒𝑖 .vars
shrd = Subst{𝑘 := Rk .start}(𝜒𝑘 .shrd)
excl = {pre =★𝑘∈Rk 𝜒𝑘 .excl.pre; post =★𝑘∈Rk 𝜒𝑘 .excl.post}

with the following possible instantiations for the ranges:

Range Ri Range Rj Range Rk Formula for recovering 𝑖:
RecoverIndex(𝑗, 𝑘)

0..(𝑚 × 𝑏) 0..𝑚 0..𝑏 𝑗 ∗ 𝑏 + 𝑘
0..𝑛 where 𝑏 divides 𝑛 0..(𝑛/𝑏) 0..𝑏 𝑗 ∗𝑚 + 𝑘
0..𝑛 where 𝑏 divides 𝑛 range(0, 𝑛, 𝑏) 𝑗 .. 𝑗 + 𝑏 𝑘

0..𝑛 range(0, 𝑛, 𝑏) 𝑗 ..min(𝑗 + 𝑏, 𝑛) 𝑘

Figure 6.2: Description of the 4 variants of the basic transformation Loop.tile.

Loop tiling The basic transformation Loop.tile allows tiling (a.k.a. strip-
mining) a loop. Concretely, it transforms a loop, say with index 𝑖 , into two
nested loops, with indices 𝑗 and 𝑘 . Intuitively, the outer loop on 𝑗 iterates
over the blocks, whereas the inner loop on 𝑘 iterates inside every block.
Depending on the form of the input range, and on whether the block size
divides the width of the loop range, the transformation is able to generate
different ranges for the output loops. For each kind of output, the expression
RecoverIndex(𝑗, 𝑘) indicates how to compute the original index 𝑖 in terms
of the two new indices 𝑗 and 𝑘 .

The 4 variants supported by Loop.tile are described in figure 6.2. The
ranges of the three loops are written 𝑅𝑖 , 𝑅 𝑗 and 𝑅𝑘 , respectively. Recall that
a range is of the form range(𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝, 𝑠𝑡𝑒𝑝). The notation 𝑠𝑡𝑎𝑟𝑡 ..𝑠𝑡𝑜𝑝 is a
shorthand for range(𝑠𝑡𝑎𝑟𝑡, 𝑠𝑡𝑜𝑝, 1). In particular, 0..𝑛 describes the range
of values from 0 inclusive to 𝑛 exclusive. The contracts for the three loops
involved are written 𝜒𝑖 , 𝜒 𝑗 and 𝜒𝑘 , respectively. To typecheck the output
code, ghost tiling operations need to be inserted, as materialized before and

112 6 Implementation of trustworthy transformations

for (𝑖 ∈ 𝑅𝑖)𝜒𝑖 {
for (𝑗 ∈ 𝑅 𝑗)𝜒 𝑗 {
𝑇 ;
}
}

↦−→

ghost(★𝑖★𝑗 𝑃𝑃𝑖, 𝑗 −→ ★𝑗★𝑖 𝑃𝑃𝑖, 𝑗);
for (𝑗 ∈ 𝑅 𝑗)𝜒 ′

𝑗
{

for (𝑖 ∈ 𝑅𝑖)𝜒 ′
𝑖
{

𝑇 ;
}
}
ghost(★𝑗★𝑖 𝑄𝑄𝑖, 𝑗 −→ ★𝑖★𝑗 𝑄𝑄𝑖, 𝑗);

correct if: parallelizable(𝜒𝑖), that
is, 𝜒𝑖 .shrd.inv = ∅.

The contracts from the input code are decomposed as follows:

𝜒𝑖 .shrd = {inv = ∅, reads = (★𝑗 𝑃𝑅 𝑗 ★ 𝐼𝑅 ★𝑅𝑅)}
𝜒𝑖 .excl = {pre = (★𝑗 𝑃𝑃𝑖, 𝑗 ★ 𝐼𝑃𝑖,Rj .start ★𝑅𝑃𝑖), post = (★𝑗 𝑄𝑄𝑖, 𝑗 ★ 𝐼𝑃𝑖,Rj .end ★𝑅𝑃𝑖)}
𝜒 𝑗 .shrd = {inv = (𝐼𝑃𝑖, 𝑗 ★ 𝐼𝑅), reads = (𝑅𝑃𝑖 ★𝑅𝑅)}
𝜒 𝑗 .excl = {pre = (𝑃𝑃𝑖, 𝑗 ★ 𝑃𝑅 𝑗), post = (𝑄𝑄𝑖, 𝑗 ★ 𝑃𝑅 𝑗)}

The contracts for the output code are built as follows:

𝜒 ′𝑗 =


vars = 𝜒𝑖 .vars, 𝜒 𝑗 .vars
shrd = {inv = (★𝑖 𝐼𝑃𝑖, 𝑗 ★ 𝐼𝑅), reads = (★𝑖 𝑅𝑃𝑖 ★𝑅𝑅)}
excl = {pre = (★𝑖 𝑃𝑃𝑖, 𝑗 ★ 𝑃𝑅 𝑗), post = (★𝑖 𝑄𝑄𝑖, 𝑗 ★ 𝑃𝑅 𝑗)}

𝜒 ′𝑖 =


vars = 𝜒𝑖 .vars, 𝜒 𝑗 .vars
shrd = {inv = ∅, reads = (𝑃𝑅 𝑗 ★ 𝐼𝑅 ★𝑅𝑅)}
excl = {pre = (𝑃𝑃𝑖, 𝑗 ★ 𝐼𝑃𝑖, 𝑗 ★𝑅𝑃𝑖), post = (𝑄𝑄𝑖, 𝑗 ★ 𝐼𝑃𝑖, 𝑗+Rj .step ★𝑅𝑃𝑖)}

Figure 6.3: The basic transformation Loop.swap, in the particular case where the outer loop is parallelizable.

after the produced loops in the figure. Indeed, the loop on 𝑖 consumes, in
particular, the resource★𝑖∈Ri 𝜒𝑖 .excl.pre whereas the loop on 𝑗 consumes
instead★𝑗∈Rj★𝑘∈Rk 𝜒𝑘 .excl.pre.

Loop interchange The basic transformation Loop.swap allows inter-
changing (i.e. swapping) two loops. It is described at the top of figure 6.3.
There exists a general criterion capturing when two loops may be swapped,
however this criterion requires reasoning about the resources required by
specific iterations, e.g. all pairs of iterations 𝑖, 𝑗 and 𝑖′, 𝑗 ′ with 𝑖′ > 𝑖 and
𝑗 > 𝑗 ′. Instead, we focus on two conditions that are simpler yet sufficient for
many practical situations: if at least one of the outer loop or the inner loop
is parallelizable, then swapping the two loops is correct. Figure 6.3 describes
the case where the outer loop is parallelizable. The case where the inner
loop is parallelizable, not shown, is treated with just a few changes.

The first step is to partition the resources from the inner loop contract
depending on where they come from relative to the resources from the outer
loop. We name partitions by using the first letter to denote its inner loop
origin, and the second letter to denote its outer loop origin. We use 𝐼 for
invariant, 𝑅 for shared reads, 𝑃 for exclusive precondition and𝑄 for exclusive
postcondition. For example, the inner shared reads are partitioned into 𝑅𝑃𝑖
that comes from the outer precondition, and 𝑅𝑅 that comes from the outer
shared reads. Internally, we rely on the fact that our typechecker stores
contract instantiations to compute partitions on 𝜒 𝑗 .excl.pre and 𝜒 𝑗 .shrd, and
we rely on the subtraction operation ⊟ to partition 𝜒 𝑗 .excl.post.

6.5 Transformations on loops 113

for (𝑖 ∈ 𝑅𝑖)𝜒 {
𝑇1; Δ1

Γ

𝑇2; Δ2

}

↦−→

for (𝑖 ∈ 𝑅𝑖)𝜒1 {
𝑇1;
}
for (𝑖 ∈ 𝑅𝑖)𝜒2 {
𝑇2;
}

correct if:
1. 𝑖 is not free in 𝜒.shrd
2. 𝜒.shrdp·(Δ1.alter ∩· Δ2) = ∅
3. 𝜒.shrdp·(Δ2.alter ∩· Δ1) = ∅
4. the output program typechecks

with:

_, 𝐹 = Γ ⊟ 𝜒.shrd.inv _, 𝐹cut = 𝐹 ⊟ StackAllocCells(𝑇1)

𝜒1 =


vars = 𝜒.vars
shrd = 𝜒.shrdp·Δ1

excl = {pre = 𝜒.excl.pre, post = 𝐹cut}
𝜒2 =


vars = 𝜒.vars
shrd = 𝜒.shrdp·Δ2

excl = {pre = 𝐹cut, post = 𝜒.excl.post}

where 𝜒.shrdp·𝑋 is a shorthand for {inv = (𝜒.shrd.invp·𝑋), reads = (𝜒.shrd.readsp·𝑋)}.

Figure 6.4: The basic transformation Loop.fission.

Then, we appropriately place the resources obtained from the partitioning in
the contracts 𝜒 ′𝑖 and 𝜒 ′𝑗 associated with the swapped loops. Compared with
𝜒 𝑗 , the new contract 𝜒 ′𝑗 essentially adds a★𝑖 operator to certain components.
Compared with 𝜒𝑖 , the new contract 𝜒 ′𝑖 removes occurrences of the★𝑗

operators. Note that the loop on 𝑖 remains parallelizable. Around the new
loop nest, a pair of ghost operations is inserted for swapping groups of
resources—a necessary step to match the resources required by the new loop
nest.

Loop fission The transformation Loop.fission, in its basic version,
breaks a loop with body 𝑇1; 𝑇2 into two loops over the same range, a first
loop with body 𝑇1, and a second loop with body 𝑇2. The transformation is
described in figure 6.4. As for loop swapping, there exists a general correct-
ness criterion expressed using inequalities on indices, but for now we focus
on a simpler yet practical criterion.

Our criterion asserts that loop fission is correct if the resources altered by
𝑇1 at any iteration 𝑖 do not interfere with the resources altered by 𝑇2 at any
other iteration 𝑖′ ≠ 𝑖 . To implement this check, we inspect the usage maps
Δ1 and Δ2 associated with 𝑇1 and 𝑇2, respectively. If 𝑇1 alters one resource
from 𝜒.shrd, then 𝑇2 must not use this same resources; symmetrically, if 𝑇2
alters a resource, then 𝑇1 must not use it. Note, however, that 𝑇1 and 𝑇2 are
allowed to both read the same resource; moreover, the resources exclusively
consumed or produced by 𝑇1 at the 𝑖-th iteration of the first loop may be
consumed by 𝑇2 at the 𝑖-th iteration of the second loop.

There remains to explain how to synthesize the contracts 𝜒1 and 𝜒2, as-
sociated with the two generated loops, from the original contract 𝜒 . For
shrd resources, we project the subsets of 𝜒.shrd resources used by 𝑇1 and
𝑇2. For excl resources, we need to synthesize the resources at the cut point,
written 𝐹𝑐𝑢𝑡 . The first loop takes the exclusive resources from 𝜒.excl.pre
to 𝐹𝑐𝑢𝑡 , whereas the second loop takes the exclusive resources from 𝐹𝑐𝑢𝑡
to 𝜒.excl.post. At a high level, 𝐹𝑐𝑢𝑡 is computed by subtracting the shared
resources as well as the local allocations from 𝑇1, described by 𝜒.shrd and
StackAllocCells(𝑇1), from the typing context Γ computed by our typechecker
at the location just between 𝑇1 and 𝑇2.

114 6 Implementation of trustworthy transformations

for (𝑖 ∈ 𝑅𝑖)𝜒 {
Γ1 𝑇1; Δ1

Γ2 𝑇2; Δ2

}

↦−→

𝑇1;
for (𝑖 ∈ 𝑅𝑖)𝜒 ′ {
𝑇2;
}

with:

_, 𝐼 ′ = Γ2 ⊟ 𝜒.excl.pre _, 𝐼 = 𝐼 ′ ⊟ 𝜒.shrd.reads 𝜒 ′ =


vars = 𝜒.vars
shrd = {inv = 𝐼 , reads = 𝜒.shrd.reads}
excl = 𝜒.excl

correct if:
1. 𝑖 does not occur in 𝑇1
2. 𝑇1 is idempotent
3. Δ1 ∩· Δ2.alter = ∅
4. 𝑅𝑖 is nonempty, or the program on the right type-

checks successfully with 𝐹 = Γ2p·Δ1.produced

𝑇1;
for (𝑖 ∈ 𝑅𝑖)𝜒 ′ {
𝑇2;
}
ghost(𝐹 −→ IntoUninit(𝐹));

Figure 6.5: The basic transformation Loop.move_out.

Observe that the loop contracts 𝜒1 and 𝜒2 generated by the loop fission
transformation may contain a larger typing context than strictly necessary.
We describe further on, in section 6.6, a procedure for minimizing loop
contracts.

Loop invariant code motion The basic transformation Loop.move_out
applies to a loop with body 𝑇1; 𝑇2, where 𝑇1 performs instructions that are
redundant at every iteration. It produces as output code that first executes
𝑇1, exactly once, then executes a loop with body 𝑇2. The transformation
is formalized in figure 6.5. We assume for simplicity the loop range to be
provably nonempty, or 𝑇1 to be provably deletable. Alternatively, 𝑇1 could
be wrapped into a conditional.

The key properties to check are that 𝑇1 is the same for all iterations (it does
not depend on 𝑖), can be safely deduplicated (it is idempotent as required
by Instr.dedup), and does not interfere with the remaining instructions of
the loop, described by𝑇2 (that is, the condition Δ1 ∩· Δ2.alter = ∅). Note that,
contrarily to the Instr.move criterion, it is safe for 𝑇2 to read resources
modified by 𝑇1.

Other loop transformations There are other important loop transfor-
mations that we support.

▶ Loop.fusion (reciprocal of Loop.fission): fuse two consecutive
loops into a single one.

▶ Loop.collapse (reciprocal of Loop.tile): collapse two nested loops
into a single one.

▶ Loop.hoist_alloc: hoist a variable allocated inside a loop into an
array allocated outside the loop; more generally, it hoists a matrix of
dimension 𝑁 allocated inside a loop into a matrix of dimension 𝑁 + 1
allocated outside the loop.

6.6 Transformations on annotations 115

▶ Loop.shift_range: reindex a loop by applying a positive or negative
offset to its values.

▶ Loop.scale_range: reindex a loop using an index that takes either
smaller or larger steps.

▶ Loop.extend_range: extend the range of a loop by wrapping its body
in a conditional.

▶ Loop.unroll: unroll a loop whose range is statically known.

▶ Loop.parallel: set (or unset) a parallel flag on a loop using our
parallelizable criterion.

6.6 Transformations on annotations

Sometimes ghost instructions or insufficiently precise contracts can prevent
the successful application of a transformation. For example, take the fol-
lowing code that could have been generated by tiling the loop over index
i:
for(int j = 0; j < 64; ++j) {
__xwrites("for i in 0..1024 → &A[j, i] ↦→ 0");
__ASSERT(tile_div_check_i, "1024 == 64 * 16");
__ghost(tile_divides, "div_check := tile_div_check_i, items :=

fun i → &A[j, i] ⇝ UninitCell");
for(int bi = 0; bi < 64; ++bi) {
__xwrites("for i in 0..16 → &A[j, bi * 16 + i] ↦→ 0");
for(int i = 0; i < 16; ++i) {
__xwrites("&A[j, bi * 16 + i] ↦→ 0");
A[j, bi * 16 + i] = 0;

} }
__ghost(untile_divides, "div_check := tile_div_check_i, items :=

fun i → A[j, i] ↦→ 0");
}

Let us suppose that the user wants to interchange the loops over bi and
j. In that case, a direct application of the basic transformation Loop.swap
presented before fails because the input code is not in the right shape con-
sisting of two immediately nested loops. Indeed, there are ghost instructions
before and after the loop over bi. In order to actually apply such Loop.swap
transformation, one needs to first move the ghost instructions outside the
loop over j (even though some of these ghost instruction depend on the
loop index j).

This kind of issue with misplaced annotations is very common whenever
transformations are chained together like in OptiTrust. Therefore, we de-
veloped a set of auxiliary transformation to deal with such cases, and hide
those apparent issues for the user. In practice, for example, the combined
transformation version of Loop.swap succeeds on the previous example.

In this particular example, the combined version of Loop.swap first applies
the basic transformations Loop.fission and Loop.move_out on the ghost
instructions to generate the following intermediate code where the loops
over j and bi can be swapped:
__ASSERT(tile_div_check_i, "1024 == 64 * 16");
for(int j = 0; j < 64; ++j) {
__xconsumes("for i in 0..1024 → &A[j, i] ⇝ UninitCell");
__xproduces("for bi in 0..64 → for i in 0..16 → &A[j, bi * 16

+ i] ⇝ UninitCell");

116 6 Implementation of trustworthy transformations

__ghost(tile_divides, "div_check := tile_div_check_i, items :=
fun i → &A[j, i] ⇝ UninitCell");

}
for(int j = 0; j < 64; ++j) {
__xwrites("for bi in 0..64 → for i in 0..16 → &A[j, bi * 16 +

i] ↦→ 0");
for(int bi = 0; bi < 64; ++bi) {
__xwrites("for i in 0..16 → &A[j, bi * 16 + i] ↦→ 0");
for(int i = 0; i < 16; ++i) {
__xwrites("&A[j, bi * 16 + i] ↦→ 0");
A[j, bi * 16 + i] = 0;

}
}

}
for(int j = 0; j < 64; ++j) {
__xconsumes("for bi in 0..64 → for i in 0..16 → &A[j, bi * 16

+ i] ↦→ 0");
__xproduces("for i in 0..1024 → &A[j, i] ↦→ 0");
__ghost(untile_divides, "div_check := tile_div_check_i, items :=

fun i → A[j, i] ↦→ 0");
}

Then, combined Loop.swap use a dedicated basic transformation to trans-
form the loops over ghost instructions into ghost instruction themselves.
Finally, the combined Loop.swap applies the basic Loop.swap, which pro-
duces the desired code.

The rest of this section first discusses the correctness criterion for annotation-
only transformations and then shows a few examples of those annotation-
only transformations.

Correctness criterion of annotation-only transformations The se-
mantics of a program is fully determined by its proper Opti𝜆 code: it does not
depend in any way on the ghost code nor on the function and loop contracts.
Therefore, loop contracts may be freely modified, and ghost instructions
may be freely inserted, deleted, or modified. The requirement is to reach,
after one or several updates, a set of annotations for which the typechecking
of the code with updated annotations succeeds.

Note that, contrary to loop contracts, all the currently implemented
annotation-only transformations preserve the top-level function contracts.
This is due to the fact that changing the contract of a top-level function
is generally unsound. In specification preservation mode, the correctness
crucially depends on those top-level contracts being preserved, and in
semantic preservation mode, changing e.g. the precondition can reduce the
set of acceptable function inputs checked by subsequent semantic-preserving
transformations.

Minimization of loop contracts All the aforementioned loop transfor-
mations produce correct resource annotations, yet these annotations might
be suboptimal for later transformations. Typically, the generated loop con-
tracts would include clauses covering a set of resources possibly larger than
strictly necessary. For example, after the basic loop fission transformation,
the contract of the first loop would typically mention resources that are in
fact only used by the instructions from the second loop. Mentioning un-
necessary resources in a contract may impede the applicability of further
transformations. OptiTrust therefore includes a procedure, implemented as
a basic transformation, to minimize loop contracts. OptiTrust’s combined
transformations for loops systematically include a call to this procedure.

6.6 Transformations on annotations 117

The loop contract minimization procedure takes as input a loop with contract
𝜒 , and updates this contract to 𝜒 ′, withoutmodifying the code. The procedure
depends on the usage map Δ computed for the instructions𝑇 that constitute
the loop body.

for (𝑖 ∈ 𝑅𝑖)𝜒 {𝑇 ; Δ} ↦−→ for (𝑖 ∈ 𝑅𝑖)𝜒 ′ {𝑇 }

Intuitively, the contract 𝜒 ′ is obtained by filtering out and by weakening
resources from 𝜒 , depending on their usage in Δ. First, if a resource is
unused by 𝑇 and thus is absent from Δ or has usage joinedFrac, then it
is excluded from 𝜒 ′. As a result, certain variables that were quantified in
𝜒 might no longer have occurrence in 𝜒 ′, hence they can be removed as
well. Second, if a resource appears with fraction 1 in 𝜒 , yet this resource is
marked as splittedFrac is Δ, then this resource is replaced with a read-only
version of it. Technically, an additional fraction variable must be quantified
in 𝜒 ′, and this fraction variable is used for describing the resource as read-
only. Internally, the implementation of contract minimization reuses our
minimization of triple procedure (section 5.4 and appendix F). Details may
be found in appendix H.

Moving and cancelling ghost instructions OptiTrust includes a trans-
formation that attempts to remove pairs of ghost instructions that cancel
each other. Indeed, the sequence ghost(𝐻 −→ 𝐻 ′); ghost(𝐻 ′ −→ 𝐻) is
equivalent to a no-op. More generally, the user as well as combined transfor-
mations may request a ghost instruction to be moved so as to be (logically)
executed as early as possible in the program; or, symmetrically, to be exe-
cuted as late as possible. Moving ghost instructions in such a way may lead
to the apparition of cancellable pairs of ghost instructions; and, even when
ghost instructions do not disappear, moving them away from, e.g., a loop
kernel, may unlock certain transformations.

Splitting ghost scopes Quite often, ghost instructions are needed to
locally change the view on one resource between two program points in
a sequence. For instance, if we have a permission to read an entire array,
we may want to temporarily extract the permission to read a specific cell,
and recompose a permission over the full array later. This pattern is so
frequent that we decided to create in OptiC the syntax __ghost_begin and
__ghost_end that we saw in chapter 2 to simplify writing the ghost pairs
that change the view over one resource before an instruction in a sequence,
and restore the initial resources later in the same sequence. We call ghost
scope such code region delimited by pairs of cancelling ghost instructions.

In order to avoid issues with missing resources when manipulating instruc-
tions in a sequence with ghost scopes, it may be necessary to split a ghost
scope into two independent ghost scopes. For example, when moving an
instruction that is inside one or several ghost scopes, one can split the ghost
scopes before and after the instruction and then move the instruction with
its tightly surrounding ghost scopes.

118 6 Implementation of trustworthy transformations

ghost(𝐹𝑖 −→ 𝐹 ′𝑖);
𝑇1;
𝑇2;
ghost(𝐹 ′𝑖 −→ 𝐹𝑖)

↦−→

ghost(𝐹𝑖 −→ 𝐹 ′𝑖);
𝑇1;
ghost(𝐹 ′𝑖 −→ 𝐹𝑖)
ghost(𝐹𝑖 −→ 𝐹 ′𝑖);
𝑇2

ghost(𝐹 ′𝑖 −→ 𝐹𝑖)

We extended this strategy to avoid ghosts blocking transformations in even
more cases. Indeed, ghost instructions producing only pure resources can be
treated as if they were the beginning of a ghost scope ending at the end of
the surrounding sequence. Then, to split such virtual ghost scope, our ghost
scope splitting transformation inserts a special clear ghost instruction to
forget the pure resource before the split point to avoid name conflicts and
unwanted dependencies.

ghost([] −→ [𝐸]);
𝑇1;
𝑇2;

↦−→

ghost([] −→ [𝐸]);
𝑇1;
clear(𝐸);
ghost([] −→ [𝐸]);
𝑇2

Loop over a ghost instruction into a ghost instruction We saw in
the introductory example of this section that when manipulating ghost
instructions using transformations such as Loop.fission to handle ghost
code, these transformations sometimes create loops that only contain ghost
code. Since such loops contain no executable code, we usually want to
eliminate them, to avoid any possible runtime cost.

To do so, we developed a transformation that transforms a loop of ghost
instruction into a ghost instruction itself. In practice, we remember inside
the new ghost instruction the original contract and body of the loop to allow
typechecking such new ghost with the typing rule for regular for loop.

6.7 Correctness of transformations

As we said in the introduction of this chapter, in OptiTrust, transformations
have two modes of operation with a specific model of correctness: specifica-
tion preservation and semantic preservation. This section describes more
formally the model of correctness of both those modes.

Specification preservation Specification preservation is a mode that
makes sense only with full specifications. In this mode, transformations
guarantee that their output still respects the same specification as their
input. More formally, every transformation in the specification preservation
mode can be seen as an instance of the following generic transformation
that allows transforming any typechecked term into another term with the
same triple:

Γ 𝑡1 Γ
′ ↦−→ 𝑡2 with {Γ} 𝑡2 {Γ′}

6.7 Correctness of transformations 119

With this model, simply running the typechecker on the output program to
get {{Γ}} 𝑡2 {{Γ′′}} and checking that Γ′′ ⇒ Γ′ is enough to justify the specifi-
cation preservation of the transformation on a specific example. Therefore,
we do not need to trust the transformation implementation because we can
simply validate the transformed code (𝑡2) using our typechecker. Actually,
with this model, we can see the full chain of user-guided transformations as
one big transformation and simply validate the final code.

In practice, the majority of transformations are applied inside a function
body whose specification does not change. In this case, we do not even need
to check the final entailment Γ′′ ⇒ Γ′ to prove specification preservation.
Indeed, we can derive the following generic transformation that turns any
function into a function with the same specification but a with different
implementation:

fun(𝑥1, ..., 𝑥𝑛)𝛾 ↦→ 𝑡1 ↦−→ fun(𝑥1, ..., 𝑥𝑛)𝛾 ↦→ 𝑡2

correct if output program typechecks

The fact that 𝛾 is the same in both sides, forces the typechecker to find the
exact same context after the code on the left and the code on the right.

Note that, in specification preservation mode, the generic transformations
presented above can also be manually applied by the user, and allows ar-
bitrary rewriting that preserve the top level specifications. These generic
transformations are specific to the specification preservation mode since
they are not semantic-preserving.

Semantic preservation Semantic preservation is a mode in which trans-
formations need to guarantee that they preserve the observable behaviors of
the initial code in the transformed code. This mode is useful because it can be
used even in presence of incomplete specifications. The rest of this paragraph
defines formally the notion of observable behaviors in OptiTrust.

In general, compilation proofs show that behaviors of the output are all
included in the set of behaviors of the input. In the case of OptiTrust, since we
want to exploit incomplete specification information in our transformation,
this is not fully satisfying for two reasons:

▶ First, and most importantly, we are not interested in behaviors that
are never observed because they are ruled out by a precondition in
the incomplete specification of the input code. Said differently, we
want to preserve the semantics knowing that the precondition holds.
Restricting ourselves to cases where the precondition holds is crucial to
allow exploiting the incomplete specifications in the transformations.
This restriction to valid inputs is standard in semantic preservation
proofs using a refinement approach (such as Simuliris [Gäh+22]).

▶ Second, it is not important to preserve the content of cells that are
described as uninitialized resources according to the postcondition
of the transformed code. Indeed, by definition, this content is irrele-
vant and cannot be inspected in the rest of the code according to the
incomplete specification.

To tackle the second issue, we say that observable output states of the
target code must correspond to an equivalent output state of the initial code.
Equivalent output states are characterized with an operator EquivStates.
Suppose 𝑄 ⊆

{
(𝜎, 𝜇) |prog

�� (𝜎, 𝜇) ∈ Γ}, we define EquivStates(𝑄, Γ) as a
superset of 𝑄 , that characterizes states equivalent to another state in 𝑄 with

[Gäh+22]: Gäher et al. (2022), Simuliris:
a separation logic framework for verifying
concurrent program optimizations

120 6 Implementation of trustworthy transformations

3: Depending on the choice of memory
model, it may or may not be necessary to
also consider equivalent two states that
are the same up to some kind of bijection
on memory locations. Note that, in any
case, the semantics of OptiTrust described
in appendix A makes non-deterministic
choices for allocated locations. It appears
that, the use of the omni-big-step seman-
tics removes the need for introducing a
bijection over locations when paired with
a block memory model such as the one in
CompCert [Ler+12].

respect to an output context Γ. States are equivalent if they are the same up
to the values of the cells covered by uninitialized permissions in Γ. Formally,
we define OnlyUninit and OnlyInit to separate uninitialized and initialized
resources with the two following definitions:

Definition 6.7.1: Uninitialized part of a context

OnlyUninit(Γ) = OnlyUninit(Γ.linear)

OnlyUninit((𝑦 : 𝐻) ★ 𝐹) =
{
𝑦 : 𝐻 ★OnlyUninit(𝐹) if 𝐻 = Uninit(𝐻)
OnlyUninit(𝐹) otherwise

OnlyUninit(∅) = ∅

Definition 6.7.2: Initialized part of a context

OnlyInit(Γ) = ⟨Γ.pure | OnlyInit(Γ.linear)⟩

OnlyInit((𝑦 : 𝐻) ★ 𝐹) =
{
𝑦 : 𝐻 ★OnlyInit(𝐹) if 𝐻 ≠ Uninit(𝐻)
OnlyInit(𝐹) otherwise

OnlyInit(∅) = ∅

Then, we can define EquivStates in the following way3:

Definition 6.7.3: Equivalent output states with respect to a context

EquivStates(𝑄, Γ) is defined as:(𝜎, 𝜇
𝐼 ⊎ 𝜇𝑈2) |prog

�������� ∃𝜇𝑈1 ,
(𝜎, 𝜇𝐼 ⊎ 𝜇𝑈1) |prog ∈ 𝑄

∧ (𝜎, 𝜇𝐼) ∈ OnlyInit(Γ)
∧ Subst{𝜎}(OnlyUninit(Γ)) |= 𝜇𝑈1
∧ Subst{𝜎}(OnlyUninit(Γ)) |= 𝜇𝑈2


Now, let us define a form of behavior inclusion that solves our three afore-
mentioned issues, by considering a restriction to the behaviors that can be
observed knowing a given precondition and postcondition. Consider two
terms 𝑡1 and 𝑡2 satisfying the same triple with precondition Γ and postcon-
dition Γ′. We write {Γ} 𝑡1 ⊇ 𝑡2 {Γ′} to capture the fact that behaviors of
𝑡2 are included in the behaviors of 𝑡1, starting from any state satisfying the
precondition Γ, and allowing mismatch on the parts of the output states that
correspond to uninitialized permissions in Γ′.

Definition 6.7.4: Behaviour inclusion under context
{Γ} 𝑡1 ⊇ 𝑡2 {Γ′} is defined as:

{Γ} 𝑡1 {Γ′} ∧ {Γ} 𝑡2 {Γ′}

∧
(
∀(𝜎, 𝜇) ∈ Γ, ∀𝑄 ⊆ AcceptableStates(𝜎, 𝜇, Γ′),
𝑡1/(𝜎, 𝜇) |prog ⇓ 𝑄 =⇒ 𝑡2/(𝜎, 𝜇) |prog ⇓ EquivStates(𝑄, Γ′)

)
With this definition, we can say that a transformation is semantic-preserving
when it is an instance of the following generic transformation:

Γ 𝑡1 Γ
′ ↦−→ 𝑡2 with {Γ} 𝑡1 ⊇ 𝑡2 {Γ′}

In general, proving that a transformation is semantic-preserving is com-
plex, as it relies on the correctness criterion checked by the transformation

6.7 Correctness of transformations 121

implementation. We leave for future work a formal proof that the transfor-
mations presented in this chapter, are indeed semantic-preserving when
their correctness criterions are satisfied.

That said, we can handle here the simple case of annotation-only transfor-
mations. Indeed, since the semantics of a program does not depend on the
resource annotation, two programs differing only by their annotations have
equivalent behaviors in all contexts. If we write 𝑡1 =code 𝑡2 the fact that 𝑡1
and 𝑡2 have the same code when forgetting all annotations, this leads to the
following theorem:

Theorem 6.7.5: Behaviour inclusion for programs with the same code

𝑡1 =code 𝑡2 ∧ {Γ} 𝑡1 {Γ′} ∧ {Γ} 𝑡2 {Γ′} =⇒ {Γ} 𝑡1 ⊇ 𝑡2 {Γ′}

Perspectives 7
7.1 Language extensions . . . 123
7.2 Program logic extensions 125
7.3 Transformation exten-

sions 128
7.4 Reducing the trusted code

base 131
7.5 Framework engineering 132

In this PhD, we described the ingredients needed to create an interactive
compiler with trustworthy source-to-source transformations. These trans-
formations exploit invariants expressed in separation logic to guarantee
their correctness. Moreover, these transformations preserve contract and
ghost annotations in the code that can be checked by our resource type-
checker. Crucially, this typechecker can deduce the invariants needed for the
next source-to-source transformation, therefore enabling the user to execute
chains of user-guided transformations. We focused on developing OptiTrust
to support three real world case studies mentioned in chapter 2. Naturally,
there are still many language features, logic features and transformations
one could add in the future to extend the domain of applicability of our
interactive compiler.

Another direction of improvement for OptiTrust, is to increase the trustwor-
thiness of the tool further by reducing the trusted code base (TCB). As we
have showed, we already support different levels of transformation trustwor-
thiness. On the one hand, if the initial program is annotated with incomplete
specifications, the implementations of the transformations are responsible
for checking their own correctness criterion and therefore are in the TCB.
On the other hand, if the initial program is annotated with full specifications,
the final source code alone can be checked against this specification, and the
implementations of the transformations are not in the TCB. In both cases,
the implementation of the OptiTrust typechecker is in the TCB. Moreover,
in order to actually compile the output, a currently unverified extraction
mechanism to C code, and the C compiler that is then used to compile the
code are also included in the TCB.

This chapter gives perspectives of extensions that can be developed after
this PhD work to overcome the current limitations of OptiTrust and ideas
on how we could reduce further the trusted code base. These perspectives
are sorted thematically and not by relevance.

7.1 Language extensions

Recursive functions and while loops Most interactive compilers that
we know of (TVM, Halide, Exo, Alpinist, ...) focus on programs without
language constructions that may not terminate such as while loops or
recursive functions. The current version of OptiTrust is not an exception in
that regard, but we naturally expect to support while loops and recursive
functions in the future.

Usual formally-verified compilers support language constructions that in-
troduce non-termination. When trying to justify their correctness, those
compilers require that terminating source programs are compiled to ter-
minating target programs, and reciprocally that programs that do not ter-
minate are compiled to programs that do not terminate. This approach is
called equitermination. To reason about those non-terminating programs,
non-termination can be characterized by co-induction [Ler06]. However,
in general, non-terminating programs are not very useful in absence of
observable side effects. To model those side effects in presence of possibly
infinite executions, more complex semantics using co-inductive structures

[Ler06]: Leroy (2006), Coinductive Big-Step
Operational Semantics

124 7 Perspectives

[Xia+19]: Xia et al. (2019), Interaction trees:
representing recursive and impure programs
in Coq

[FP13]: Filliâtre et al. (2013),Why3—Where
Programs Meet Provers

[Els24]: Elsman (2024), Double-Ended Bit-
Stealing for Algebraic Data Types

such as interaction trees [Xia+19] can be used, and allow proving properties
about the trace of externally observable side effects. In any case, to support
this equitermination approach in OptiTrust, all transformations will need to
preserve the (non-)termination of programs. To reach this goal, the grammar
of loop and function contracts will need extensions to handle these possibly
non-terminating executions, and the typechecker and usage system will
need to be updated accordingly.

Another solution to introduce while loops and recursive functions in Opti𝜆
is to disallow programs that do not terminate by relying on techniques that
check termination. One way to check such termination is to ask the user
to add a variant annotation on every while loop and recursive function.
A variant is an expression which evaluates to a natural number that must
decrease between two iterations or recursive calls. Then, the OptiTrust
typechecker could verify that such variant hold to guarantee that in any
case all Opti𝜆 terms that typecheck always terminate. This strategy is for
instance used inside Why3 [FP13].

Another path with weaker theoretical guarantees, but that may still be valu-
able in practice, is to ignore the termination issues and instead use a partial
correctness model. With partial correctness, the compiler only guarantees
that programs that do terminate are correct and do not tell anything about
executions that loop indefinitely. Ignoring the non-terminating executions
may look like cheating. Indeed, partial correctness allows a badly written
transformation to transform a terminating program into a non-terminating
one. However, remember that the execution time of an algorithm is generally
not guaranteed by compilers, and that some terminating programs may take
an absurdly long time to return, therefore having the same practical value
as a non-terminating program. The partial correctness model makes sense
in presence of full specifications: when executing the target code, if such
code terminates then the output is guaranteed to respect the specification.
On the other hand, it is very hard to find a meaning for partial correctness
with transformations that should preserve the semantics of an initial pos-
sibly non-terminating program (i.e. what should the program compute if
it terminates more often than the initial program?). Moreover, in practice,
partial correctness is not so easy: allowing infinite loops in ghost code or
specifications creates soundness issues, so there will still be a need for ter-
mination checks in the logic. Such partial correctness model is the default
in the Iris separation logic framework, which uses a method called step
indexing to avoid logical infinite loops while allowing infinite recursion in
the program.

Overall, I think that partial correctness is a less promising path than variant
annotations and equitermination reasoning, but all three approaches deserve
further exploration.

Functional programming language features Currently, OptiTrust sup-
ports structures and arrays, as the only constructions to create complex data
types. For someone with a functional programming background, this is very
limiting. In particular, algebraic sum types and pattern matching are missing.
Adding support for those language constructions is already the subject of
ongoing extension work.

Adding sum types and pattern matching to Opti𝜆 should not be difficult
by itself. The interesting part lies in adapting the typechecking rules for
the pattern matching and in implementing relevant transformations around
algebraic data types and pattern matching (e.g. [Els24]).

7.2 Program logic extensions 125

Note however that there is no natural syntax for such functional construc-
tions in OptiC since sum types are not naturally supported in C and must
use a rather complex low-level encoding using unions1.

SIMD instructions For simplicity, OptiC currently do not yet have a
proper support for SIMD instructions. Instead, parallel for loops can carry a
flag that asks the extraction mechanism to place an OpenMP SIMD directive
on its extracted C code which then asks the backend C compiler to emit SIMD
code for the loop. This is not satisfactory for two reasons. First, the external
C compiler is not guaranteed to interpret the OpenMP directive in the best
way to produce the best code and manual tweaking of the selected SIMD
instruction is not possible. Second, we are reusing the notion of parallel for
loop in the typechecker to check that vectorization is possible. This check
is too restrictive, and therefore OptiTrust might currently refuse to add the
SIMD flag on loops where such flag does not change the semantics. In the
future, OptiTrust should, like in Exo [Ika+22], use dedicated data types to
represent SIMD registers and provide primitive instructions to manipulate
those registers.

Language support for accelerators As said in the introduction, high
performance code may benefit from the use of specific hardware accelerators,
and sometimes from the collaboration between accelerators and the CPU. In
the long term, it should be possible to add support for programs executing
specific functions or loops on an accelerator. Supporting code for those
accelerators might require specific data types, language constructions or
transformations. For example, tools such as Alpinist [Sak+22] include a
GPU-specific transformation named kernel-fusion that requires a thread
synchronization primitive to solve data dependencies issues.

7.2 Program logic extensions

Support for user-defined representation predicates OptiTrust’s linear
resource grammar is currently very limited. Indeed, it is only possible to
express properties about single cells, records (a.k.a. struct in OptiC), and
matrix-like structures. Other separation logic frameworks usually give the
possibility to their user to define custom representation predicates. Typically,
in a framework such as CFML, a linked list heap predicate could be defined
as:

𝑝 ⇝ List(𝐿) = match 𝐿 with
| nil→ [𝑝 = null]
| 𝑥 :: 𝐿′ → ∃𝑞 : loc, (𝑝 ⊡ head ↦→ 𝑥) ★ (𝑝 ⊡ tail ↦→ 𝑞) ★ (𝑞⇝ List(𝐿′))

The challenge is to integrate those custom representation predicates with the
rest of the OptiTrust framework without causing soundness issues, especially
with read-only fractions. In particular, as we said in section 4.1, two fractions
of a heap predicate using disjunction or existential quantifiers cannot be
merged together in the general case. Many very common heap predicates
such as the predicate for linked list shown above require some kind of
existential quantification. Supporting those predicates is therefore an issue as
the OptiTrust typesystem currently relies on automatic splitting andmerging
of read-only fractions anywhere during the typechecking process.

1: I believe that if OptiTrust goes in that
direction, keeping the user facing language
close to C is not ideal, and we should either
detach OptiC from the C syntax or develop
another more functional user-facing lan-
guage in OptiTrust.

[Ika+22]: Ikarashi et al. (2022), Exocompi-
lation for productive programming of hard-
ware accelerators

[Sak+22]: Sakar et al. (2022), Alpinist: An
Annotation-Aware GPU Program Optimizer

126 7 Perspectives

[JP08]: Jacobs et al. (2008), The VeriFast Pro-
gram Verifier

[DMS22]: Dardinier et al. (2022), Fractional
resources in unbounded separation logic

An interesting idea from the VeriFast framework [JP08], or from the un-
bounded separation logic [DMS22] is to syntactically check whether predi-
cates are compatible with recombination of fractions, even in presence of
existential quantification. Then, we could adjust the typechecker to disallow
taking fractions of predicates that cannot be recombined later.

Specification of higher-order functions Technically, higher-order func-
tions (that is functions taking other functions as arguments) are currently
supported in Opti𝜆. However, in practice there is no mechanism to define
specifications for higher order functions that depend on and constrain the
specification of their function argument.

Theoretically, functions contracts can already contain the specification of
functions, but we have no syntax for this in OptiC and currently those
specifications must be fully syntactically equal during unification. In order
to express and typecheck higher order function specifications, we should
first add a mechanism to instantiate or unify an abstract predicate of type
HProp with a resource set. Then, we could extend our typesystem to allow
unification of function contracts with other function contracts containing a
potentially different number of resources but at least one unresolved HProp.
With such system we hope to typecheck code such as:
void repeat(int n, fun<void()> f) {
__requires("H: int → Hprop");
__requires("Spec(f(), { i: int | H(i) }, { | H(i+1) })");
__consumes("H(0)");
__produces("H(n)");
for(int i = 0; i < n; ++i) {
__spreserves("H(i)");
f();

}
}

void test(int n, int* p) {
__writes("p ↦→ n");

*p = 0;
repeat(n, [&]{
__requires("i: int");
__consumes("p ↦→ i"),
__produces("p ↦→ i+1");

*p += 1;
});

}

External side effects Currently, there is no mechanism in OptiTrust for
specifying external side effects such as printing in the console or reading a
file. In order for OptiTrust to guarantee that such external side effects are
preserved across transformations, we need to model those in the typesystem
and include them in the usage maps. In the future, we could integrate such
external effects by keeping resources that model those external interactions.
For example a function that outputs to the console would take and return a
linear resource modelling the standard output channel.

More advanced concurrency As said in section 1.3, fractions in con-
current separation logic can model resources shared across threads that
are more complex than the currently supported read-only permissions. For
instance, fractions can also be used to model permission to perform a certain
class of atomic operation over a memory cell, such as concurrent atomic

7.2 Program logic extensions 127

fetch-and-add. With more implementation work, a future version of Op-
tiTrust could easily support those other kinds of primitive atomic operations
and the corresponding fraction modes.

A more complex, but also more powerful, possibility is to support data
structures with atomic operations that are not supported directly by the CPU,
but that are instead linearization properties of the data structure interface.
For example, concurrent hash sets are not natively supported by CPUs.
However, it is possible to implement a concurrent hash set data structure
that is shared across several threads that can concurrently add elements
inside the set [SB14].

An interesting future work would be to find a practical solution in OptiTrust
to encode those complex linearization properties and manipulate the un-
derlying concurrent data structures using fractions. In order to implement
complex concurrent data structures, one might need to use locks for creating
synchronization points, and temporarily obtain exclusive access to otherwise
shared data. A lot of work around locks and concurrent data structures in
separation logic has been formalized inside the Iris framework (e.g. [SK24]).
For integration inside OptiTrust however, I expect issues with the preserva-
tion of termination when manipulating such code using locks. An easier path
could be to find a way to formally integrate those concurrent data structures
proven in Iris as black boxes in OptiTrust.

Properties beyond functional correctness In general, formal verifica-
tion can be used to obtain guarantees beyond functional correctness. The
question is whether OptiTrust can exploit or preserve these other kind of
guarantees. Let us consider a few examples.

One property that may be crucial is the time complexity of an algorithm.
Using separation logic, one can use time credits to count the number of
basic operations performed between two program points. From this basic
building block, it is possible to deduce worst-case or asymptotic bounds
for time complexity [Gué19]. Similarly, space credits [Moi24] can be used
to express the space complexity of an algorithm. In the same spirit as time
and space complexity properties, previous works have been conducted to
express security invariants that can for instance guarantee the absence of
secret information leaks [EM19] (and more generally hyper-properties).

It is an open question to find whether it is possible to leverage time bound,
space bounds, or hyper-properties to guide the choice of transformations.
Independently, adapting OptiTrust to create transformations that preserve
such properties beyond functional correctness is an interesting challenge.We
may be able to take inspiration from CakeML, where there is already some
support to preserve space guarantees across transformations [Góm+20].

Proof automation OptiTrust currently requires the programmer to anno-
tate the input program with ghost operations as well as function and loop
contracts. One may wonder the extent to which such annotations could be
automatically inferred, at least for reasonably simple programs.

The experience from other practical separation logic frameworks (like
Viper [MSS17]) is that heuristics can be devised to significantly reduce
the number of ghost operations that need to be explicitly provided by the
programmer. For example, if we have at hand no other permissions on an
array than a permission covering a range of its cells, then when facing read
operations on a particular cell from this array, isolating this cell from the
range at hand is the only way in which typechecking could succeed.

[SB14]: Shun et al. (2014), Phase-concurrent
hash tables for determinism

[SK24]: Somers et al. (2024), Verified Lock-
Free Session Channels with Linking

[Gué19]: Guéneau (2019), Mechanized Ver-
ification of the Correctness and Asymptotic
Complexity of Programs

[Moi24]: Moine (2024), Formal Verification
of Heap Space Bounds under Garbage Col-
lection
[EM19]: Ernst et al. (2019), SecCSL: Security
Concurrent Separation Logic

[Góm+20]: Gómez-Londoño et al. (2020),
Do you have space for dessert? a verified
space cost semantics for CakeML programs

[MSS17]: Müller et al. (2017), Viper: A Veri-
fication Infrastructure for Permission-Based
Reasoning

128 7 Perspectives

[Sam+21]: Sammler et al. (2021), RefinedC:
automating the foundational verification of
C code with refined ownership types

[JM18]: Journault et al. (2018), Inferring
functional properties of matrix manipulat-
ing programs by abstract interpretation

[Spi+24]: Spies et al. (2024), Quiver: Guided
Abductive Inference of Separation Logic
Specifications in Coq

[Cal+19]: Calcagno et al. (2019), Go Huge
or Go Home: POPL’19 Most Influential Paper
Retrospective.

[Bag+19]: Baghdadi et al. (2019), Tiramisu:
A Polyhedral Compiler for Expressing Fast
and Portable Code
[Bag+16]: Bagnères et al. (2016), Opening
Polyhedral Compiler’s Black Box

We could also take inspiration from the goal directed proof search in Re-
finedC [Sam+21], to reduce the number of ghosts needed by adding more
information in the function and loop annotations.

Software verification frameworks also usually leverage SMT solvers to auto-
mate proof search. Integrating one of those SMT solvers in OptiTrust should
be possible, but some care should be taken to always identify the hypotheses
from the context that are required to prove each proof goal to keep the ability
to validate the final proof and compute usage maps on every term.

Inference is not limited to ghost operations: certain contracts may also be au-
tomatically inferred. For example, previous works [JM18] show that, by lever-
aging abstract interpretation, for functions such as matrix-multiplication or
similar linear algebra operations, full functional correctness specifications
can be automatically computed. Besides, bi-abduction [Spi+24] is a technique
for inferring function contracts, at the heart of the Infer automated program
analysis tool [Cal+19].

7.3 Transformation extensions

Data layout transformations In this PhD, we did not consider transfor-
mation over the data layout of structures. Prior versions of OptiTrust with
transformations that did not check any kind of correctness, support some
transformations on the data layout. We could adapt those legacy transfor-
mations in the more trustworthy system presented in this manuscript.

A very common optimization in that data layout category transforms an
array of structures to a structure of arrays, and can sometimes significantly
improve cache locality. Another common optimization is bit-stealing that
allows some struct fields to use unused bits from other fields of the same
structure. A third interesting transformation is the insertion and removal of
pointer indirection inside structures.

Loop with complex dependencies between iterations Recall from
section 6.5 that we chose not to support fully general correctness criterion
for loop transformations. In particular, currently, compilers based on the
polyhedral model (such as for instance Tiramisu [Bag+19] or Clay [Bag+16])
accept more transformations than we do in OptiTrust, by finely modelling
dependencies between iterations. One particular case managed by the poly-
hedral model where OptiTrust struggles is when the same array is read and
written by different iterations of the same loop. Conversely, the polyhedral
model is not capable of reasoning about pointer indirections, that are fully
supported in OptiTrust. Supporting in OptiTrust the same kind of depen-
dency between loop iterations as the polyhedral model would create the best
of both worlds.

Such goal of supporting in OptiTrust all the loop transformation valid in the
polyhedral model is currently hard to achieve, mostly because we do not yet
have support for detecting and manipulating those complex dependencies
between iterations. To get an intuition of why it is hard to detect those
dependencies between iterations in the general case, take the following C
code:
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
if (i > 0) {
T[i][j] += T[i-1][j];

}

7.3 Transformation extensions 129

if (j > 0) {
T[i][j] += T[i][j-1];

}
}

}

In this code, the computation of the cell T[i][j] depends on the cells
T[i-1][j] and T[i][j-1]. A possible annotated OptiC version of this
algorithm looks like:
for (int i = 0; i < n; ++i) {
__smodifies("T ⇝ Matrix2(n,n)");
for (int j = 0; j < n; ++j) {
__smodifies("T ⇝ Matrix2(n,n)");
__ghost_begin(split_i, group_split, "i");
__ghost_begin(split_j, group_split, "j,
fun j’ → &T[MINDEX2(n,n,i,j’)] ⇝ Cell");

if (i > 0) {
__ghost_begin(focus_im, group_ro_focus, "i-1, fun i’ → for

j’ in 0..n → &T[MINDEX2(n,n,i’,j’)] ⇝ Cell");
__ghost_begin(focus_j, group_ro_focus, "j, fun j’ → &T[

MINDEX2(n,n,i-1,j’)] ⇝ Cell");
T[MINDEX2(n,n,i,j)] += T[MINDEX2(n,n,i-1,j)];
__ghost_end(focus_j);
__ghost_end(focus_im);

}
if (j > 0) {
__ghost_begin(focus_jm, group_ro_focus, "j-1, fun j’ → &T[

MINDEX(n,n,i,j’)] ⇝ Cell");
T[MINDEX2(n,n,i,j)] += T[MINDEX2(n,n,i,j-1)];
__ghost_end(focus_jm);

}
__ghost_end(split_j);
__ghost_end(split_i);

}
}

Let us suppose we want to swap loops over 𝑖 and 𝑗 in this example. If we
try to directly support this kind of dependencies between iteration, the
Loop.swap transformation would need to inspect the loop body and analyze
the group_split and group_ro_focus annotations to extract the iteration
dependency pattern. Then after checking that it is applicable, the transfor-
mation would need to regenerate a similar-looking but slightly different set
of annotations on its output code.

Doing this kind of analysis and annotation reconstruction on every loop
transformation seems to require too much work. To extend loop transforma-
tions while avoiding this workload, I see two possible ways forward. On the
one hand, we could search for a way to model those ghost operations in a
more abstract representation that is easy to manipulate (like polyhedrons).
On the other hand, we could instead extend the notion of loop contract to
directly describe iteration dependency patterns.

Preservation of typechecking after arithmetic rewriting In the cur-
rent version of OptiTrust, the arithmetic rewriting transformation breaks the
typechecking in many cases even if it preserves the semantics. To understand
why, let us take an example. Suppose that a function 𝑓 has a contract that
mentions a resource of the form 𝑝 ⇝ Matrix1(𝑛 +𝑚). Suppose that 𝑓 is
called in a context where 𝑝 is allocated with size 5 + 1. Finally, suppose that
the user wants to simplify the expression 5 + 1 that appears in the code into
6. In this case, the typechecker cannot succeed to typecheck the call to 𝑓

130 7 Perspectives

[BM11]: Boldo et al. (2011), Flocq: A Uni-
fied Library for Proving Floating-Point Al-
gorithms in Coq

[DLM11]: Dinechin et al. (2011), Certify-
ing the Floating-Point Implementation of an
Elementary Function Using Gappa

[Mis+23]: Misback et al. (2023), Odyssey:
An Interactive Workbench for Expert-Driven
Floating-Point Expression Rewriting

anymore as 6 is not an expression of the form 𝑛 +𝑚. This example shows
that in order to preserve typechecking, arithmetic rewriting transformation
should be extended to insert rewriting ghost instructions whenever those
are needed.

Finding where the missing rewriting ghost instructions should be placed
remains unclear to me at the moment. One simple but ugly solution is to
always immediately cancel the arithmetic rewriting just after the execution
of the rewritten expression. With such solution, proofs after a rewriting
will never mention the (probably simpler) rewritten expression. The main
issue with such solution is that subsequent transformations cannot lever-
age the new expression to justify their correctness or generate new proof
annotations.

Arithmetic rewriting with finite representation of numbers In the
current version of OptiTrust, arithmetic rewriting is only supported for
idealized integer and reals. Such arithmetic rewritings are currently not
supported on fixed size integers or floating point values. Regarding fixed
size integers, reasoning about arithmetic requires proving the absence of
overflows and therefore requires sufficiently precise range information. Re-
garding floating point, arithmetic rewritings are almost always false but
most applications such as numerical simulation accept approximated an-
swers. In order to justify that floating-point computations give an acceptable
approximation, we should add support for reasoning about the precision of
floating-point computations, as formalized in tools such as Flocq [BM11]
and Gappa [DLM11]. All of these new specifications and transformation
extensions could theoretically be supported in the future, but might require
a lot of work.

One reasonable workflow to handle finite numerical values in OptiTrust
transformation scripts could be to start by transforming the code using
idealized numbers ignoring precision and overflows, and then at the end
of the transformation script use a transformation that realizes those ideal-
ized computations with appropriate sizes and arithmetic expressions. We
could, for example, take inspiration from Odyssey [Mis+23], to help the
user interactively choose a precise-enough floating point expression that
approximates an idealized computation over reals.

More automatic combined transformations Recall from case studies
that our scripts are written using combined transformations, which can
analyze the code and then call basic transformations. Currently, even our
combined transformations give full control to the user who needs to precisely
describe which transformation must be applied and where.

In the future, we could try to design heuristics that exploit our resource and
usage annotations, in order to make even more automated transformations.
Those heuristics can automate the transformation process in two different
ways:

▶ Heuristics could be used to automatically determine where to apply a
fixed transformation. For instance, we could create a transformation
that leverage usage annotations to remove all the instructions that
write to a location that is never observed later.

▶ Heuristics could be used to create transformation that apply at a given
target position but try to automatically choose a good transformation
candidate. For example, such automated transformations could try to
find heuristically a good way to reorganize a loop nest.

7.4 Reducing the trusted code base 131

Automating both the choice of the target position and the choice of the
kind of transformation creates fully automatic transformations. Those fully
automatic transformations can probably encode a lot of heuristically driven
optimization patterns from traditional optimizing compilers.

The interest in importing those automatic transformations in a source-to-
source interactive compiler such as OptiTrust, is that the user can still
manipulate the code produced by the automatic transformation by applying
any other (manual or automatic) transformation afterwards.

7.4 Reducing the trusted code base

Soundness of the algorithmic typing rule In section 4.8, we presented
a formal description of the semantic meaning of our algorithmic typing rules.
These rules are variants of rather standard separation logic typing rules, or
can be derived from standard separation logic rules. However, to gain more
confidence in this formalization, we should add a mechanized proof (e.g.
validated in Rocq) of the soundness of the algorithmic typing rules.

Verify the implementation of the typechecker Proving the rules sound,
however, is not enough to remove the implementation of our typechecker
from the trusted code base. Indeed, we also would need to prove that the
typechecker’s output respects the formal algorithmic typing rules. Here, we
have two options:

▶ Either we develop a mechanized proof that the typechecker implemen-
tation always produces a valid tree of algorithmic typing rules. This
would be the most natural approach, but it may be highly technical
because it would involve a deep embedding of the logic, and reasoning
about unification inside this deep embedding.

▶ Or we can use a validation approach. The current output of the type-
checker contains enough information to extract the corresponding
tree of algorithmic typing rule as a proof certificate (e.g. a Rocq proof
term). Such proof certificate that can be imported and typechecked by
a proof assistant in which the soundness of typing rules is established.
A priori, this option is more simple, but only provides guarantees about
the typechecking of specific program instances and never proves that
the typechecker is correct for all programs.

Formally verified backend With OptiTrust, a user can obtain OptiC code
that is verified and optimized. In practice, some users would be interested
instead in machine code that is verified and optimized. Currently, the path
from OptiC to machine code relies on two unverified components: our un-
verified extraction from OptiC to C; and the use of an unverified C compiler.
One more trustworthy path would be to use a formally verified extraction
from our OptiC code into one of the intermediate languages of an existing
formally verified compiler. For example, we could verify an extraction mech-
anism from OptiC to the Clight intermediate language of CompCert. Then,
we can leverage the chosen existing formally verified compiler to create a
verified toolchain from OptiC down to machine code.

132 7 Perspectives

[BDG19]: Busi et al. (2019), Using Standard
Typing Algorithms Incrementally

Proving semantic-preserving transformations Another question we
could ask ourselves is whether we can prove that transformations are cor-
rect. With full functional correctness specifications, transformations can be
executed in specification preserving mode. In that case, proving transforma-
tions correct is unnecessary since the typechecking of their output alone is
enough to validate that the final code respects the same semantics as the
initial code. Said differently, when preserving full functional correctness
specifications, the implementation of transformations is already absent from
the trusted code base. With incomplete specification, we cannot simply rely
on the soundness of our typechecker to validate transformations because
those transformations must also preserve the semantics of the initial code.
Therefore, we would need some extensions to remove the implementation
of the transformations from the trusted code base.

One path towards a validation of the semantic preserving transformations
could be to design a procedure that can encode the behaviors of the initial
code as full functional correctness specifications. If this is feasible, we could
transform all incomplete specifications into full specifications and then use
the specification-preserving transformations everywhere.

Another path can be to formally verify the implementation of the semantic-
preserving transformations. This solution seems to require a significant
amount of work. Indeed, most transformations leverage information from
the computed intermediate invariants and usage maps. Therefore, all this
information computed by the typechecker and soundness theorems about
the correctness of this information must be used in such transformation
proof. We tried proving the Instr.swap transformation with incomplete
specification is semantic-preserving on paper. However, such proof was
too long to make for a too hard to read output, and therefore I decided to
abandon the proof before completing it. A fresh look at the subject might
find shortcuts that make such approach feasible in a reasonable time.

7.5 Framework engineering

Improving user interaction loop OptiTrust is an interactive tool and as
such, user interaction is very important. The current version already has a
non-negligible amount of tooling to visualize a transformation trace tree,
and code diff between each step. That said, this interactivity can be improved
in a lot of ways. To name only a few examples, I can think of computing
diffs that follow better the transformation intent, provide a mechanism to
automatically generate a target from the cursor position, or display infor-
mation computed by the typechecker on any node by clicking on that node.
Actual user feedback from high-performance code experts could also help to
make a more ergonomic tool.

Scaling issues On the case studies presented in this manuscript, OptiTrust
takes a few minutes to fully execute the transformation scripts from top to
bottom. This is mainly due to the fact that currently we run the typechecker
on the full program after each basic transformation. This is not a theoretical
limitation of our approach. Indeed, both the typesystem and the transfor-
mations are fully modular (i.e. they do not require inlining function calls to
execute).

In the near future, we should make an incremental version of the typechecker
(like e.g. in [BDG19]) that is able to skip the typechecking of unmodified code

7.5 Framework engineering 133

and annotations by reusing contexts that were previously computed. More-
over, most of the time, a transformation only exploits resource information
until a given point in the code. Therefore, instead of always typechecking
the full code between every transformation, OptiTrust could only typecheck
the smallest prefix of the code needed for the next transformation with an
on-demand interface. Combining on demand and incremental analysis is
a known technique for reducing analysis costs in automatic verification
tools [SCS24]. We can also speed up contract instantiation by sorting linear
resources for a faster unification in the typechecker.

Interactive proof mode to insert annotations On complex algorithms
with complex invariants, it can be easier to use interactive software verifica-
tion tools instead of writing annotations directly inside the source code. As
said in the introduction, preliminary works on this PhD included a setup for
annotating a program using an interactive proof mode inspired by CFML. In
the end, we decided that this idea was too disconnected from the main topic
of the PhD to be worth implementing during the thesis. However, integrating
such interactive proof mode inside OptiTrust remains an interesting addition
for the project.

[SCS24]: Stein et al. (2024), Interactive Ab-
stract Interpretation with Demanded Sum-
marization

Appendix

A Semantics 135
B Specialization of contexts 137
C Context satisfaction 137
D Proof of the frame rule . . 139
E Soundness of the algorith-

mic rule for typechecking
for loops 142

F Details of triple minimiza-
tion 146

G Example typechecking of
subexpressions 147

H Details of loop minimiza-
tion 148

A Semantics

As said in section 4.8, we formalize the semantics of Opti𝜆 using an omni-big-
step evaluation judgment in call by value style. The judgment 𝑡/(𝑠, 𝑚) ⇓ 𝑄
asserts that the term 𝑡 , in a program stack 𝑠 and in a program store 𝑚,
evaluates to result states that belong to the set 𝑄 . The result states in 𝑄 are
of the form (𝑠′, 𝑚′) where 𝑠′ is a program stack and 𝑚′ a program store.
Program stacks maps program variables to values, and program stores maps
each location to a mode and a value. Modes in program stores, denoted
M, are either RW (read-write) or RO (read-only). A location in mode RO
is shared between several threads and therefore cannot be written to. A
location in mode RW is exclusively manipulated by the current execution
thread and have no such restriction. The values, denoted 𝑣 , can be logical
expressions, locations, function closures of the form fun𝑠 (𝑥1, ..., 𝑥𝑛) ↦→ 𝑡 ,
and the special uninitialized value ⊥.

The operator IntoRO applied on a program store is defined as follows:

IntoRO(𝑚) = {𝑙 ↦→ (RO, 𝑣) | ∃M, 𝑚(𝑙) = (M, 𝑣)}

Figure 1 gives the semantic rules of Opti𝜆. The evaluation contexts consist
of function arguments and ranges of for loops.

This semantics rules are standard except maybe for the rule Seq to handle
sequences with optional result value. The rule Seq encode the fact that a
sequence creates a lexical scope by restoring the program stack after its
execution. The result value (if there is one) is bound in the output stacks.

By design, like all omni-big-step judgments, the judgment 𝑡/(𝑠, 𝑚) ⇓ 𝑄 is
preserved when enlarging𝑄 . This property named consequence will be used
in the proof of the frame rule.

Theorem A.1: Consequence property for omnisemantics

𝑡/(𝑠, 𝑚) ⇓ 𝑄 ∧ 𝑄 ⊆ 𝑄 ′ =⇒ 𝑡/(𝑠, 𝑚) ⇓ 𝑄 ′

We refer to the omnisemantics paper [Cha+22] for the inductive proof pat-
tern.

Moreover, this semantics also ensures that the content of read-only variables
in the store is preserved by the evaluation, and that these read-only variables
can be promoted to read-write both in the input and the output store without
changing the computed values.

Theorem A.2: Relaxing mode preserves evaluation

𝑡/(𝑠,𝑚 ⊎ IntoRO(𝑚′′)) ⇓ 𝑄 =⇒
𝑡/(𝑠,𝑚 ⊎𝑚′′) ⇓ {(𝑠′, 𝑚′ ⊎𝑚′′) | (𝑠′, 𝑚′ ⊎ IntoRO(𝑚′′)) ∈ 𝑄}

This theorem can be proven by induction over the derivation tree of 𝑡/(𝑠,
𝑚 ⊎ IntoRO(𝑚′′)) ⇓ 𝑄 by noticing that none of the rules in figure 1 require
a variable in the store to have mode RO, and that the only variables in the
store whose value is modified must have mode RW.

[Cha+22]: Charguéraud et al. (2022), Om-
nisemantics: Smooth Handling of Nondeter-
minism

136 Appendix

𝑣/(𝑠, 𝑚) ⇓ {(𝑠 [res ↦→ 𝑣], 𝑚)} Val
𝑥/(𝑠, 𝑚) ⇓ {(𝑠 [res ↦→ 𝑠 (𝑥)], 𝑚)} Var

(fun(𝑎1, ..., 𝑎𝑛) ↦→ 𝑡𝑓)/(𝑠, 𝑚) ⇓ (𝑠 [res ↦→ (fun𝑠 (𝑎1, ..., 𝑎𝑛) ↦→ 𝑡𝑓)], 𝑚)
Fun

(let 𝑥 = stackAlloc())/(𝑠, 𝑚) ⇓ {(𝑠 [𝑥 ↦→ 𝑙], 𝑚[𝑙 ↦→ (RW, ⊥)]) | 𝑙 ∉ dom(𝑚)} StackAlloc

𝑡/(𝑠, 𝑚) ⇓ 𝑄
(let 𝑥 = 𝑡)/(𝑠, 𝑚) ⇓ {(𝑠 [𝑥 ↦→ 𝑠′ (res)], 𝑚′) | (𝑠′, 𝑚′) ∈ 𝑄} Let

𝑡/(𝑠, 𝑚) ⇓ 𝑄 ′ ∀(𝑠′, 𝑚′) ∈ 𝑄 ′, E[𝑠′ (res)]/(𝑠, 𝑚′) ⇓ 𝑄 E is an evaluation context
E[𝑡]/(𝑠, 𝑚) ⇓ 𝑄 Bind

𝑠𝑐 = 𝑠𝑓 [𝑎𝑖 ↦→ 𝑣𝑖] 𝑡𝑓 /(𝑠𝑐 , 𝑚) ⇓ 𝑄
(fun𝑠𝑓 (𝑎1, ..., 𝑎𝑛) ↦→ 𝑡𝑓) (𝑣1, ..., 𝑣𝑛)/(𝑠, 𝑚) ⇓ 𝑄

Call

𝑡𝑐/(𝑠, 𝑚) ⇓ 𝑄𝑐

∀(𝑠𝑐 , 𝑚𝑐) ∈ 𝑄𝑐 , (𝑠𝑐 (res) = true =⇒ 𝑡𝑡/(𝑠, 𝑚𝑐) ⇓ 𝑄) ∧ (𝑠𝑐 (res) = false =⇒ 𝑡𝑓 /(𝑠, 𝑚𝑐) ⇓ 𝑄)
(if 𝑡𝑐 then 𝑡𝑡 else 𝑡𝑓)/(𝑠, 𝑚) ⇓ 𝑄

If

𝑄0 = {(𝑠0, 𝑚0)} ∀𝑖 ∈ [1, 𝑛], ∀(𝑠, 𝑚) ∈ 𝑄𝑖−1, 𝑡𝑖/(𝑠, 𝑚) ⇓ 𝑄𝑖

𝑄𝐴 = {(𝑠, 𝑚\𝐴(𝑠)) | (𝑠, 𝑚) ∈ 𝑄𝑛} where 𝐴(𝑠) = {𝑠 (𝑥𝑖) | 𝑡𝑖 is of the form “let 𝑥𝑖 = stackAlloc()”}

𝑄 =

{
{(𝑠0, 𝑚) | (𝑠, 𝑚) ∈ 𝑄𝐴} if 𝑟 = ∅
{(𝑠0 [res ↦→ 𝑠 (𝑥)], 𝑚) | (𝑠, 𝑚) ∈ 𝑄𝐴} if 𝑟 = 𝑥

{𝑡1; ...; 𝑡𝑛 ; 𝑟 }/(𝑠0, 𝑚0) ⇓ 𝑄
Seq

𝑚(𝑙) = (M, 𝑣) 𝑣 ≠⊥
get(𝑙)/(𝑠, 𝑚) ⇓ {𝑠 [res ↦→ 𝑣], 𝑚} Get

𝑚(𝑙) = (RW, 𝑣 ′)
set(𝑙, 𝑣)/(𝑠, 𝑚) ⇓ {(𝑠, 𝑚[𝑙 ↦→ (RW, 𝑣)])} Set

ignore(𝑣)/(𝑠, 𝑚) ⇓ {(𝑠\res, 𝑚)} Ignore
add(𝑣1, 𝑣2)/(𝑠, 𝑚) ⇓ {(𝑠 [res ↦→ 𝑣1 + 𝑣2], 𝑚)}

Add

𝑚(𝑙1) = (RW, 𝑣1) 𝑣1 ≠⊥
inplaceAdd(𝑙1, 𝑣2)/(𝑠, 𝑚) ⇓ {(𝑠,𝑚[𝑙1 ↦→ (RW, 𝑣1 + 𝑣2)])}

InplaceAdd

heapAlloc()/(𝑠, 𝑚) ⇓ {(𝑠 [res ↦→ 𝑙], 𝑚[𝑙 ↦→ (RW, ⊥)]) | 𝑙 ∉ dom(𝑚)} HeapAlloc

𝑚(𝑙) = (RW, 𝑣)
free(𝑙)/(𝑠, 𝑚) ⇓ {(𝑠, 𝑚\𝑙)} Free

𝑛start ≤ 𝑛stop 𝑡/(𝑠 [𝑖 ↦→ 𝑛start], 𝑚) ⇓ 𝑄1
∀(𝑠1, 𝑚1) ∈ 𝑄1, (forseq (𝑖 ∈ range(𝑛start + 𝑛step, 𝑛stop, 𝑛step)) 𝑡)/(𝑠1, 𝑚1) ⇓ 𝑄

(forseq (𝑖 ∈ range(𝑛start, 𝑛stop, 𝑛step)) 𝑡)/(𝑠, 𝑚) ⇓ 𝑄
ForIter

𝑛start > 𝑛stop

(forseq (𝑖 ∈ range(𝑛start, 𝑛stop, 𝑛step)) 𝑡)/(𝑠, 𝑚) ⇓ {(𝑠,𝑚)}
ForEnd

𝑚 =𝑚RO ⊎
⊎

𝑖∈𝑅𝑚𝑖 ∀𝑖 ∈ 𝑅, 𝑡/(𝑠, IntoRO(𝑚RO) ⊎𝑚𝑖) ⇓ 𝑄𝑖

(forpar (𝑖 ∈ 𝑅) 𝑡)/(𝑠, 𝑚) ⇓
{
(𝑠,𝑚′)

���� ∃𝑠′𝑖 , ∃𝑚′𝑖 , 𝑚′ =𝑚RO ⊎
⊎

𝑖∈𝑅𝑚
′
𝑖

∧ ∀𝑖 ∈ 𝑅, (𝑠𝑖 , IntoRO(𝑚RO) ⊎𝑚′𝑖) ∈ 𝑄𝑖

} ForPar

Figure 1: Semantics of the Opti𝜆 internal language in omni-big-step style as explained in section 4.8. Other arithmetic built-in functions follow
the pattern of Add or InplaceAdd.

B Specialization of contexts 137

This omni-big-step semantics is enough for our current needs in OptiTrust.
However, we keep in mind that in order to handle concurrency patterns that
are more complex that shared read-only, we will ultimately need to change
our approach. We will have to either integrate traces to model concurrent
effects on the same memory location, or we can replace this omni-big-step
semantics with small-step semantics with explicit thread interleaving.

Note also that the semantic rules presented in figure 1 do not specify the
memory model (i.e. how are arrays and structs represented in the program
store, what is inside location values, and how ⊞ and ⊡ are evaluated). We
leave the definition of a proper memory model for future work.

B Specialization of contexts

In section 4.2, we introduced the operator SpecializeΓ0 {𝜎}(Γ) to adapt a func-
tion contract for a specific call, but we did not define formally that operator.
This section contains the formal definition of the operator Specialize. The
definition is quite technical—the reader may safely skip over the details.

We formally define SpecializeΓ0 {𝜎}(Γ) by using an auxiliary recursive func-
tion of the form Specialize′𝐸0

{𝜎}(𝐸1, Γ), where 𝐸0 denotes the pure part of
Γ0, and where 𝐸1 denotes an accumulator. The operation assumes dom(𝜎) to
be included in set of keys of Γ.pure. The definition of Specialize′ relies itself
on two auxiliary operators. The operator TypeOf(𝑣, 𝐸) returns the unique
type 𝜏 such that the pure expression 𝑣 has type 𝜏 in the pure context 𝐸 (this
corresponds to the judgment written 𝐸 ⊢ 𝑣 : 𝜏 detailed in section 4.6). The
operator Unify(𝐸, 𝜏, 𝜏 ′) tries to unify the types 𝜏 and 𝜏 ′ by treating variables
in 𝐸 as unification variables in 𝜏 ′. If it succeeds, it returns a map between
the resolved unification variables to their values found by unification. Some
variables from 𝐸 may remain unresolved and do not appear in this map.

SpecializeΓ0 {𝜎}(Γ) = Specialize′Γ0 .pure{𝜎}(∅, Γ)
Specialize′𝐸0

{∅}(𝐸1, ⟨𝐸2 | 𝐹 ⟩) = ⟨(𝐸1, 𝐸2) | 𝐹 ⟩

Specialize′𝐸0
{𝜎}(𝐸1, ⟨𝑥 : 𝜏, 𝐸2 | 𝐹 ⟩) =



if 𝑥 ∉ dom(𝜎) :
Specialize′𝐸0

{𝜎}((𝐸1, 𝑥 : 𝜏), ⟨𝐸2 | 𝐹 ⟩)
otherwise 𝜎 decomposes as (𝑥 := 𝑣) ⊎ 𝜎 ′ :

let 𝜏0 = TypeOf(𝑣, 𝐸0) in
let 𝜎 ′′ = Unify(𝐸1, 𝜏0, 𝜏) in
let 𝐸′1 = Specialize𝐸0 {𝜎

′′}([𝐸1]).pure in
let Γ′ = Subst{𝜎 ′′ ⊎ (𝑥 := 𝑣)}(⟨𝐸2 | 𝐹 ⟩) in
Specialize′𝐸0

{𝜎 ′}(𝐸′1, Γ′)

C Context satisfaction

In section 4.8, we introduced the judgment (𝜎, 𝜇) ∈ Γ to assert that a logical
state (𝜎, 𝜇) satisfies a context Γ of the form ⟨𝐸 | 𝐹 ⟩. This section formally
defines this judgment. Doing so involves two auxiliary judgments 𝜎 : 𝐸 and
𝐹 |= 𝜇 that we define below.

First, 𝜎 : 𝐸 is a characterization of the fact that bindings in 𝜎 have types that
correspond to the bindings in 𝐸. It allows 𝜎 to have more bindings than 𝐸.
Recall that the operator TypeOf(𝑣, 𝐸) returns the unique type 𝜏 such that

138 Appendix

the pure expression 𝑣 has type 𝜏 in the pure context 𝐸. In this definition, we
enforce all values in 𝜎 to be well-typed in an empty environment.

Definition C.1: Pure context satisfaction
We define 𝜎 : 𝐸 with the following rules:

𝜎 : ∅
TypeOf(𝜎 (𝑥), ∅) = 𝜏 𝜎 : Subst{𝑥 := 𝜎 (𝑥)}(𝐸)

𝜎 : (𝑥 : 𝜏, 𝐸)

𝐹 |= 𝜇 is a characterization of the fact that memory cells described by 𝜇

correspond to the linear resources described in 𝐹 . Before giving its formal
definitions, we need to introduce additional operators on logical stores. These
definitions are essentially standard in separation logic.

We denote by 𝜇1 ⊎ 𝜇2 the compatible union between two logical store. We
denote by 𝜇1 ⊥ 𝜇2 the fact that two logical stores are compatible. Two logical
stores are compatible if and only if, on their intersection, all the bindings
have the same value.

Definition C.2: Compatibility of logical stores

𝜇1 ⊥ 𝜇2 =
∀𝑙 ∈ dom(𝜇1) ∩ dom(𝜇2), ∃𝛼1, ∃𝛼2, ∃𝑣,

𝜇1 (𝑙) = (𝛼1, 𝑣) ∧ 𝜇2 (𝑙) = (𝛼2, 𝑣)

When two logical stores are compatible, their compatible union is defined as
follows:

Definition C.3: Compatible union of logical stores

Assume 𝜇1 ⊥ 𝜇2. Then:

𝜇1 ⊎ 𝜇2 =


𝑙 ↦→ (𝛼, 𝑣)

����������
(𝜇1 (𝑙) = (𝛼, 𝑣) ∧ 𝑙 ∉ dom(𝜇2))

∨ (𝜇2 (𝑙) = (𝛼, 𝑣) ∧ 𝑙 ∉ dom(𝜇1))

∨ ©­«
𝜇1 (𝑙) = (𝛼1, 𝑣)

∧ 𝜇2 (𝑙) = (𝛼2, 𝑣)
∧ 𝛼 = 𝛼1 + 𝛼2

ª®¬


In program and logical stores, we allow a special value ⊥ for variables that
are not initialized. We define the fact that a linear resource𝐻 models a logical
store 𝜇 recursively as follows:

Definition C.4: Linear resource satisfaction
We define 𝐻 |= 𝜇 with the following rules:

𝑙 ↦→ 𝑣 |= {𝑙 ↦→ (1, 𝑣)}
𝑣 ≠⊥

𝑙 ⇝ Cell |= {𝑙 ↦→ (1, 𝑣)}

𝑙 ⇝ UninitCell |= {𝑙 ↦→ (1, 𝑣)}
∀𝑖 ∈ 𝑅, 𝐻𝑖 |= 𝜇𝑖

★𝑖∈𝑅 𝐻𝑖 |=
⊎

𝑖∈𝑅 𝜇𝑖

𝐻 |= 𝜇

𝛼𝐻 |= ⊎
𝑙 ↦→(𝛽, 𝑣) ∈𝜇{𝑙 ↦→ (𝛼 · 𝛽, 𝑣)}

∀𝜇1, 𝜇1 ⊥ 𝜇 ∧ 𝐻1 |= 𝜇1 =⇒ 𝐻2 |= 𝜇1 ⊎ 𝜇

𝐻1 −

★

𝐻2 |= 𝜇

Above, all the occurrences of the operator
⊎

must be well-defined.

D Proof of the frame rule 139

We say that a linear context 𝐹 models a logical store 𝜇 and write 𝐹 |= 𝜇 if
and only if the disjoint union of all resources in 𝐹 models 𝜇. Formally:

Definition C.5: Linear context satisfaction
Consider 𝐹 of the form 𝐻0, ..., 𝐻𝑛−1. The predicate 𝐹 |= 𝜇 holds if and
only if (★𝑖∈0..𝑛 𝐻𝑖) |= 𝜇.

With the two relations 𝜎 : 𝐸 and 𝐹 |= 𝜇 defined above, we define (𝜎, 𝜇) ∈ Γ
in the following way:

Definition C.6: Context satisfaction

(𝜎, 𝜇) ∈ ⟨𝐸 | 𝐹 ⟩ =
𝜎 : 𝐸

∧ Subst{𝜎}(𝐹) |= 𝜇

In order to additionally express that a context can correspond to a program
state, we define the bounded context satisfaction (𝜎, 𝜇) ∈ Γ in the following
way:

Definition C.7: Bounded context satisfaction

(𝜎, 𝜇) ∈ Γ =
(𝜎, 𝜇) ∈ Γ

∧ (∀𝑙, 𝛼, 𝑣, 𝜇 (𝑙) = (𝛼, 𝑣) =⇒ 𝛼 ≤ 1)

From these definitions of context satisfaction, we can give a semantic charac-
terization of the separating conjunction operator ⊙★ over two contexts. This
characterization directly follows from the definitions above.

Theorem C.8: Semantic characterization of context separating conjunc-
tion

(𝜎0, 𝜇0) ∈ (Γ1 ⊙★ Γ2) ⇐⇒

∃𝜎1, 𝜇1, 𝜎2, 𝜇2,
𝜎0 = 𝜎1 ⊎ 𝜎2

∧ 𝜇0 = 𝜇1 ⊎ 𝜇2
∧ (𝜎1, 𝜇1) ∈ Γ1
∧ (𝜎2, 𝜇2) ∈ Subst{𝜎1}(Γ2)

We can now also give a formal definition for the entailment between two
contexts:

Definition C.9: Entailment between two contexts

Γ1 ⇒ Γ2 =

∀(𝜎1, 𝜇) ∈ Γ1, ∃𝜎2,
(∀𝑥 ∈ dom(Γ1.pure), 𝜎1 (𝑥) = 𝜎2 (𝑥))

∧ (𝜎2, 𝜇) ∈ Γ2

D Proof of the frame rule

This section gives a proof of the frame rule for logical triples. This proof
is divided in two steps. First, we need to prove correct the frame property
with respect to the semantics of our language for omni-big-step evaluation
judgments. Then, we can use this property to show that the frame rule for
logical triples holds.

Before formally stating the frame property for omni-big-step evaluation
judgment, we need one technical definition to take the compatible union

140 Appendix

[Cha+23]: Charguéraud et al. (2023), Om-
nisemantics: Smooth Handling of Nondeter-
minism

of two sets of program states. Two program stacks (respectively program
stores) are compatible, and we write 𝑠 ⊥ 𝑠′ (resp.𝑚 ⊥𝑚′), if their domain is
disjoint. In that case, we write 𝑠 ⊎ 𝑠′ (resp.𝑚 ⊎𝑚′) their disjoint union. We
can define the compatible union of two set of program states as follows:

Definition D.1: Compatible union of program states

𝑄 ⊎𝑄 ′ =
{(𝑠 ⊎ 𝑠′, 𝑚 ⊎𝑚′) | (𝑠, 𝑚) ∈ 𝑄 ∧ (𝑠′, 𝑚′) ∈ 𝑄 ′ ∧ 𝑠 ⊥ 𝑠′ ∧𝑚 ⊥𝑚′}

Then, the frame property for omni-big-step evaluation judgments reads as
follows:

Theorem D.2: Frame property for omnisemantics

𝑡/(𝑠, 𝑚) ⇓ 𝑄 =⇒
∀𝑠′ ⊥ 𝑠, ∀𝑚′ ⊥𝑚, 𝑡/(𝑠 ⊎ 𝑠′, 𝑚 ⊎𝑚′) ⇓ (𝑄 ⊎ {(𝑠′, 𝑚′)})

The proof sketch of this property is given in the omnisemantics paper
[Cha+23, §5.4].

Before expressing the frame property for logical triples, we need one last
technical definition to characterize typing contexts that are well-typed. Recall
that since 𝐸 is a telescope, bindings defined in 𝐸 can be used in the following
bindings of the typing context.

Definition D.3:Well-typed contexts

A typing context Γ = ⟨𝐸 | 𝐹 ⟩ is well-typed if and only if there is no name
conflict in 𝐸 or in 𝐹 and for any 𝑥 : 𝜏 in 𝐸, 𝜏 is of type Type and for any
𝑦 : 𝐻 in 𝐹 , 𝐹 is of type HProp.

We can now prove the frame property for logical triples:

Theorem 4.8.4: Frame property for logical triples

{Γ} 𝑡 {Γ′} ∧ Γ ⊙★ Γ′′ is well-typed ∧ Γ′ ⊙★ Γ′′ is well-typed =⇒
{Γ ⊙★ Γ′′} 𝑡 {Γ′ ⊙★ Γ′′}

Proof. ▶ Suppose we have {Γ} 𝑡 {Γ′}. Let (𝜎0, 𝜇0) ∈ Γ⊙★Γ′′. By definition
of triples, we have to prove 𝑡/(𝜎0, 𝜇0) |prog ⇓ AcceptableStates(𝜎0, 𝜇0,
Γ′ ⊙★ Γ′′).

▶ By theorem C.8, there is a decomposition 𝜎0 = 𝜎 ⊎ 𝜎 ′′ and 𝜇0 =

𝜇 ⊎ 𝜇′′ such that (𝜎, 𝜇) ∈ Γ and (𝜎 ′′, 𝜇′′) ∈ Subst{𝜎}(Γ′′). Since 𝜇0 is
bounded, we can deduce (𝜎, 𝜇) ∈ Γ.

▶ By definition of {Γ} 𝑡 {Γ′} applied to (𝜎, 𝜇) ∈ Γ, we have
𝑡/(𝜎, 𝜇) |prog ⇓ AcceptableStates(𝜎, 𝜇, Γ′).

▶ We have (𝜎 ⊎ 𝜎 ′′) |prog = 𝜎 |prog ⊎ 𝜎 ′′ |prog and 𝜎 ′′ |prog ⊥ 𝜎 |prog.

▶ We pose 𝜇 = 𝜇\dom(𝜇′′), 𝜇′′ = 𝜇′′\dom(𝜇), 𝜇∩ = 𝜇p·dom(𝜇′′), and
𝜇∩ = (𝜇⊎𝜇′′)p·(dom(𝜇) ∩dom(𝜇′′)). We have 𝜇 = 𝜇⊎𝜇∩, and 𝜇⊎𝜇′′ =
𝜇 ⊎ 𝜇∩ ⊎ 𝜇′′.

▶ We pose𝑚 = 𝜇 |prog,𝑚′′ = 𝜇′′ |prog, and𝑚∩ = 𝜇∩ |prog. By disjointness of
domains, we have (𝜇 ⊎ 𝜇′′) |prog =𝑚 ⊎𝑚∩ ⊎𝑚′′, and (𝜇 ⊎ 𝜇∩) |prog =
𝑚 ⊎𝑚∩, and 𝜇 |prog =𝑚 ⊎ 𝜇∩ |prog

D Proof of the frame rule 141

▶ Let us show that 𝜇∩ |prog = IntoRO(𝑚∩).

First, dom(𝜇∩ |prog) = dom(𝜇∩) = dom(𝜇) ∩ dom(𝜇′′), and
dom(IntoRO(𝑚∩)) = dom(𝑚∩) = dom(𝜇∩) = dom(𝜇) ∩ dom(𝜇′′),
thus dom(𝜇∩ |prog) = dom(IntoRO(𝑚∩)).

Take 𝑙 ∈ dom(𝜇) ∩ dom(𝜇′′), we need to show that 𝜇∩ |prog (𝑙) =

(IntoRO(𝑚∩)) (𝑙). By definition, 𝜇∩ |prog (𝑙) = 𝜇 |prog (𝑙). Similarly,
(IntoRO(𝑚∩)) (𝑙) = IntoRO(𝜇∩ |prog) (𝑙) = IntoRO((𝜇 ⊎ 𝜇′′) |prog) (𝑙).

Let us write 𝜇 (𝑙) = (𝛼, 𝑣), and 𝜇′′ (𝑙) = (𝛼 ′′, 𝑣 ′′). By definition of 𝜇⊎𝜇′′,
(𝜇⊎𝜇′′) (𝑙) = (𝛼+𝛼 ′′, 𝑣). Since additionally 𝜇⊎𝜇′′ is bounded, we know
that 𝛼 +𝛼 ′′ ≤ 1. Thus, there existM such that (𝜇 ⊎ 𝜇′′) |prog = (M, 𝑣).
By definition of IntoRO, we obtain (IntoRO(𝑚∩)) (𝑙) = (RO, 𝑣).

Like all fractions, 𝛼 ′′ > 0. Therefore, from the inequality 𝛼 + 𝛼 ′′ ≤ 1,
we can deduce 𝛼 < 1 and thus 𝜇 |prog (𝑙) = (RO, 𝑣).

Thus, we indeed have 𝜇∩ |prog = IntoRO(𝑚∩).

▶ By theorem A.2 applied to 𝑡/(𝜎, 𝜇) |prog ⇓ AcceptableStates(𝜎, 𝜇, Γ′)
where 𝜇 |prog = 𝑚 ⊎ IntoRO(𝑚∩), we obtain 𝑡/(𝜎 |prog, 𝑚 ⊎𝑚∩) ⇓ 𝑄 ,
where:

𝑄 =

{
(𝑠′, 𝑚′ ⊎𝑚∩)

���� (𝑠′, 𝑚′ ⊎ IntoRO(𝑚∩)) ∈AcceptableStates(𝜎, 𝜇, Γ′)

}
▶ By the frame property for omni-big-step (theorem D.2) applied on

𝑡/(𝜎 |prog, 𝑚 ⊎𝑚∩) ⇓ 𝑄 , 𝜎 ′′ |prog ⊥ 𝜎 |prog, and 𝑚′′ ⊥ (𝑚 ⊎𝑚∩), we
obtain 𝑡/(𝜎 |prog ⊎ 𝜎 ′′ |prog, 𝑚 ⊎𝑚∩ ⊎𝑚′′) ⇓ (𝑄 ⊎ {(𝜎 ′′ |prog, 𝑚′′)}).

▶ Since (𝜎 |prog⊎𝜎 ′′ |prog, 𝑚⊎𝑚∩⊎𝑚′′) = (𝜎0, 𝜇0) |prog, by the consequence
property of omni-big-step (theorem A.1), it suffices to show (𝑄 ⊎
{(𝜎 ′′ |prog, 𝑚′′)}) ⊆ AcceptableStates(𝜎0, 𝜇0, Γ′ ⊙★ Γ′′).

Take (𝑠𝑟 , 𝑚𝑟) ∈ (𝑄⊎{(𝜎 ′′ |prog, 𝑚′′)}). We need to show that (𝑠𝑟 , 𝑚𝑟) ∈
AcceptableStates(𝜎0, 𝜇0, Γ′ ⊙★ Γ′′).

▶ There is a decomposition 𝑠𝑟 = 𝑠′𝑟 ⊎ 𝑠′′𝑟 and𝑚𝑟 = 𝑚′𝑟 ⊎𝑚′′𝑟 such that
(𝑠′𝑟 , 𝑚′𝑟) ∈ 𝑄 and (𝑠′′𝑟 , 𝑚′′𝑟) ∈ {(𝜎 ′′ |prog, 𝑚′′)}. Since {(𝜎 ′′ |prog, 𝑚′′)}
is a singleton, we have 𝑠′′𝑟 = 𝜎 ′′ |prog and𝑚′′𝑟 =𝑚′′.

▶ By definition of 𝑄 , there exist𝑚′ such that𝑚′𝑟 = 𝑚′ ⊎𝑚∩, and (𝑠′𝑟 ,
𝑚′ ⊎ IntoRO(𝑚∩)) ∈ AcceptableStates(𝜎, 𝜇, Γ′). By definition of
AcceptableStates (definition 4.8.2), there exist 𝜎 ′ and 𝜇′ such that
𝑠′𝑟 = 𝜎 ′ |prog, and 𝑚′ ⊎ IntoRO(𝑚∩) = 𝜇′ |prog, and (𝜎 ′, 𝜇′) ∈ Γ′, and
OnlyRO(𝜇) = OnlyRO(𝜇′), and ∀𝑥 ∈ dom(𝜎) ∩ dom(𝜎 ′), 𝜎 (𝑥) =
𝜎 ′ (𝑥).

▶ 𝑠𝑟 = (𝑠′𝑟 ⊎ 𝑠′′𝑟) = (𝜎 ′ |prog ⊎ 𝜎 ′′ |prog) = (𝜎 ′ ⊎ 𝜎 ′′) |prog
▶ We know that Γ′ ⊙★ Γ′′ is well-scoped and that 𝜎 ′ : Γ′ .pure. Therefore,

for any 𝑥 free in Γ′′, 𝑥 ∈ dom(Γ′) ⊆ dom(𝜎 ′). Similarly, we know
that for any 𝑥 free in Γ′′, 𝑥 ∈ dom(Γ) ⊆ dom(𝜎). Therefore, since
∀𝑥 ∈ dom(𝜎) ∩ dom(𝜎 ′), 𝜎 (𝑥) = 𝜎 ′ (𝑥), for any 𝑥 free in Γ′′, 𝜎 (𝑥) =
𝜎 ′ (𝑥). This implies Subst{𝜎}(Γ′′) = Subst{𝜎 ′}(Γ′′). We know that
(𝜎 ′′, 𝜇′′) ∈ Subst{𝜎}(Γ′′). Thus, (𝜎 ′′, 𝜇′′) ∈ Subst{𝜎 ′}(Γ′′).

▶ Let us show that 𝜇′ ⊎ 𝜇′′ is well-defined. Take 𝑙 ∈ dom(𝜇′) ∩dom(𝜇′′).
By writing 𝜇′ (𝑙) = (𝛼 ′, 𝑣 ′) and 𝜇′′ (𝑙) = (𝛼 ′′, 𝑣 ′′), we need to show
that 𝑣 ′ = 𝑣 ′′.

We know that 𝜇′ |prog = 𝑚′ ⊎ IntoRO(𝑚∩). Therefore, either 𝑙 ∈
dom(𝑚′) or 𝑙 ∈ dom(IntoRO(𝑚∩)) = dom(𝑚∩). Similarly, we can

142 Appendix

show that 𝜇′′ |prog =𝑚′′⊎IntoRO(𝑚∩). Therefore, either 𝑙 ∈ dom(𝑚′′)
or 𝑙 ∈ dom(𝑚∩).

We know that𝑚𝑟 =𝑚′ ⊎𝑚∩ ⊎𝑚′′, thus𝑚′,𝑚∩ and𝑚′′ are disjoint.
We can therefore deduce that necessarily 𝑙 ∈ dom(𝑚∩). If we write
𝑚∩ (𝑙) = (M, 𝑣∩), then by definition of 𝜇′ |prog we can deduce that
𝑣 ′ = 𝑣∩, and similarly that 𝑣 ′′ = 𝑣∩. Thus, we obtain 𝑣 ′ = 𝑣 ′′.

▶ We know that 𝜎 ′⊎𝜎 ′′ and 𝜇′⊎ 𝜇′′ are well-defined, and that (𝜎 ′, 𝜇′) ∈
Γ′ and (𝜎 ′′, 𝜇′′) ∈ Subst{𝜎 ′}(Γ′′). Thus by theorem C.8, (𝜎 ′ ⊎ 𝜎 ′′,
𝜇′ ⊎ 𝜇′′) ∈ (Γ′ ⊙★ Γ′′).

▶ Let us show that 𝜇′ ⊎ 𝜇′′ is bounded. Let us take 𝑙 ∈ dom(𝜇′ ⊎ 𝜇′′).
By writing (𝜇′ ⊎ 𝜇′′) (𝑙) = (𝛼, 𝑣), we need to show that 𝛼 ≤ 1. Let us
distinguish three cases:

• Suppose 𝑙 ∈ dom(𝜇′) and 𝑙 ∉ dom(𝜇′′), then (𝜇′⊎𝜇′′) (𝑙) = 𝜇′ (𝑙).
Since we know by (𝜎 ′, 𝜇′) ∈ Γ′ that 𝜇′ is bounded, then 𝛼 ≤ 1.

• Suppose 𝑙 ∈ dom(𝜇′′) and 𝑙 ∉ dom(𝜇′), then (𝜇′⊎𝜇′′) (𝑙) = 𝜇′′ (𝑙).
By definition of (𝜎0, 𝜇0) ∈ Γ⊙★Γ′′, we know that 𝜇⊎𝜇′′ is bounded.
Therefore, 𝜇′′ is also bounded and thus 𝛼 ≤ 1.

• Suppose 𝑙 ∈ dom(𝜇′) ∩ dom(𝜇′′). If we write 𝜇′ (𝑙) = (𝛼 ′, 𝑣) and
𝜇′′ (𝑙) = (𝛼 ′′, 𝑣), then by definition of 𝜇′ ⊎ 𝜇′′, we know that
𝛼 = 𝛼 ′ + 𝛼 ′′.

We know that 𝜇′ |prog = 𝑚′ ⊎ IntoRO(𝑚∩), and by the same
reasoning as before, we can say that 𝑙 ∈ dom(IntoRO(𝑚∩)).
Thus, by definition of 𝜇′ |prog, we obtain 𝛼 ′ < 1, and therefore
𝑙 ∈ dom(OnlyRO(𝜇′)).

As OnlyRO(𝜇) = OnlyRO(𝜇′), we have 𝜇 (𝑙) = 𝜇′ (𝑙) = (𝛼 ′, 𝑣).
We know that 𝜇 ⊎ 𝜇′′ is bounded. Therefore, we can conclude
𝛼 ′ + 𝛼 ′′ ≤ 1.

In all cases 𝛼 ≤ 1, therefore 𝜇′ ⊎ 𝜇′′ is bounded and thus, (𝜎 ′ ⊎ 𝜎 ′′,
𝜇′ ⊎ 𝜇′′) ∈ (Γ′ ⊙★ Γ′′).

▶ OnlyRO(𝜇 ⊎ 𝜇′′) = OnlyRO(𝜇′ ⊎ 𝜇′′) directly follows from
OnlyRO(𝜇′) = OnlyRO(𝜇).

▶ ∀𝑥 ∈ dom(𝜎 ⊎ 𝜎 ′′) ∩ dom(𝜎 ′ ⊎ 𝜎 ′′), (𝜎 ⊎ 𝜎 ′′) (𝑥) = (𝜎 ′ ⊎ 𝜎 ′′) (𝑥)
directly follows from ∀𝑥 ∈ dom(𝜎) ∩ dom(𝜎 ′), 𝜎 (𝑥) = 𝜎 ′ (𝑥).

▶ We conclude by instantiating the definition 4.8.2 of AcceptableStates(
𝜎0, 𝜇0, Γ

′ ⊙★ Γ′′) with 𝑠𝑟 = (𝜎 ′ ⊎ 𝜎 ′′) |prog, and𝑚𝑟 = (𝜇′ ⊎ 𝜇′′) |prog, and
(𝜎 ′⊎𝜎 ′′, 𝜇′⊎𝜇′′) ∈ Γ′⊙★ Γ′′, andOnlyRO(𝜇⊎𝜇′′) = OnlyRO(𝜇′⊎𝜇′′),
and ∀𝑥 ∈ dom(𝜎 ⊎ 𝜎 ′′) ∩ dom(𝜎 ′ ⊎ 𝜎 ′′), (𝜎 ⊎ 𝜎 ′′) (𝑥) = (𝜎 ′ ⊎ 𝜎 ′′) (𝑥).

E Soundness of the algorithmic rule for
typechecking for loops

This section focuses on the correctness argument for our algorithmic typing
rule for for loops. This rule is the most remote compared with known
presentations of separation logic.

Let us recall this algorithmic typing rule for handling for loops:

E Soundness of the algorithmic rule for typechecking for loops 143

Γoutpre = [𝜒.vars] ⊙★ (⊙★𝑖∈𝑅 𝜒.excl.pre) ⊙★ 𝜒.shrd.reads ⊙★ Subst{𝑖 := 𝑅.start}(𝜒.shrd.inv)
(𝐸frac, 𝜎out, 𝐹) = Γ0 ⊖ Γoutpre

Γinpre = [𝜒.vars] ⊙★ 𝜒.excl.pre ⊙★ 1
𝑅.len 𝜒.shrd.reads ⊙★ 𝜒.shrd.inv

{{[Γ0.pure, 𝑖 : int, 𝑖 ∈ 𝑅] ⊙★ Γinpre}} 𝑡 {{Γinpost}}
(𝜎 in

post, ∅) = Γinpost ⊟ 𝜒.excl.post ⊙★ 1
𝑅.len 𝜒.shrd.reads ⊙★ Subst{𝑖 := 𝑖 + 𝑅.step}(𝜒.shrd.inv)

Γoutpost = Subst{𝜎out}((⊙★𝑖∈𝑅 𝜒.excl.post) ⊙★ 𝜒.shrd.reads ⊙★ Subst{𝑖 := 𝑅.end}(𝜒.shrd.inv))
Γ𝑟 = CloseFracs([Γ0.pure, 𝐸frac] ⊙★ 𝐹 ⊙★ Γoutpost)

𝜋 = par =⇒ parallelizable(𝜒)
{{Γ0}} for𝜋 (𝑖 ∈ 𝑅)𝜒 𝑡 {{Γ𝑟 }}

For

Let us show the soundness of this For rule supposing that the two common
separation logic typing rules for sequential and parallel for loops shown
below hold.

{[𝐸0, 𝑖 : int, 𝑖 ∈ 𝑅] ⊙★ Γinv (𝑖)} 𝑡 {Γinv (𝑖 + 𝑅.step)}
{[𝐸0] ⊙★ Γinv (𝑅.start)} forseq (𝑖 ∈ 𝑅) 𝑡 {Γinv (𝑅.end)}

ForSeq

{[𝐸0, 𝑖 : int, 𝑖 ∈ 𝑅] ⊙★ Γpre (𝑖)} 𝑡 {Γpost (𝑖)}
{[𝐸0] ⊙★ ⊙★𝑖∈𝑅 Γpre (𝑖)} forpar (𝑖 ∈ 𝑅) 𝑡 {⊙★𝑖∈𝑅 Γpost (𝑖)}

ForPar

Before starting the proof let us state two technical lemmas. The first lemma
states that we can always specialize a logical triple into a more specific triple
by partially instantiating its precondition. This lemma is analogous to the
specialization of a logical theorem on specific parameters.

Theorem E.1: Specialization of a triple

{Γ0 ⊙★ Γ1} 𝑡 {Γ2} =⇒ {Γ0 ⊙★ SpecializeΓ0 {𝜎}(Γ1)} 𝑡 {Subst{𝜎}(Γ2)}

This is straightforward from the implication (𝜎0, 𝜇) ∈ (Γ0 ⊙★ SpecializeΓ0 {
𝜎}(Γ)) =⇒ (𝜎0 ⊎ 𝜎, 𝜇) ∈ Γ.

The second lemma states that the specialized version of a context entails
itself.

Theorem E.2: Specialized context entails itself

SpecializeΓ0 {𝜎}(Γ) ⇒ Γ

This theorem directly follows from definition C.9 by choosing 𝜎2 = 𝜎 ⊎𝜎1.

Now let us prove our main theorem:

Theorem E.3: For is derivable from ForSeq and ForPar

The algorithmic typing rule For can be derived from the standard separa-
tion logic rules ForSeq and ForPar.

Proof. We need to make a case analysis on whether the loop is parallel or
not which corresponds to the component 𝜋 :

▶ If 𝜋 = seq (the loop is sequential), our For rule can be derived from the
rule ForSeq by placing in Γinv all the exclusive per-iteration resources
produced by iterations strictly before 𝑗 , all the exclusive per-iterations
resources consumed by iterations after and including 𝑗 , and all the

144 Appendix

resources shared across iterations. More formally, we use the instanti-
ations:

𝐸0 = Γ0 .pure
Γinv = fun(𝑗) ↦→ Subst{𝜎 inv}(

⊙★𝑖∈range(𝑅.start, 𝑗,𝑅.step) 𝜒.excl.post ⊙★
★𝑖∈range(𝑗,𝑅.stop,𝑅.step) 𝜒.excl.pre.linear ⊙★
𝜒.shrd.reads ⊙★
Subst{𝑖 := 𝑗}(𝜒.shrd.inv))

𝜎 inv = 𝜎out\dom(𝜒.shrd.inv.pure)

From our rule For, we know that {[Γ0 .pure, 𝑖 : int, 𝑖 ∈ 𝑅] ⊙★ Γinpre} 𝑡
{Γinpost}. By theorem E.1 applied with 𝜎 inv, we therefore know that
{[Γ0 .pure, 𝑖 : int, 𝑖 ∈ 𝑅] ⊙★ SpecializeΓ0 {𝜎

inv}(Γinpre)} 𝑡 {Subst{𝜎 inv}(
Γinpost)}. By adding a frame Γinframe, defined as:

Γinframe = Subst{𝜎 inv}(
⊙★𝑖∈range(𝑅.start, 𝑗,𝑅.step) 𝜒.excl.post ⊙★
★𝑖∈range(𝑗+𝑅.step,𝑅.stop,𝑅.step) 𝜒.excl.pre.linear ⊙★
𝑅.len−1
𝑅.len 𝜒.shrd.reads)

we obtain {[Γ0.pure, 𝑖 : int, 𝑖 ∈ 𝑅] ⊙★ SpecializeΓ0 {𝜎
inv}(Γinpre) ⊙★ Γinframe}

𝑡 {Subst{𝜎 inv}(Γinpost) ⊙★ Γinframe}. Then, by the consequence rule, we can
deduce the required hypothesis {[𝐸0, 𝑖 : int, 𝑖 ∈ 𝑅] ⊙★Γinv (𝑖)} 𝑡 {Γinv (𝑖+
𝑅.step)} for applying ForSeq by proving two entailments:

• [𝐸0, 𝑖 : int, 𝑖 ∈ 𝑅] ⊙★ Γinv (𝑖) ⇒ [Γ0 .pure, 𝑖 : int, 𝑖 ∈ 𝑅] ⊙★
SpecializeΓ0 {𝜎

inv}(Γinpre) ⊙★ Γinframe

We know that Γinpre = [𝜒.vars] ⊙★ 𝜒.excl.pre ⊙★ 1
𝑅.len 𝜒.shrd.reads ⊙★

𝜒.shrd.inv. By definition of Specialize and 𝜎 inv, we have
SpecializeΓ0 {𝜎

inv}(Γinpre) = Subst{𝜎 inv}(𝜒.excl.pre.linear ⊙★
1

𝑅.len 𝜒.shrd.reads ⊙★ 𝜒.shrd.inv).

Then, we can conclude by distributing Subst over separated con-
junctions, splitting the fraction 1

𝑅.len 𝜒.shrd.reads, and by using
the following equality:

★𝑖∈range(𝑗,𝑅.stop,𝑅.step) 𝜒.excl.pre.linear =

Subst{𝑖 := 𝑗}(𝜒.excl.pre.linear) ★
★𝑖∈range(𝑗+𝑅.step,𝑅.stop,𝑅.step) 𝜒.excl.pre.linear

• Subst{𝜎 inv}(Γinpost) ⊙★ Γinframe ⇒ Γinv (𝑖 + 𝑅.step)

To prove this entailment we use the fact that we know from the
hypothesis (𝜎 in

post, ∅) = Γinpost ⊟ 𝜒.excl.post⊙★ 1
𝑅.len 𝜒.shrd.reads⊙★

Subst{𝑖 := 𝑖 + 𝑅.step}(𝜒.shrd.inv) that Γinpost ⇒ 𝜒.excl.post ⊙★
1

𝑅.len 𝜒.shrd.reads ⊙★ Subst{𝑖 := 𝑖 + 𝑅.step}(𝜒.shrd.inv).
Thus, Subst{𝜎 inv}(Γinpost) ⇒ Subst{𝜎 inv}(𝜒.excl.post ⊙★

1
𝑅.len 𝜒.shrd.reads ⊙★ Subst{𝑖 := 𝑖 + 𝑅.step}(𝜒.shrd.inv)).

Then, we can conclude by distributing Subst over separated con-
junctions, merging the fraction 1

𝑅.len 𝜒.shrd.reads, and by using

E Soundness of the algorithmic rule for typechecking for loops 145

the following equality:

⊙★𝑖∈range(𝑅.start, 𝑗,𝑅.step) 𝜒.excl.post ⊙★
Subst{𝑖 := 𝑗 + 𝑅.step}(𝜒.excl.post) =

⊙★𝑖∈range(𝑅.start, 𝑗+𝑅.step,𝑅.step) 𝜒.excl.post

Now,we know by the rule ForSeq that {[𝐸0]⊙★Γinv (𝑅.start)} forseq (𝑖 ∈
𝑅) 𝑡 {Γinv (𝑅.end)}. To conclude, we frame the linear resource set 𝐹
(that comes from the rule For itself) and prove the following entail-
ments:

• Γ0 ⇒ [𝐸0] ⊙★ Γinv (𝑅.start) ⊙★ 𝐹

We know by the subtraction Γ0 ⊖ Γoutpre that Γ0 ⇒
[𝐸frac] ⊙★ SpecializeΓ0 {𝜎

out}(Γoutpre) ⊙★ 𝐹 . As Γoutpre = [𝜒.vars] ⊙★
(⊙★𝑖∈𝑅 𝜒.excl.pre) ⊙★ 𝜒.shrd.reads ⊙★ Subst{𝑖 := 𝑅.start}(
𝜒.shrd.inv), by definition of Specialize and 𝜎 inv and
since we know 𝜎out covers all the pure bindings of
Γoutpre , we have: SpecializeΓ0 {𝜎

out}(Γoutpre) = Subst{𝜎 inv}(
(★𝑖∈𝑅 𝜒.excl.pre.linear) ⊙★ 𝜒.shrd.reads ⊙★ SpecializeΓ0 {
𝜎outp·dom(𝜒.shrd.inv.pure)}(Subst{𝑖 := 𝑅.start}(𝜒.shrd.inv))).

By theorem E.2, SpecializeΓ0 {𝜎
outp·dom(𝜒.shrd.inv.pure)}(

Subst{𝑖 := 𝑅.start}(𝜒.shrd.inv)) ⇒ Subst{𝑖 := 𝑅.start}(
𝜒.shrd.inv). Therefore, Γ0 ⇒ [Γ0.pure] ⊙★ Subst{𝜎 inv}(
(★𝑖∈𝑅 𝜒.excl.pre.linear) ⊙★ 𝜒.shrd.reads ⊙★ Subst{𝑖 := 𝑅.start}(
𝜒.shrd.inv)) ⊙★ 𝐹 .

To conclude, we can introduce 𝜒.excl.post and find Γinv (𝑅.start)
using the equality ∅ = ⊙★𝑖∈range(𝑅.start,𝑅.start,𝑅.step) 𝜒.excl.post.

• Γinv (𝑅.end) ⊙★ 𝐹 ⇒ Γ𝑟

We know that Γ𝑟 = CloseFracs([Γ0 .pure, 𝐸frac] ⊙★ 𝐹 ⊙★ Subst{
𝜎out}((⊙★𝑖∈𝑅 𝜒.excl.post) ⊙★ 𝜒.shrd.reads ⊙★ Subst{𝑖 := 𝑅.end}(
𝜒.shrd.inv))). By scoping rules of the loop contracts, bindings
of 𝜒.shrd.inv cannot occur in other elements of 𝜒 . Therefore, in
this context 𝜎out and 𝜎 inv produce the same substitution.

To conclude, we use the fact that the range range(𝑅.stop,
𝑅.stop, 𝑅.step) of the iterated separating conjunction over
𝜒.excl.pre.linear from Γinv (𝑅.stop) is empty and notice that for
any context Γ, Γ ⇔ CloseFracs(Γ).

▶ If 𝜋 = par (the loop is parallel), then the rule For is obtained from the
rule ForPar. Since 𝜋 = par, we know from the rule that 𝜒.shrd.inv
must be empty. Therefore we can use the following instantiations for
𝐸0, Γpre and Γpost:

𝐸0 = Γ0.pure
Γpre = fun(𝑖) ↦→ [𝜒.vars] ⊙★ 𝜒.excl.pre ⊙★ 1

𝑅.len 𝜒.shrd.reads
Γpost = fun(𝑖) ↦→ 𝜒.excl.post ⊙★ 1

𝑅.len 𝜒.shrd.reads

We directly have Γinpre = Γpre (𝑖). From the hypothesis (𝜎 in
post, ∅) =

Γinpost ⊟ 𝜒.excl.post ⊙★ 1
𝑅.len 𝜒.shrd.reads ⊙★ Subst{𝑖 := 𝑖 + 𝑅.step}(

𝜒.shrd.inv), we obtain Γinpost ⇒ Γpost (𝑖). From the hypothesis {[Γ0.pure,
𝑖 : int, 𝑖 ∈ 𝑅] ⊙★ Γinpre} 𝑡 {Γinpost}, we can therefore deduce {[𝐸0, 𝑖 : int,
𝑖 ∈ 𝑅] ⊙★ Γpre (𝑖)} 𝑡 {Γpost (𝑖)} and apply the rule ForPar.

146 Appendix

Now, we know by the rule ForPar that {[𝐸0] ⊙★ ⊙★𝑖∈𝑅 Γpre (𝑖)}
forpar (𝑖 ∈ 𝑅) 𝑡 {⊙★𝑖∈𝑅 Γpost (𝑖)}. By theorem E.1, we have
{[𝐸0] ⊙★ ⊙★𝑖∈𝑅 SpecializeΓ0 {𝜎

out}(Γpre (𝑖))} forpar (𝑖 ∈ 𝑅) 𝑡

{Subst{𝜎out}(⊙★𝑖∈𝑅 Γpost (𝑖))}.

To conclude, we frame the linear resource set 𝐹 (that comes from the
rule For itself) and prove the following entailments:

• Γ0 ⇒ [𝐸0] ⊙★ SpecializeΓ0 {𝜎
out}(⊙★𝑖∈𝑅 Γpre (𝑖)) ⊙★ 𝐹

We know by the subtraction Γ0 ⊖ Γoutpre that Γ0 ⇒
[𝐸frac] ⊙★ SpecializeΓ0 {𝜎

out}(Γoutpre) ⊙★ 𝐹 . As Γoutpre = [𝜒.vars] ⊙★
(⊙★𝑖∈𝑅 𝜒.excl.pre) ⊙★ 𝜒.shrd.reads, we can conclude by split-
ting 𝜒.shrd.reads into ★𝑖∈𝑅

1
𝑅.len 𝜒.shrd.reads, and logically

reordering separated conjunctions.

• Subst{𝜎out}(⊙★𝑖∈𝑅 Γpost (𝑖)) ⊙★ 𝐹 ⇒ Γ𝑟

We know that Γ𝑟 = CloseFracs([Γ0.pure, 𝐸frac] ⊙★ 𝐹 ⊙★ Subst{
𝜎out}((⊙★𝑖∈𝑅 𝜒.excl.post) ⊙★ 𝜒.shrd.reads)). We can directly con-
clude by merging★𝑖∈𝑅

1
𝑅.len 𝜒.shrd.reads from★𝑖∈𝑅 Γpost (𝑖) into

𝜒.shrd.reads, and using the fact that for all context Γ, Γ ⇔
CloseFracs(Γ).

F Details of triple minimization

In the description of the triple minimization operator in section 5.4, we did
not explain how it is computed. This section gives the missing implementa-
tion details.

Minimize is computed by looking at the usage of each resource:

▶ For a resource 𝐻 that appear as uninit in the usage map, we put
Uninit(𝐻) in 𝐹 .

▶ For resources that appear as splittedFrac in the usage map, we can
give an arbitrarily small fraction to 𝑡 , and keep the rest in the frame.

▶ For resources that appear as joinedFrac in the usage map, we can
completely place them in the frame.

These two last points, some care is needed for theminimized postcondition 𝐹 ′,
because new subfractionsmight have been created by 𝑡 andwere immediately
merged into a resource that is now not given anymore. You can find below
some examples of minimization made by our version of Minimize:

Γ (𝑦) Γ′ (𝑦) Δ(𝑦) 𝐸fracs 𝐹 𝐹 ′ 𝐹 framed

𝐻 𝐻 𝑦 ∉ Δ ∅ ∅ ∅ 𝑦 : 𝐻
𝐻 ∅ full ∅ 𝑦 : 𝐻 ∅ ∅
𝐻 ∅ uninit ∅ 𝑦 : Uninit(𝐻) ∅ ∅
𝐻 𝐻 splittedFrac 𝛼 : frac 𝑦′ : 𝛼𝐻 𝑦′ : 𝛼𝐻 𝑦 : (1 − 𝛼)𝐻
𝛼𝐻 𝛼𝐻 splittedFrac 𝛽 : frac 𝑦′ : 𝛽𝐻 𝑦′ : 𝛽𝐻 𝑦 : (𝛼 − 𝛽)𝐻

(𝛼 − 𝛽)𝐻 𝛼𝐻 splittedFrac 𝛾 : frac 𝑦′ : 𝛾𝐻 𝑦′ : 𝛾𝐻, 𝑦𝛽 : 𝛽𝐻 𝑦 : (𝛼 − 𝛽 − 𝛾)𝐻
𝛼𝐻 (𝛼 − 𝛽)𝐻 splittedFrac 𝛾 : frac 𝑦′ : 𝛾𝐻 𝑦′ : (𝛾 − 𝛽)𝐻 𝑦 : (𝛼 − 𝛾)𝐻

(𝛼 − 𝛽1 − 𝛽2)𝐻 (𝛼 − 𝛽1 − 𝛽3)𝐻 splittedFrac 𝛾 : frac 𝑦′ : 𝛾𝐻 𝑦′ : (𝛾 − 𝛽3)𝐻, 𝑦2 : 𝛽2𝐻 𝑦 : (𝛼 − 𝛾)𝐻
(𝛼 − 𝛽)𝐻 𝛼𝐻 joinedFrac ∅ ∅ 𝑦′ : 𝛽𝐻 𝑦 : (𝛼 − 𝛽)𝐻

(𝛼 − 𝛽1 − 𝛽2 − 𝛽3)𝐻 (𝛼 − 𝛽2)𝐻 joinedFrac ∅ ∅ 𝑦1 : 𝛽1𝐻, 𝑦3 : 𝛽3𝐻 𝑦 : (𝛼 − 𝛽1 − 𝛽2 − 𝛽3)𝐻

G Example typechecking of subexpressions 147

Algorithmically, Minimize can be defined by iterating over its first argu-
ment.

Start with 𝐸fracs = ∅, 𝐹 = ∅, 𝐹 ′ = Γ′ .linear and 𝐹 framed = ∅.

For each binding 𝑦 : 𝐻 in Γ, lookup 𝑦 in Δ:

▶ If 𝑦 is not in Δ, add 𝑦 : 𝐻 in 𝐹 framed and remove it from 𝐹 ′ (it must
exist there by the invariants of triples).

▶ If 𝑦 : full is in Δ, add 𝑦 : 𝐻 in 𝐹 .

▶ If 𝑦 : uninit is in Δ, add 𝑦 : Uninit(𝐻) in 𝐹 .

▶ If 𝑦 : splittedFrac is in Δ, decompose 𝐻 as (𝛼 − 𝛽1 − ... − 𝛽𝑛)𝐻 ′.
It is always possible since 𝛼 = 1 is allowed and the list of 𝛽𝑖 can
be empty. Create a fresh fraction 𝛾 and place it in 𝐸fracs. Add 𝑦′ :
𝛾𝐻 ′ in 𝐹 and 𝑦 : (𝛼 − 𝛽1 − ... − 𝛽𝑛 − 𝛾)𝐻 ′ in 𝐹 framed. Replace the
binding 𝑦 : (𝛼 − 𝛿1 − ... − 𝛿𝑚)𝐻 ′ in 𝐹 ′ by the following: try to pair 𝛿𝑖
with a matching 𝛽 𝑗 . For each unmatched 𝛽𝑖 , add a binding 𝑦′′𝑖 : 𝛽𝑖𝐻 ′
to 𝐹 ′. These correspond to the subfractions that were created by 𝑡

and merged into 𝑦. Let the unmatched 𝛿𝑖 form the list of 𝛿𝑖 . These
correspond to the subfractions consumed by 𝑡 and not given back. Add
the binding 𝑦′ : (𝛾 − 𝛿1 − ... − 𝛿𝑚̃)𝐻 to 𝐹 ′.

▶ If 𝑦 : joinedFrac is in Δ, decompose 𝐻 as (𝛼 − 𝛽1 − ... − 𝛽𝑛)𝐻 ′. Add
𝑦 : 𝐻 in 𝐹 framed. Remove the binding 𝑦 : (𝛼 − 𝛿1 − ... − 𝛿𝑚)𝐻 ′ in 𝐹 ′.
Given that joinedFrac usage are only created by CloseFracs and given
how the CloseFracs algorithm works, each 𝛿𝑖 will necessarily match
one of the 𝛽 𝑗 , however there will be some 𝛽𝑖 that are not matched. For
each unmatched 𝛽𝑖 , add the binding 𝑦′𝑖 : 𝛽𝑖𝐻 ′ in 𝐹 ′.

The next two sections give details for two applications of this Minimize
operator: typechecking subexpressions and loop contract minimization.

G Example typechecking of subexpressions

This section presents an example application of the Subexpr from section 5.5
and repeated below:

Subexpr
∀𝑖 ∈ [1, 𝑛] . {Γ𝑖−1} 𝑡Δ𝑖

𝑖
{Γ′𝑖 } ∧ (𝐸fracs𝑖 , 𝐹𝑖 , 𝐹

′
𝑖
, 𝐹 framed

𝑖) = Minimize(Γ𝑖−1, Γ′𝑖 , Δ𝑖) ∧ 𝑥𝑖 fresh
∀𝑖 ∈ [1, 𝑛] . Γ𝑖 = ⟨ Γ𝑖 .pure, 𝐸fracs𝑖 | 𝐹 framed

𝑖 ⟩ ∧ Γ̂′
𝑖
= ⟨ Γ′𝑖 .purep·Δ𝑖 .ensured | 𝐹 ′𝑖 ⟩

Γ𝑝 = CloseFracsΔ𝑝 (Γ𝑛 ⊙★ ⊙★𝑖∈[1,𝑛] Rename{res := 𝑥𝑖 }(Γ̂′𝑖))
{Γ𝑝 } Ê [𝑥1, ..., 𝑥𝑛]Δ𝑞 {Γ𝑞}

Δ = Rename{res := 𝑥1}(Δ1); ...; Rename{res := 𝑥𝑛}(Δ𝑛); Δ𝑝 ; Δ𝑞

{Γ0} Ê [𝑡1, ..., 𝑡𝑛]Δ {Γ𝑞}

The example consists of a multi-evaluation-context Ê, which could be a func-
tion call, featuring 4 subexpression holes: Ê [𝑞, get_incr(c), get(𝑝), get(𝑝)].
This expression is typechecked in a typing context: ⟨𝑝, 𝑞, 𝑐 : ptr(int) | 𝑦𝑝 :
𝑝 ⇝ Cell, 𝑦𝑞 : 𝑞⇝ Cell, 𝑦𝑐 : 𝑐 ⇝ Cell⟩.

Figure 2 shows the typechecking steps. The figure includes 4 columns, de-
scribing the steps associated with each of the 4 subterms. The rows explain
how the metavariables from the rule Subexpr are instantiated. In particular,
observe how the two subexpressions get(𝑝) both have read-only access to

148 Appendix

𝑖 0 1 2 3

Γ𝑖 .pure 𝑝, 𝑞, 𝑐 : ptr(int) 𝑝, 𝑞, 𝑐 : ptr(int) 𝑝, 𝑞, 𝑐 : ptr(int) 𝑝, 𝑞, 𝑐 : ptr(int)
𝛼 : frac

Γ𝑖 .linear
𝑦𝑝 : 𝑝 ⇝ Cell
𝑦𝑞 : 𝑞⇝ Cell
𝑦𝑐 : 𝑐 ⇝ Cell

𝑦𝑝 : 𝑝 ⇝ Cell
𝑦𝑞 : 𝑞⇝ Cell
𝑦𝑐 : 𝑐 ⇝ Cell

𝑦𝑝 : 𝑝 ⇝ Cell
𝑦𝑞 : 𝑞⇝ Cell

𝑦𝑝 : (1 − 𝛼) (𝑝 ⇝ Cell)
𝑦𝑞 : 𝑞⇝ Cell

𝑡𝑖 𝑞 get_incr(𝑐) get(𝑝) get(𝑝)

Δ𝑖
𝑞 : required
res : ensured

𝑐 : required
𝑦𝑐 : full

𝑦′𝑐 : produced
res : ensured

𝑝 : required
𝑦𝑝 : splittedFrac
res : ensured

𝑝 : required
𝑦𝑝 : splittedFrac
res : ensured

𝐸fracs
𝑖

∅ ∅ 𝛼 : frac 𝛽 : frac

𝐹𝑖 ∅ 𝑦𝑐 : 𝑐 ⇝ Cell 𝛼 (𝑝 ⇝ Cell) 𝛽 (𝑝 ⇝ Cell)

𝐹 ′
𝑖

∅ 𝑦′𝑐 : 𝑐 ⇝ Cell 𝛼 (𝑝 ⇝ Cell) 𝛽 (𝑝 ⇝ Cell)

𝐹 framed
𝑖

𝑦𝑝 : 𝑝 ⇝ Cell
𝑦𝑞 : 𝑞⇝ Cell
𝑦𝑐 : 𝑐 ⇝ Cell

𝑦𝑝 : 𝑝 ⇝ Cell
𝑦𝑞 : 𝑞⇝ Cell

𝑦𝑝 : (1 − 𝛼) (𝑝 ⇝ Cell)
𝑦𝑞 : 𝑞⇝ Cell

𝑦𝑝 : (1 − 𝛼 − 𝛽) (𝑝 ⇝ Cell)
𝑦𝑞 : 𝑞⇝ Cell

Γ̂′
𝑖
.pure res := 𝑞 : ptr(int) res : int res : int res : int

Γ𝑝 .pure 𝑝, 𝑞, 𝑐 : ptr(int), 𝑥0 := 𝑞 : ptr(int), 𝑥1, 𝑥2, 𝑥3 : int

Γ𝑝 .linear 𝑦𝑝 : 𝑝 ⇝ Cell, 𝑦𝑞 : 𝑞⇝ Cell, 𝑦′𝑐 : 𝑐 ⇝ Cell

Figure 2: Example of an application of the Subexpr rule on an expression Ê [𝑞, get_incr(c), get(𝑝), get(𝑝)], in a context ⟨𝑝,𝑞, 𝑐 : ptr(int) | 𝑦𝑝 :
𝑝 ⇝ Cell, 𝑦𝑞 : 𝑞⇝ Cell, 𝑦𝑐 : 𝑐 ⇝ Cell⟩.

the same resource 𝐻 = 𝑝 ⇝ Cell. As the details in the figure show, the first
get(𝑝), according to its minimized precondition, only needs a fraction of 𝐻 .
This fraction is carved out, obtaining a subfraction 𝛼𝐻 and leaving (1− 𝛼)𝐻
for the second get(𝑝).

H Details of loop minimization

Figure 3 describes the loop minimization transformation. Essentially, it uses
theMinimize operator to minimize the exclusive part of the loop contract,
and it tries to reduce the footprint of the shared part of the loop contract by
taking arbitrary subfractions and using shared reads whenever possible.

For that we overload the operator IntoRO to operate on linear contexts. This
overloading is defined recursively as follows:

IntoRO(𝐹) =
{
⟨|⟩ if 𝐹 = ∅
⟨𝛼 : frac | 𝑦 : 𝛼𝐻 ⟩ ⊙★ IntoRO(𝐹 ′) if 𝐹 = (𝑦 : 𝐻) ★ 𝐹 ′

For pure variables, it simply removes those that are not used and adds the
new arbitrary fractions generated during the previous steps.

One technical difficulty: postcondition of a loop contract uses names for lin-
ear resources, and these names must be matched to corresponding resources
at the end of the body of the loop. In fact our typechecker had to prove an
entailment there. We can remember the map 𝜍 from linear resource names
at the end of the loop body to linear resources names in the postcondition,
and use it in the loop minimization transformation.

H Details of loop minimization 149

for (𝑖 ∈ 𝑅𝑖)𝜒 {
𝑇 ; Δ
}

↦−→
for (𝑖 ∈ 𝑅𝑖)𝜒 ′ {
𝑇 ;
}

with:

(𝐸fracs, 𝐹 , 𝐹 ′, _) = Minimize(𝜒.excl.pre, Subst{𝜍−1}(𝜒.excl.post), Δ)
⟨𝐸RO | 𝐹RO⟩ = IntoRO((𝜒.shrd.inv.linearp·Δ.splittedFrac) ★ (𝜒.shrd.readsp·Δ.splittedFrac))

𝜒 ′ =



shrd.reads = 𝐹RO ★ (𝜒.shrd.readsp·Δ.alter)
shrd.inv = ⟨𝜒.shrd.inv.purep·Δ.required | 𝜒.shrd.inv.linearp·Δ.alter⟩
excl.pre = ⟨𝜒.excl.pre.purep·Δ.required | 𝐹 ⟩
excl.post = Subst{𝜍}(⟨𝜒.excl.post.pure | 𝐹 ′⟩)
vars = 𝜒.varsp·(usedVars(𝜒 ′ .shrd) ∪ usedVars(𝜒 ′ .excl) ∪ Δ.required), 𝐸RO, 𝐸fracs

Figure 3: The basic transformation Loop.minimize. The Minimize operation is that defined for triples in section 5.4. usedVars(𝑋) is the set
of all variables used in 𝑋 at least once.

Bibliography

[Ala+24] Sami Alabed, Daniel Belov, Bart Chrzaszcz, Juliana Franco,
Dominik Grewe, Dougal Maclaurin, James Molloy, Tom Natan,
Tamara Norman, Xiaoyue Pan, Adam Paszke, Norman A. Rink,
Michael Schaarschmidt, Timur Sitdikov, Agnieszka Swietlik,
Dimitrios Vytiniotis, and Joel Wee. PartIR: Composing SPMD
Partitioning Strategies for Machine Learning. 2024. url: https:
//arxiv.org/abs/2401.11202 (cited on page 44).

[AG22] Étienne Alepins and Jens Gustedt. Unsequenced functions.
ISO/IEC JCT1/SC22/WG14 document N2956. Apr. 2022. url:
https://www.open-std.org/jtc1/sc22/wg14/www/docs/
n2956.htm (cited on page 105).

[Ama+20] Vasco Amaral, Beatriz Norberto, Miguel Goulão, Marco Ald-
inucci, Siegfried Benkner, Andrea Bracciali, Paulo Carreira,
Edgars Celms, Luís Correia, Clemens Grelck, Helen Karatza,
Christoph Kessler, Peter Kilpatrick, Hugo Martiniano, Ilias
Mavridis, Sabri Pllana, Ana Respício, José Simão, Luís Veiga,
and Ari Visa. “Programming languages for data-Intensive HPC
applications: A systematic mapping study”. In: Parallel Com-
puting 91 (2020), p. 102584. doi: https://doi.org/10.1016/
j.parco.2019.102584 (cited on page 9).

[Arm+11] Michael Armand, Germain Faure, Benjamin Grégoire, Chan-
tal Keller, Laurent Théry, and Benjamin Werner. “A Modular
Integration of SAT/SMT Solvers to Coq through Proof Wit-
nesses”. In: Certified Programs and Proofs. Ed. by Jean-Pierre
Jouannaud and Zhong Shao. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2011, pp. 135–150 (cited on page 17).

[Bag+19] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele
Del Sozzo, Abdurrahman Akkas, Yunming Zhang, Patricia Suri-
ana, Shoaib Kamil, and Saman P. Amarasinghe. “Tiramisu: A
Polyhedral Compiler for Expressing Fast and Portable Code”.
In: IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2019, Washington, DC, USA, February 16-20,
2019. Ed. by Mahmut Taylan Kandemir, Alexandra Jimborean,
and Tipp Moseley. IEEE, 2019, pp. 193–205. doi: 10.1109/CGO.
2019.8661197 (cited on page 128).

[Bag+16] Lénaïc Bagnères, Oleksandr Zinenko, Stéphane Huot, and Cé-
dric Bastoul. “Opening Polyhedral Compiler’s Black Box”. In:
IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). 2016 (cited on pages 45, 128).

[BI19] Paul Barham and Michael Isard. “Machine Learning Systems
are Stuck in a Rut”. In: Proceedings of theWorkshop on Hot Topics
in Operating Systems. HotOS ’19. Bertinoro, Italy: Association
for Computing Machinery, 2019, pp. 177–183. doi: 10.1145/
3317550.3321441 (cited on pages 9, 44).

[Bar+18] Y. Barsamian, A. Charguéraud, S. A. Hirstoaga, and M. Mehren-
berger. “Efficient Strict-Binning Particle-in-Cell Algorithm for
Multi-Core SIMD Processors”. In: 24th International Conference
on Parallel and Distributed Computing (Euro-Par). Vol. 11014.
Lecture Notes in Computer Science. Springer, Cham, 2018,
pp. 749–763. doi: 10.1007/978-3-319-96983-1_53 (cited
on pages 31, 32).

https://arxiv.org/abs/2401.11202
https://arxiv.org/abs/2401.11202
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2956.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n2956.htm
https://doi.org/https://doi.org/10.1016/j.parco.2019.102584
https://doi.org/https://doi.org/10.1016/j.parco.2019.102584
https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.1109/CGO.2019.8661197
https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1145/3317550.3321441
https://doi.org/10.1007/978-3-319-96983-1_53

152 Bibliography

[Bar18] Yann Barsamian. “Pic-Vert: A Particle-in-Cell Implementation
for Multi-Core Architectures”. PhD thesis. Université de Stras-
bourg, 2018 (cited on page 9).

[Bar+09] Gilles Barthe, Benjamin Grégoire, César Kunz, and Tamara
Rezk. “Certificate Translation for Optimizing Compilers”. In:
ACM Trans. Program. Lang. Syst. 31.5 (2009). doi: 10.1145/
1538917.1538919 (cited on page 19).

[Bau+20] Patrick Baudin, François Bobot, Loïc Correnson, Zaynah Dar-
gaye, and Allan Blanchard. WP plug-in manual. 2020 (cited on
page 16).

[Ben04] Nick Benton. “Simple relational correctness proofs for static
analyses and program transformations”. In: Proceedings of the
31st ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’04. Venice, Italy: Association for
Computing Machinery, 2004, pp. 14–25. doi: 10.1145/964001.
964003 (cited on page 18).

[BC23] Guillaume Bertholon and Arthur Charguéraud. “An AST for
Representing Programs with Invariants and Proofs”. In: 34èmes
Journées Francophones des Langages Applicatifs (JFLA 2023).
2023, pp. 43–58 (cited on pages 17, 21).

[BC25a] Guillaume Bertholon and Arthur Charguéraud. “Bidirectional
Translation between a C-like Language and an Imperative 𝜆-
calculus”. In: 36èmes Journées Francophones des Langages Ap-
plicatifs (JFLA 2025). 2025 (cited on page 21).

[BC25b] Guillaume Bertholon and Arthur Charguéraud. “Bidirectional
Translation between a C-like Language and an Imperative
Lambda-calculus”. In: 36es Journées Francophones des Langages
Applicatifs (JFLA 2025). Roiffé, France, Jan. 2025 (cited on
page 64).

[Ber+24a] Guillaume Bertholon, Arthur Charguéraud, Kœhler, Begatim
Bytyqi, and Damien Rouhling. “OptiTrust: Producing Trust-
worthy High-Performance Code via Source-to-Source Trans-
formations”. Draft paper. 2024 (cited on page 22).

[Ber+24b] Guillaume Bertholon, Arthur Charguéraud, Thomas Kœhler,
Begatim Bytyqi, and Damien Rouhling. “Interactive source-to-
source optimizations validated using static resource analysis”.
In: Proceedings of the 13th ACM SIGPLAN International Work-
shop on the State Of the Art in Program Analysis. 2024, pp. 26–34
(cited on page 21).

[BC20] João Bispo and João MP Cardoso. “Clava: C/C++ source-to-
source compilation using LARA”. In: SoftwareX 12 (2020),
p. 100565 (cited on page 45).

[BP13] Jasmin Christian Blanchette and Lawrence C Paulson.
“Hammering Away”. In: A User’s Guide to Sledgehammer for
Isabelle/HOL. url: http://isabelle. in. tum. de/dist/Isabelle2013-
2/doc/sledgehammer. pdf (2013) (cited on page 17).

[Blo+17] Stefan Blom, Saeed Darabi, Marieke Huisman, and Wytse
Oortwijn. “The VerCors Tool Set: Verification of Parallel and
Concurrent Software”. In: Integrated Formal Methods. Ed. by
Nadia Polikarpova and Steve Schneider. Cham: Springer
International Publishing, 2017, pp. 102–110 (cited on page 45).

https://doi.org/10.1145/1538917.1538919
https://doi.org/10.1145/1538917.1538919
https://doi.org/10.1145/964001.964003
https://doi.org/10.1145/964001.964003

153

[BM11] Sylvie Boldo and Guillaume Melquiond. “Flocq: A Unified Li-
brary for Proving Floating-Point Algorithms in Coq”. In: 2011
IEEE 20th Symposium on Computer Arithmetic. 2011, pp. 243–
252. doi: 10.1109/ARITH.2011.40 (cited on page 130).

[Boy03] John Boyland. “Checking Interference with Fractional Permis-
sions”. In: Static Analysis, 10th International Symposium, SAS
2003, San Diego, CA, USA, June 11-13, 2003, Proceedings. Ed. by
Radhia Cousot. Vol. 2694. Lecture Notes in Computer Science.
Springer, 2003, pp. 55–72. doi: 10.1007/3-540-44898-5_4
(cited on page 71).

[BK+00] Gary Bradski, Adrian Kaehler, et al. “OpenCV”. In: Dr. Dobb’s
journal of software tools 3.2 (2000). https://opencv.org/
(cited on page 26).

[BDG19] Matteo Busi, Pierpaolo Degano, and Letterio Galletta. “Using
Standard Typing Algorithms Incrementally”. In: NASA Formal
Methods. Ed. by Julia M. Badger and Kristin Yvonne Rozier.
Cham: Springer International Publishing, 2019, pp. 106–122
(cited on page 132).

[Cal+19] Cristiano Calcagno, Dino Distefano, Peter O’Hearn, and
Hongseok. Yang. Go Huge or Go Home: POPL’19 Most Influential
Paper Retrospective. 2019. url: https : / / blog . sigplan .
org/2020/03/03/go-huge-or-go-home-popl19-most-
influentialpaper-retrospective/ (cited on page 128).

[Cao+18] Qinxiang Cao, Lennart Beringer, Samuel Gruetter, JosiahDodds,
and Andrew W. Appel. “VST-Floyd: A Separation Logic Tool to
Verify Correctness of C Programs”. In: J. Autom. Reason. 61.1-4
(2018), pp. 367–422. doi: 10.1007/S10817-018-9457-5 (cited
on page 62).

[Cha10] Arthur Charguéraud. “Program Verification Through Charac-
teristic Formulae”. In: International Conference on Functional
Programming (ICFP). Sept. 2010, pp. 321–332 (cited on page 16).

[Cha20a] Arthur Charguéraud. “Separation Logic for Sequential Pro-
grams (Functional Pearl)”. In: Proc. ACM Program. Lang. 4.ICFP
(2020). doi: 10.1145/3408998 (cited on page 70).

[Cha20b] Arthur Charguéraud. “Separation logic for sequential programs
(functional pearl)”. In: Proc. ACM Program. Lang. 4.ICFP (2020).
doi: 10.1145/3408998 (cited on page 23).

[Cha+22] Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and
Samuel Gruetter. “Omnisemantics: Smooth Handling of
Nondeterminism”. To appear in ACM Transactions on
Programming Languages and Systems (TOPLAS). Sept. 2022
(cited on page 135).

[Cha+23] Arthur Charguéraud, Adam Chlipala, Andres Erbsen, and
Samuel Gruetter. “Omnisemantics: Smooth Handling of
Nondeterminism”. In: ACM Trans. Program. Lang. Syst. 45.1
(Mar. 2023). doi: 10.1145/3579834 (cited on pages 87, 140).

[Cha+15] Gaurav Chaurasia, Jonathan Ragan-Kelley, Sylvain Paris,
George Drettakis, and Frédo Durand. “Compiling high perfor-
mance recursive filters”. In: Proceedings of the 7th Conference on
High-Performance Graphics, HPG 2015, Los Angeles, California,
USA, August 7-9, 2015. Ed. by Michael C. Doggett, Steven E.
Molnar, Kayvon Fatahalian, Jacob Munkberg, Elmar Eisemann,
Petrik Clarberg, and Stephen N. Spencer. ACM, 2015, pp. 85–94.
doi: 10.1145/2790060.2790063 (cited on page 27).

https://doi.org/10.1109/ARITH.2011.40
https://doi.org/10.1007/3-540-44898-5_4
https://opencv.org/
https://blog.sigplan.org/2020/03/03/go-huge-or-go-home-popl19-most-influentialpaper-retrospective/
https://blog.sigplan.org/2020/03/03/go-huge-or-go-home-popl19-most-influentialpaper-retrospective/
https://blog.sigplan.org/2020/03/03/go-huge-or-go-home-popl19-most-influentialpaper-retrospective/
https://doi.org/10.1007/S10817-018-9457-5
https://doi.org/10.1145/3408998
https://doi.org/10.1145/3408998
https://doi.org/10.1145/3579834
https://doi.org/10.1145/2790060.2790063

154 Bibliography

[Che+21] Lorenzo Chelini, Martin Kong, Tobias Grosser, and Henk
Corporaal. “LoopOpt: Declarative Transformations Made
Easy”. In: Proceedings of the 24th International Workshop
on Software and Compilers for Embedded Systems. SCOPES
’21. Eindhoven, Netherlands: Association for Computing
Machinery, 2021, pp. 11–16. doi: 10.1145/3493229.3493301
(cited on page 45).

[Che+18] Tianqi Chen, ThierryMoreau, Ziheng Jiang, Lianmin Zheng, Ed-
die Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei
Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy.
“TVM: An Automated End-to-End Optimizing Compiler for
Deep Learning”. In: OSDI. USENIX Association, 2018 (cited on
pages 9, 35, 44).

[Dal21] Bill Dally. The Future of Computing: Domain-Specific Architec-
ture. Keynote at Chesapeake Large Scale Analytics Conference
(CLSAC). Oct. 2021. url: https://www.clsac.org/uploads/
5/0/6/3/50633811/2021- clsac- dally.pdf (cited on
page 7).

[DMS22] Thibault Dardinier, Peter Müller, and Alexander J. Summers.
“Fractional resources in unbounded separation logic”. In: Proc.
ACM Program. Lang. 6.OOPSLA2 (Oct. 2022). doi: 10.1145/
3563326 (cited on pages 72, 87, 126).

[DLM11] Florent de Dinechin, Christoph Lauter, and Guillaume
Melquiond. “Certifying the Floating-Point Implementa-
tion of an Elementary Function Using Gappa”. In: IEEE
Transactions on Computers 60.2 (2011), pp. 242–253. doi:
10.1109/TC.2010.128 (cited on page 130).

[Els24] Martin Elsman. “Double-Ended Bit-Stealing for Algebraic Data
Types”. In: Proc. ACM Program. Lang. 8.ICFP (Aug. 2024). doi:
10.1145/3674628 (cited on page 124).

[EM19] Gidon Ernst and Toby Murray. “SecCSL: Security Concurrent
Separation Logic”. In: Computer Aided Verification. Ed. by Isil
Dillig and Serdar Tasiran. Cham: Springer International Pub-
lishing, 2019, pp. 208–230 (cited on page 127).

[Eva+22] Thomas M Evans, Andrew Siegel, Erik W Draeger, Jack
Deslippe, Marianne M Francois, Timothy C Germann,
William E Hart, and Daniel F Martin. “A survey of software
implementations used by application codes in the Exascale
Computing Project”. In: The International Journal of High
Performance Computing Applications 36.1 (2022), pp. 5–12. doi:
10.1177/10943420211028940 (cited on page 9).

[Fea92] Paul Feautrier. “Some efficient solutions to the affine scheduling
problem: one dimensional time”. In: Intl. Journal of Parallel
Programming 21.5 (Oct. 1992), pp. 313–348 (cited on page 45).

[Fil03] Jean-Christophe Filliâtre. Why: a multi-language multi-prover
verification tool. Research Report 1366. LRI, Université Paris
Sud, Mar. 2003 (cited on page 74).

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3—Where
Programs Meet Provers”. In: European Symposium on Program-
ming (ESOP). Vol. 7792. Lecture Notes in Computer Science.
Springer, Mar. 2013, pp. 125–128 (cited on pages 16, 124).

https://doi.org/10.1145/3493229.3493301
https://www.clsac.org/uploads/5/0/6/3/50633811/2021-clsac-dally.pdf
https://www.clsac.org/uploads/5/0/6/3/50633811/2021-clsac-dally.pdf
https://doi.org/10.1145/3563326
https://doi.org/10.1145/3563326
https://doi.org/10.1109/TC.2010.128
https://doi.org/10.1145/3674628
https://doi.org/10.1177/10943420211028940

155

[Fla+02] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. “Extended Static
Checking for Java”. In: Programming Language Design and Im-
plementation (PLDI). 2002, pp. 234–245 (cited on page 74).

[Gäh+22] Lennard Gäher, Michael Sammler, Simon Spies, Ralf Jung,
Hoang-Hai Dang, Robbert Krebbers, Jeehoon Kang, and
Derek Dreyer. “Simuliris: a separation logic framework for
verifying concurrent program optimizations”. In: Proc. ACM
Program. Lang. 6.POPL (Jan. 2022). doi: 10.1145/3498689
(cited on pages 18, 119).

[Góm+20] Alejandro Gómez-Londoño, Johannes Åman Pohjola, Hira
Taqdees Syeda, Magnus O. Myreen, and Yong Kiam Tan. “Do
you have space for dessert? a verified space cost semantics for
CakeML programs”. In: Proc. ACM Program. Lang. 4.OOPSLA
(Nov. 2020). doi: 10.1145/3428272 (cited on page 127).

[Gué19] Armaël Guéneau. “Mechanized Verification of the Correctness
and Asymptotic Complexity of Programs”. PhD thesis. Univer-
sité de Paris, Dec. 2019 (cited on page 127).

[Hag+20a] Bastian Hagedorn, Archibald Samuel Elliott, Henrik Barthels,
Rastislav Bodik, and Vinod Grover. “Fireiron: a data-movement-
aware scheduling language for GPUs”. In: Proceedings of the
ACM International Conf. on Parallel Architectures and Compila-
tion Techniques. 2020, pp. 71–82 (cited on page 44).

[Hag+20b] Bastian Hagedorn, Johannes Lenfers, Thomas Kundefinedhler,
Xueying Qin, Sergei Gorlatch, and Michel Steuwer. “Achieving
high-performance the functional way: a functional pearl on
expressing high-performance optimizations as rewrite strate-
gies”. In: Proc. ACM Program. Lang. 4.ICFP (2020). doi: 10.
1145/3408974 (cited on pages 9, 44).

[Ika+22] Yuka Ikarashi, Gilbert Louis Bernstein, Alex Reinking, Hasan
Genc, and Jonathan Ragan-Kelley. “Exocompilation for pro-
ductive programming of hardware accelerators”. In: Proceed-
ings of the 43rd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation. PLDI 2022.
San Diego, CA, USA: Association for Computing Machinery,
2022, pp. 703–718. doi: 10.1145/3519939.3523446 (cited on
pages 9, 44, 125).

[Ika+25] Yuka Ikarashi, KevinQian, Samir Droubi, Alex Reinking, Gilbert
Louis Bernstein, and Jonathan Ragan-Kelley. “Exo 2: Growing
a Scheduling Language”. In: Proceedings of the 30th ACM Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 1. ASPLOS ’25. Rot-
terdam, Netherlands: Association for Computing Machinery,
2025, pp. 426–444. doi: 10.1145/3669940.3707218 (cited on
page 44).

[Ika+21] Yuka Ikarashi, Jonathan Ragan-Kelley, Tsukasa Fukusato, Jun
Kato, and Takeo Igarashi. “Guided Optimization for Image Pro-
cessing Pipelines”. In: 2021 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing (VL/HCC). 2021, pp. 1–5.
doi: 10.1109/VL/HCC51201.2021.9576341 (cited on pages 9,
44).

[JP08] Bart Jacobs and Frank Piessens. The VeriFast Program Ver-
ifier. Tech. rep. CW-520. Department of Computer Science,
Katholieke Universiteit Leuven, Aug. 2008 (cited on page 126).

https://doi.org/10.1145/3498689
https://doi.org/10.1145/3428272
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3408974
https://doi.org/10.1145/3519939.3523446
https://doi.org/10.1145/3669940.3707218
https://doi.org/10.1109/VL/HCC51201.2021.9576341

156 Bibliography

[JM18] Matthieu Journault and Antoine Miné. “Inferring functional
properties of matrix manipulating programs by abstract inter-
pretation”. In: Form. Methods Syst. Des. 53.2 (2018), pp. 221–258.
doi: 10.1007/s10703-017-0311-x (cited on pages 10, 128).

[Jun+18a] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Biz-
jak, Lars Birkedal, and Derek Dreyer. “Iris from the ground
up: A modular foundation for higher-order concurrent separa-
tion logic”. In: J. Funct. Program. 28 (2018), e20. doi: 10.1017/
S0956796818000151 (cited on page 71).

[Jun+18b] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Biz-
jak, Lars Birkedal, and Derek Dreyer. “Iris from the ground up:
A modular foundation for higher-order concurrent separation
logic”. In: Journal of Functional Programming 28 (2018), e20
(cited on page 16).

[Kan+24] Yamato Kanetaka, Hiroyasu Takagi, Yoshihiro Maeda, and Nor-
ishige Fukushima. “SlidingConv: Domain-Specific Description
of Sliding Discrete Cosine Transform Convolution for Halide”.
In: IEEE Access 12 (2024), pp. 7563–7583. doi: 10.1109/ACCESS.
2023.3345660 (cited on page 27).

[KK22] Vasilios Kelefouras and Georgios Keramidas. “Design and Im-
plementation of 2D Convolution on x86/x64 Processors”. In:
IEEE Transactions on Parallel and Distributed Systems 33.12
(2022), pp. 3800–3815. doi: 10.1109/TPDS.2022.3171471
(cited on page 9).

[Kre15] Robbert Krebbers. “The C standard formalized in Coq”. PhD
thesis. Radboud University Nijmegen, 2015 (cited on page 60).

[Kum+14] Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott
Owens. “CakeML: A Verified Implementation of ML”. In: POPL.
San Diego, California, USA: Association for Computing Ma-
chinery, 2014. doi: 10.1145/2535838.2535841 (cited on
page 18).

[Kun09] César Kunz. “Proof preservation and program compilation”.
PhD thesis. École Nationale Supérieure des Mines de Paris,
2009 (cited on page 19).

[Ler06] Xavier Leroy. “Coinductive Big-Step Operational Semantics”.
In: Programming Languages and Systems. Ed. by Peter Sestoft.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 54–68
(cited on page 123).

[Ler09] Xavier Leroy. “Formal verification of a realistic com-
piler”. In: Commun. ACM 52.7 (2009), pp. 107–115. doi:
10.1145/1538788.1538814 (cited on page 18).

[Ler+12] Xavier Leroy, Andrew W Appel, Sandrine Blazy, and Gordon
Stewart. “The CompCert Memory Model, Version 2”. In: (2012)
(cited on page 120).

[Liu+24] Amanda Liu, Gilbert Bernstein, Adam Chlipala, and Jonathan
Ragan-Kelley. “A Verified Compiler for a Functional Tensor
Language”. In: Proc. ACM Program. Lang. 8.PLDI (June 2024).
doi: 10.1145/3656390 (cited on page 18).

[Liu+22] Amanda Liu, Gilbert Louis Bernstein, Adam Chlipala, and
Jonathan Ragan-Kelley. “Verified Tensor-Program Optimiza-
tion via High-Level Scheduling Rewrites”. In: 6.POPL (2022).
doi: 10.1145/3498717 (cited on pages 45, 47).

https://doi.org/10.1007/s10703-017-0311-x
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1109/ACCESS.2023.3345660
https://doi.org/10.1109/ACCESS.2023.3345660
https://doi.org/10.1109/TPDS.2022.3171471
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/3656390
https://doi.org/10.1145/3498717

157

[Mis+23] Edward Misback, Caleb C. Chan, Brett Saiki, Eunice Jun,
Zachary Tatlock, and Pavel Panchekha. “Odyssey: An Interac-
tive Workbench for Expert-Driven Floating-Point Expression
Rewriting”. In: Proceedings of the 36th Annual ACM Symposium
on User Interface Software and Technology. UIST ’23. San
Francisco, CA, USA: Association for Computing Machinery,
2023. doi: 10.1145/3586183.3606819 (cited on page 130).

[Moi24] Alexandre Moine. “Formal Verification of Heap Space Bounds
under Garbage Collection”. PhD thesis. Université Paris Cité,
2024 (cited on page 127).

[MSS16] Peter Müller, Malte Schwerhoff, and Alexander J. Summers.
“Viper: A Verification Infrastructure for Permission-Based Rea-
soning”. In: Verification, Model Checking, and Abstract Interpre-
tation. Springer Berlin Heidelberg, 2016. doi: 10.1007/978-3-
662-49122-5_2 (cited on page 16).

[MSS17] Peter Müller, Malte Schwerhoff, and Alexander J. Summers.
“Viper: A Verification Infrastructure for Permission-Based Rea-
soning”. In: Dependable Software Systems Engineering. NATO
Science for Peace and Security Series - D: Information and
Communication Security. IOS Press, 2017, pp. 104–125 (cited
on page 127).

[Nec98] George Ciprian Necula. “Compiling with proofs”. PhD thesis.
Carnegie Mellon University, 1998 (cited on page 19).

[OHe19] Peter W. O’Hearn. “Separation logic”. In: Commun. ACM 62.2
(2019), pp. 86–95. doi: 10.1145/3211968 (cited on page 23).

[Phi+14] Pieter Philippaerts, Jan Tobias Mühlberg, Willem Penninckx,
Jan Smans, Bart Jacobs, and Frank Piessens. “Software Verifi-
cation with VeriFast: Industrial Case Studies”. In: Sci. Comput.
Program. 82 (Mar. 2014), pp. 77–97. doi: 10.1016/j.scico.
2013.01.006 (cited on page 16).

[Pin+20] Pedro Pinto, Joao Bispo, Joao Cardoso, Jorge Gomes Barbosa,
Davide Gadioli, Gianluca Palermo, Jan Martinovic, Martin Go-
lasowski, Katerina Slaninova, Radim Cmar, et al. “Pegasus:
Performance Engineering for Software Applications Targeting
HPC Systems”. In: IEEE Transactions on Software Engineering
(2020) (cited on page 45).

[Rag23] Jonathan Ragan-Kelley. “Technical Perspective: Reconsidering
the Design of User-Schedulable Languages”. In: Commun. ACM
66.3 (2023), p. 88. doi: 10.1145/3580370 (cited on page 44).

[Rag24] Jonathan Ragan-Kelley. The Future of Fast Code: Giving Hard-
ware What It Wants. Keynote at Programming Language De-
sign and Implementation (PLDI). June 2024. url: https://
www.youtube.com/live/66oKqvwoIv0 (cited on page 8).

[Rag+13] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Syl-
vain Paris, Frédo Durand, and Saman Amarasinghe. “Halide: A
Language and Compiler for Optimizing Parallelism, Locality,
and Recomputation in Image Processing Pipelines”. In: Con-
ference on Programming Language Design and Implementation.
2013. doi: 10.1145/2491956.2462176 (cited on pages 9, 44).

[Rey02] John C. Reynolds. “Separation Logic: A Logic for Shared Mu-
table Data Structures”. In: 17th IEEE Symposium on Logic in
Computer Science (LICS 2002), 22-25 July 2002, Copenhagen,
Denmark, Proceedings. IEEE Computer Society, 2002, pp. 55–74.
doi: 10.1109/LICS.2002.1029817 (cited on pages 12, 71).

https://doi.org/10.1145/3586183.3606819
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/3211968
https://doi.org/10.1016/j.scico.2013.01.006
https://doi.org/10.1016/j.scico.2013.01.006
https://doi.org/10.1145/3580370
https://www.youtube.com/live/66oKqvwoIv0
https://www.youtube.com/live/66oKqvwoIv0
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1109/LICS.2002.1029817

158 Bibliography

[Sak+22] Ömer Sakar, Mohsen Safari, Marieke Huisman, and AntonWijs.
“Alpinist: An Annotation-Aware GPU Program Optimizer”. In:
Tools and Algorithms for the Construction and Analysis of Sys-
tems - 28th International Conference, TACAS 2022, Held as Part
of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings,
Part II. Ed. by Dana Fisman and Grigore Rosu. Vol. 13244. Lec-
ture Notes in Computer Science. Springer, 2022, pp. 332–352.
doi: 10.1007/978-3-030-99527-0_18 (cited on pages 19,
45, 125).

[Sam+21] Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kay-
van Memarian, Derek Dreyer, and Deepak Garg. “RefinedC:
automating the foundational verification of C code with re-
fined ownership types”. In: PLDI ’21: 42nd ACM SIGPLAN In-
ternational Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021. Ed. by
Stephen N. Freund and Eran Yahav. ACM, 2021, pp. 158–174.
doi: 10.1145/3453483.3454036 (cited on pages 16, 128).

[SB14] Julian Shun and Guy E. Blelloch. “Phase-concurrent hash ta-
bles for determinism”. In: Proceedings of the 26th ACM Sympo-
sium on Parallelism in Algorithms and Architectures. SPAA ’14.
Prague, Czech Republic: Association for Computing Machinery,
2014, pp. 96–107. doi: 10.1145/2612669.2612687 (cited on
page 127).

[Sil+19] Cristina Silvano et al. “The ANTAREX domain specific lan-
guage for high performance computing”. In: Microprocessors
and Microsystems 68 (2019), pp. 58–73. doi: https://doi.
org/10.1016/j.micpro.2019.05.005 (cited on page 45).

[SK24] Thomas Somers and Robbert Krebbers. “Verified Lock-Free Ses-
sion Channels with Linking”. In: Proc. ACM Program. Lang.
8.OOPSLA2 (Oct. 2024). doi: 10 . 1145 / 3689732 (cited on
page 127).

[Spi+24] Simon Spies, Lennard Gäher, Michael Sammler, and Derek
Dreyer. “Quiver: Guided Abductive Inference of Separation
Logic Specifications in Coq”. In: Proc. ACM Program. Lang.
8.PLDI (2024). doi: 10.1145/3656413 (cited on page 128).

[SGF10] Saurabh Srivastava, Sumit Gulwani, and Jeffrey S. Foster. “From
program verification to program synthesis”. In: Proceedings of
the 37th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. POPL ’10. Madrid, Spain:
Association for Computing Machinery, 2010, pp. 313–326. doi:
10.1145/1706299.1706337 (cited on page 19).

[SCS24] Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. “In-
teractive Abstract Interpretation with Demanded Summariza-
tion”. In: ACM Trans. Program. Lang. Syst. 46.1 (Mar. 2024). doi:
10.1145/3648441 (cited on page 133).

[TL08] Jean-Baptiste Tristan and Xavier Leroy. “Formal verification
of translation validators: a case study on instruction schedul-
ing optimizations”. In: Proceedings of the 35th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’08. San Francisco, California, USA: Associa-
tion for Computing Machinery, 2008, pp. 17–27. doi: 10.1145/
1328438.1328444 (cited on page 18).

https://doi.org/10.1007/978-3-030-99527-0_18
https://doi.org/10.1145/3453483.3454036
https://doi.org/10.1145/2612669.2612687
https://doi.org/https://doi.org/10.1016/j.micpro.2019.05.005
https://doi.org/https://doi.org/10.1016/j.micpro.2019.05.005
https://doi.org/10.1145/3689732
https://doi.org/10.1145/3656413
https://doi.org/10.1145/1706299.1706337
https://doi.org/10.1145/3648441
https://doi.org/10.1145/1328438.1328444
https://doi.org/10.1145/1328438.1328444

159

[Vac+03] Manish Vachharajani, Neil Vachharajani, David I. August, and
Spyridon Triantafyllis. “Compiler Optimization-Space Explo-
ration”. In: Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO). Los
Alamitos, CA, USA: IEEE Computer Society, 2003, p. 204. doi:
10.1109/CGO.2003.1191546 (cited on page 8).

[Xia+19] Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gre-
gory Malecha, Benjamin C. Pierce, and Steve Zdancewic. “In-
teraction trees: representing recursive and impure programs
in Coq”. In: Proc. ACM Program. Lang. 4.POPL (Dec. 2019). doi:
10.1145/3371119 (cited on page 124).

[Yan+11] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. “Finding
and Understanding Bugs in C Compilers”. In: Conference on
Programming Language Design and Implementation. San Jose,
California, USA: Association for Computing Machinery, 2011.
doi: 10.1145/1993498.1993532 (cited on page 18).

[ZHB18] Oleksandr Zinenko, Stéphane Huot, and Cédric Bastoul. “Visual
ProgramManipulation in the PolyhedralModel”. In:ACMTrans.
Archit. Code Optim. 15.1 (2018). doi: 10.1145/3177961 (cited
on page 45).

https://doi.org/10.1109/CGO.2003.1191546
https://doi.org/10.1145/3371119
https://doi.org/10.1145/1993498.1993532
https://doi.org/10.1145/3177961

Guillaume Bertholon

Interactive compilation via trustworthy source-to-source
transformations

Compilation interactive par des transformations source-à-source dignes de confiance

Résumé
Les programmeurs sont confrontés à deux facteurs limitants : leur capacité à produire du
code sans bogues et la puissance de calcul de leur matériel. L’optimisation manuelle du
code peut repousser les limites du matériel, mais elle est chronophage, car elle augmente
la taille du code et le risque de bogues.
Cette thèse vise à réduire le travail nécessaire pour produire un code optimisé et exempt
de bogues. Pour cela, nous avons développé le compilateur interactif OptiTrust qui
applique des transformations source-à-source guidées par l’utilisateur.
Pour assurer qu’aucune transformation ne crée de bogue, OptiTrust exploite des annota-
tions en logique de séparation initialement fournies par l’utilisateur puis mises à jour
automatiquement à chaque étape. Ces annotations peuvent encoder soit une preuve de
correction fonctionnelle préservée par les transformations, soit la structure de la mémoire
accessible qui permet de vérifier que les transformations préservent la sémantique du
code.
Mots-clés : Code haute performance, Preuve de programme, Optimisation source-à-
source, Compilation, Logique de séparation

Abstract
Programmers are usually facing two limiting factors: their ability to produce code without
bugs, and the computing power of their hardware. User-driven code optimization can
push the hardware limits further, but it can be time-consuming as it usually increases
the code complexity and makes bugs more likely.
This thesis aims at reducing the amount of work needed to produce code that is at
the same time optimized and exempt from bugs. To achieve this goal, we developed
an interactive compiler called OptiTrust, which applies user-guided source-to-source
transformations.
To guarantee that each transformation does not create a bug, OptiTrust leverages separa-
tion logic resource annotations initially written by the user and updated automatically
at each step. These annotations can encode either a functional correctness proof, which
is preserved through transformations, or the shape of the accessible mutable memory,
which can be used to check that transformations preserve code semantics.
Keywords: High performance code, Software verification, Source-to-source optimization,
Compilation, Separation logic

	Contents
	Introduction
	Interactive compilation for program optimization
	Correctness for interactive compilers
	Description of invariants
	Choosing the level of detail for the invariants
	Mechanically checking and deducing invariants
	Correctness of transformation implementations
	Contributions

	OptiTrust in practice
	The OpenCV row-based blur case study
	The particle simulation case study
	The matrix-multiply case study
	Comparison of OptiTrust with other interactive compilers

	Syntax and semantics in OptiTrust
	Overview of the internal encoding process
	Optiλ: OptiTrust's internal, imperative λ-calculus
	OptiC: a C-like, user-facing language
	Translation from OptiC to Optiλ
	Translation from Optiλ back to OptiC

	Computing program resources: Contexts
	Grammar of resources
	Construction and operations on typing contexts
	Grammar of contracts
	Entailment
	Subtraction
	Typechecking of logical expressions
	Typechecking of terms
	Type soundness

	Computing program resources: Usage maps
	Grammar of usage maps
	Operations on usage maps
	Computing usage maps
	Minimization of triples
	Typechecking of order-irrelevant subexpressions
	Formal properties of usage maps

	Implementation of trustworthy transformations
	Transformations on sequences of instructions
	Transformations exploiting equalities
	Transformations on bindings
	Transformations on storage
	Transformations on loops
	Transformations on annotations
	Correctness of transformations

	Perspectives
	Language extensions
	Program logic extensions
	Transformation extensions
	Reducing the trusted code base
	Framework engineering

	Appendix
	Semantics
	Specialization of contexts
	Context satisfaction
	Proof of the frame rule
	Soundness of the algorithmic rule for typechecking for loops
	Details of triple minimization
	Example typechecking of subexpressions
	Details of loop minimization

	Bibliography

