Working effectively

with generic subgroups

François Garillot

Microsoft Research–INRIA Joint Centre Orsay, France Working effectively

with generic subgroups

François Garillot

work in progress

Microsoft Research–INRIA Joint Centre Orsay, France

Classifying (some) simple finite groups

 $\forall n \neq 1$, there exists a sequence

$$n = n_0 \ge n_1 \ge n_2 \ge \ldots \ge \ldots n_{r-1} \ge n_r = 1$$

such that n_i/n_{i+1} is **prime**, and that sequence of primes and their multiplicity are unique for each n.

Classifying (some) simple finite groups

 $\forall n \neq 1$, there exists a sequence

$$n = n_0 \ge n_1 \ge n_2 \ge \ldots \ge \ldots n_{r-1} \ge n_r = 1$$

such that n_i/n_{i+1} is **prime**, and that sequence of primes and their multiplicity are unique for each n.

(Jordan-Hölder)

Given a finite group G, there exists a sequence

$$G = G_0 \supset G_1 \supset G_2 \supset \ldots \supset G_{r-2} \supset G_{r-1} \supset G_r = \{1\}$$

such that $G_{i+1} \lhd G_i$, G_i/G_{i+1} is **simple**, and that *composition* series is unique up to isomorphism and permutation.

The Feit-Thompson theorem

Finite groups of odd order are solvable.

Feit, Walter; Thompson, John G., *Solvability of groups of odd order*, Pacific Journal of Mathematics 13: 775-1029, 1963

Abel prize in 2008

The Feit-Thompson theorem

The Feit-Thompson theorem

One team, several locations

Sophia-Antipolis

Cambridge (UK)

Orsay

Characteristic groups

Subgroups defined by functorials

Let F be a function from groups to groups that returns a specific subgroup,

$F:G\mapsto H$

We want

$$\forall \phi \in \operatorname{Aut}(G), F(G)^{\phi} = F(G)$$

Subgroups defined by functorials

Let F be a function from groups to groups that returns a specific subgroup,

$F:G\mapsto H$

We want

$$\forall \phi \in \operatorname{Aut}(G), F(G)^{\phi} = F(G^{\phi})$$

Formalized Groups

Details : TPHOLS 2009!

Formalized Groups

- a **set** S : an indicator function on the enumeration of gT.
- closure of * w.r.t. S
- ▶ 1 ∈ S

- T : Type, with decidable equality and finite enumeration
- ♦ * : T -> T -> T

 associativity, unit, inverse properties

Subgroups defined by functorials

 $F: \forall gT, \{groupgT\} \rightarrow \{groupgT\}$

Example:

Definition Frattini (A:set gT): set gT :=
 \bigcap_(G : group gT | maximal_eq G A) G.

Canonical Structure Frattini_group A : group gT := Eval hnf in [group of Frattini A].

We require

 $\forall \phi \in Aut(G), F(G)^{\phi} \subset F(G)$

Subgroups defined by functorials

```
F: \forall gT, \{groupgT\} \rightarrow \{groupgT\}
```

Example:

Definition Frattini (A:set gT): set gT :=
 \bigcap_(G : group gT | maximal_eq G A) G.

Canonical Structure Frattini_group A : group gT := Eval hnf in [group of Frattini A].

We require

 $\forall \phi \in Aut(G), F(G)^{\phi} \subset F(G^{\phi})$

Subfunctors defined by functorials

Subfunctors defined by functorials

In **Grp** with arrows restricted to isomorphisms, F is the obj. mapping of a subfunctor \mathcal{F} of I iff

 $F(G)^{\varphi} \subset F(H)$

Then, $\mathcal{F}\phi = \phi|_{F(G)}$

Instances

L	Φ	Z(G)	Op
J	G′	F(G)	O_{π}
\mho_p	L _(n)	$F^*(G)$	
$\Omega_{ m p}$	$G^{(n)}$	U _(n)	

(plus some deprived of a nice notation)

How are (some of) these cases handled ?

1.23. Let x and y in F have m and For each $u \in G$, $u^{-1}x^{-1}u = (u^{-1}xu)^{-1}$ and	<i>n</i> conjugates, respectively, in <i>G</i> . d $u^{-1}(xy)u = (u^{-1}xu)(u^{-1}yu)$. Thus		
x^{-1} and xy have at most m and mn conju- F is a subgroup of G . Similarly, for the same number of conjugates as x .	Theorem 5.21. For every group G , the higher commutator subgroups are characteristic, hence normal subgroups.		
group (see $[22]$).			
	Proof. The proof is by induction on $i \ge 1$. Recall that the commutator sub-		
	group $G' = G^{(1)}$ is generated by all commutators; that is, by all elements		
	of the form $aba^{-1}b^{-1}$. If φ is an automorphism of G, then $\varphi(aba^{-1}b^{-1}) =$		
characteristic subgroups of G. Another example of a characteristic subgroup pat $G^{(i+1)}$ char $G^{(i)}$ since $G^{(i)}$ char G by			
is $Z(G)$. Indeed, for $x \in Z(G)$, $g \in G$,	$\alpha \in \operatorname{Aut} G$, $G^{(i+1)}$ is characteristic in G .		
$x^{\alpha}g^{\alpha} = (xg)^{\alpha} =$	$(gx)^{\alpha} = g^{\alpha}x^{\alpha},$		
and since $G = \{g^{\alpha} \mid g \in G\}$ we have x^{α}	$\alpha \in Z(G)$.		

a Hierarchy of subfunctors

a Hierarchy of subfunctors

 $\forall \phi \in \operatorname{Aut}(G), F(G)^{\phi} \subset F(G^{\phi})$ $\forall \varphi, F(G)^{\varphi} \subset F(G^{\varphi})$ **III** $\forall \varphi, F(G)^{\varphi} \subset F(G^{\varphi})$ **IV** $\forall \varphi, F(G)^{\varphi} \subset F(G^{\varphi})$ $H < G \rightarrow F(H) <$ $H < G \rightarrow F(G) \cap H <$ F(G)F(H) $F \circ F'(G) =$ $F \circ F'(G) = F(F'(G))$ $(/F'(G))^{-1}F(G/F'(G))$

1**2**-a

a Hierarchy of subfunctors

- Simpler characteristicity proofs for everyone.
- Simple additional algebraic properties.

- Simpler characteristicity proofs for everyone.
- ♦ Simple additional algebraic properties. *e.g.* :

 $\forall F \in IV, F \circ F = F$

- Simpler characteristicity proofs for everyone.
- ♦ Simple additional algebraic properties. *e.g.* :

 $\forall F \in IV, F \circ F = F$

Better compositionality than characteristic subgroups.

- Simpler characteristicity proofs for everyone.
- ♦ Simple additional algebraic properties. *e.g.* :

 $\forall F \in \mathsf{IV}, F \circ F = F$

 Better compositionality than characteristic subgroups. *e.g.*:If φ surjective,

H char $G \not\Rightarrow H^{\phi}$ char G^{ϕ}

 $F(G)^{\phi} = F(G^{\phi}) \operatorname{char} G^{\phi}$

Expressing parametricity ?

- still have to prove $\forall \phi \in Aut(G'), F(G)^{\phi} = F(G^{\phi})$
- Cayley (regular) representation of groups:

$$a \in G \rightsquigarrow (x \mapsto a \bullet x) \in perm(G)$$

$$G \rightleftharpoons_{\psi^{-1}}^{\psi} G_p : \{group(permI_{|G|})\}$$

Define functors as monomorphic on the Cayley representation. Define a uniform mapping of elements of gT to the Cayley representation.