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Classifying (some) simple finite groups

vn £ 1, there exists a sequence
nN=mMy>Ni>n,>...>... N1 >N, =1

such that n;/n,7 IS prime , and that sequence of primes and their
multiplicity are unique for each n.



Classifying (some) simple finite groups

vn £ 1, there exists a sequence
nN=mMy>Ni>n,>...>... N1 >N, =1

such that n;/n,7 IS prime , and that sequence of primes and their
multiplicity are unique for each n.

(Jordan-Holder)
Given a finite group G, there exists a sequence

G=Gy DG DG;,D...0G, 2D G, 1DG,={1}

such that Gi41 < Gy, Gi/Gi41 IS simple , and that composition
series is unigue up to isomorphism and permutation.
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Finite groups of odd order are solvable.

Abel prize in 2008
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Characteristic groups

thesetG,e:GxG— G
+ associativity, identity, inverse

—

A subgroup H of a group G is a characteristic subgroup of G if

H® =H forall ¢ € Aut(G) ¢

Bijective morphisms of G — G



Subgroups defined by functorials

Let F be a function from groups to groups that returns a specific
subgroup,

F:G— H

We want
Vo € Aut(G),F(G)? = F(G )



Subgroups defined by functorials

Let F be a function from groups to groups that returns a specific
subgroup,

F:G— H

We want
Vo € Aut(G),F(G)? = F(G?)

6-a



Formalized Groups

Detalls : TPHOLS 2009!

finGroupType

¢ T : Type, with decid-
able equality and finite

enumeration
O x: T ->T ->1T
¢ 1 : T

¢ _~-1: T ->T1

¢ associativity, unit, in-
verse properties




Formalized Groups

finGroupType

{group gT} T : Type, with decid-
able equality and finite

a set S . an indicatOI‘ enumera’[ion

fupctlon on the enumer- T o> T o> T

ation of gT.

1 : T
-1 0 T -> T

closure of x w.r.t. S

1eS
associativity, unit, In-

verse properties
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Subgroups defined by functorials

F: Vgl {groupgT} — {groupgT}

Example:

Definition Frattini (A:set gT): set gT :=
\bigcap_(G : group gT | maximal_eq G A) G.

Canonical Structure Frattini_group A : group gT :=
Eval hnf in [group of Frattini A].

We require
Vo € Aut(G),F(G)? C F(G )
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Subfunctors defined by functorials

@

¢ F : VgT{groupgT} —
{groupgT}
- H ¢ VG, FG)CG

¢ Vo € Aut(G),
F F F(G)(p C F(G(p)




Subfunctors defined by functorials

In Grp with arrows restricted to
Isomorphisms, F is the obj. map-
ping of a subfunctor F of I iff

F(G)® C F(H)

Then, Fo = ¢[r(g)

@

¢ F : VgT{groupgT}
LgroupgT}
¢ VG, F(G)c G

¢ Vo € Aut(G),
F(G)® C F(G?)

_)
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Instances

L ()

J G’
p Lin
Q, G

(plus some deprived of a nice notation)
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How are (some of) these cases handled ?

1.23. Let z and y in F have m and n conjugates, respectively, in G.
- = —1 —1

Foreachu € G, vz 'u = (ulzu)™1 3 =
2! and zy have at most m and mn conj :
F is a subgroup of G. Similarly, forf Theorem 5.21. For every group G, the higher commutator subgroups are char-

the-same number of conjugstes as@.| " acteristic, hence normal subgroups.

group (see [22]). : ; 1
Proof. The proof is by induction on i = 1. Recall that the commutator sub-

group G' = G'Y is generated by all commutators; that is, by all elements
of the form aba™'b""'. If ¢ is an automorphism of G, then g(aba™'b7") =

characteristic subgroups of (7. Another {1}.“;,11;;1{(?:)%1 :.:“11::;1;}{31 1mt ]:"TGT;'? il':.?ﬂ’"“mmr' and so ¢(G’) < G'. For the in-
SToU] I STOUD 4t 6 char G"): since G'" char G, by

18 (7). Indeed, for r € Z(G), g G, o € Aut (7, G

F' 4 s characteristicin 6. @

ll"l ll"l O A

T = (xzq)" = (gz]" = g"a

and since ¢ = {g" | g € G} we have 2" € Z(() .
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a Hierarchy of subfunctors

Vo € Aut(G),F(G)? C F(G®)

Vo,F(G)¥ C F(G®)

Il Vo,F(G)? C F(G?)

H<G — FH) <
F(G)

IV Vo,F(G)® C F(G?)

H<G—-FG)NH<
F(H)
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Subfunctors for finite group theory

¢ Simpler characteristicity proofs for everyone.

¢ Simple additional algebraic properties.
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Subfunctors for finite group theory

¢ Simpler characteristicity proofs for everyone.

¢ Simple additional algebraic properties. e.g. :

VFeIV,FoF=F

¢ Better compositionality than characteristic subgroups. e.g.:If ¢
surjective,
Hchar G & H?® char G?

F(G)? = F(G?)char G?®
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Expressing parametricity ?

¢ still have to prove Vo € Aut(G'),F(G)? = F(G®)

¢ Cayley (regular) representation of groups:

ac€ G~ (x— aex) € perm(G)
G =y Gy : {group(permlig)}

¢ Define functors as monomorphic on the Cayley representation.
Define a uniform mapping of elements of gT to the Cayley
representation.
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