
A Small Reflection On

Group Automorphisms

François Garillot

Mathematical Components

Microsoft Research - INRIA Joint Centre
Orsay, France

1



The Coq Proof Assistant

2



The Coq Proof Assistant + SSReflect

V 1.1 : Just released !
http://www.msr-inria.inria.fr/Projects/math-components

2-a



The Coq Proof Assistant + SSReflect

V 1.1 : Just released !
http://www.msr-inria.inria.fr/Projects/math-components

� A renewed tactic shell : faster proofs (to write)

– better bookkeeping

– better (hierarchical) layout

– ”surgical” rewriting

2-c



The Coq Proof Assistant + SSReflect

V 1.1 : Just released !
http://www.msr-inria.inria.fr/Projects/math-components

� A renewed tactic shell : faster proofs (to write)

– better bookkeeping

– better (hierarchical) layout

– ”surgical” rewriting

� Small Scale Reflection

– We often work on a decidable domain, where e.g. the excluded middle
makes sense.

– Coerce booleans to propositions.

– Reflection : booleans ↔ logical propositions

2-d



The Coq Proof Assistant + SSReflect

V 1.1 : Just released !
http://www.msr-inria.inria.fr/Projects/math-components

� A renewed tactic shell : faster proofs (to write)

– better bookkeeping

– better (hierarchical) layout

– ”surgical” rewriting

� Small Scale Reflection

– We often work on a decidable domain, where e.g. the excluded middle
makes sense.

– Coerce booleans to propositions.

– Reflection : booleans ↔ logical propositions

� Libraries for dealing with equality, finite types, naturals, lists

2-e



Formalising Some Finite Group Theory

3



Formalising Some Finite Group Theory

� A project of Mathematical Components, with members at Sophia-Antipolis
and Orsay (INRIA), Cambridge (MSR)

� Towards a formalisation of the Feit-Thompson (’Odd Order’) theorem

3-a



Formalising Some Finite Group Theory

� A project of Mathematical Components, with members at Sophia-Antipolis
and Orsay (INRIA), Cambridge (MSR)

� Towards a formalisation of the Feit-Thompson (’Odd Order’) theorem

� We already have a number of elements:

– functions of finite sets

– Groups and basic lemmata

– Lagrange, isomorphism theorems

– Sylow theorems

– Frobenius Lemma

– Schur-Zassenhaus theorem

– Simplicity of the alternating group

3-b



Formalising Some Finite Group Theory

� A project of Mathematical Components, with members at Sophia-Antipolis
and Orsay (INRIA), Cambridge (MSR)

� Towards a formalisation of the Feit-Thompson (’Odd Order’) theorem

� We already have a number of elements:

– functions of finite sets

– Groups and basic lemmata

– Lagrange, isomorphism theorems

– Sylow theorems

– Frobenius Lemma

– Schur-Zassenhaus theorem

– Simplicity of the alternating group

� And counting ...

3-c



Group Morphisms : mathematically

4



Group Morphisms : mathematically

We call morphism from E to E’ a
mapping from E to E’ s.t. f(x •E

y) = f(x) •E ′ f(y) for all x, y in
E × E. The identity mapping is a
morphism, the composition of two
morphisms is a morphism [Bour-
baki]

The morphism has a smaller domain than
the underlying function.

f
g

4-a



Group Morphisms : mathematically

We call morphism from E to E’ a
mapping from E to E’ s.t. f(x •E

y) = f(x) •E ′ f(y) for all x, y in
E × E. The identity mapping is a
morphism, the composition of two
morphisms is a morphism [Bour-
baki]

The morphism has a smaller domain than
the underlying function.

f
g

Canonical Structure qualid.

. . .

Each time an equation of
the form (xi ) =βδιζ ci

has to be solved during
the type-checking pro-
cess, qualid is used as
a solution. [Coq manual]

4-b



Group Theory : Groups

Structure finGroupType : Type := FinGroupType {

element :> finType;

1 : element;

^−1 : element → element;

_ • _ : element → element → element;

unitP : ∀ x, 1 • x = x;

invP : ∀ x, x^−1 • x = unit;

mulP : ∀ x1 x2 x3, x1 • (x2 • x3) = (x1 • x2) • x3

}.

Two-staged development : a carrier
type providing structural properties,

5



Group Theory : Groups

Structure finGroupType : Type := FinGroupType {

element :> finType;

1 : element;

^−1 : element → element;

_ • _ : element → element → element;

unitP : ∀ x, 1 • x = x;

invP : ∀ x, x^−1 • x = unit;

mulP : ∀ x1 x2 x3, x1 • (x2 • x3) = (x1 • x2) • x3

}.

Two-staged development : a carrier
type providing structural properties,

and a set corresponding to
the actual object

Variable elt : finGroupType.

Structure group : Type := Group {

SoG :> setType elt;

SoGP : 1 ⊂ SoG && (SoG :•: SoG) ⊂ SoG

}.
5-a



Group Theory : Programming with Canonical
Structures

group setI ≃ for all H, K groups, H ∩ K has the required group properties.
Canonical Structure setI_group := Group group_setI.









Coq < Check (_ ∩ _).

∩

: forall T : finType, setType T → setType T → setType T









Lemma groupMl : ∀ (H:group _) x y, x ∈ H ⇒

(x • y) ∈ H = y ∈ H.

Lemma setI_stable : ∀ (H K : group _) x y, x ∈ (H ∩

K) ⇒

y ∈ (H ∩ K) ⇒ (x • y) ∈ (H ∩ K : setType _).

Proof. by move ⇒ x y Hx Hy; rewrite groupMl. Qed.
6



Group Morphisms : in Coq

7



Group Morphisms : in Coq

Definition ker f :=

{x| ∀y, f(x • y) == f(y) }

Definition dom f :=

ker f∪{x| f x != 1}.

dom f 1
f

7-a



Group Morphisms : in Coq

Definition ker f :=

{x| ∀y, f(x • y) == f(y) }

Definition dom f :=

ker f∪{x| f x != 1}.

dom f 1
f

Structure morphism : Type := Morphism {

mfun :> elt1 → elt2;

group_set_dom : group_set (dom mfun);

morphM : morphic (dom f) mfun

}.

Definition morphic H f := ∀ x y,

f x ∈ H →

f y ∈ H →

f (x • y) = f x * f y.

morphic ≃ product commutation

7-b



Group Morphism : discussion

� an unambiguous, dynamically built domain

8



Group Morphism : discussion

� an unambiguous, dynamically built domain except for x 7→ 1.

8-a



Group Morphism : discussion

� an unambiguous, dynamically built domain except for x 7→ 1.

� but pretty hard to create morphisms ex nihilo,

8-b



Group Morphism : discussion

� an unambiguous, dynamically built domain except for x 7→ 1.

� but pretty hard to create morphisms ex nihilo,

� proving properties on (canonical) morphisms is easy, but how do we export
them to morphic functions ?

8-c



Automorphism : Definition

[

Recall : a morphism is a morphic mapping on a group,
and sends to the unit elsewhere.

]

An automorphism is a bijective endomorphism.

We build them on bijective functions : by itself, they are morphic, but not
morphisms.

Automorphisms are defined as :

� permutations of a group carrier type

� morphic on a given subgroup

� coincide with the identity elsewhere (not the trivial morphism)

9



Automorphisms : the need for a restriction

dom f
f

10



Automorphisms : the need for a restriction

dom f
f

� our formalisation of automorphisms turns out to be very similar to what is
done with morphisms,

10-a



Automorphisms : the need for a restriction

dom f
f

� our formalisation of automorphisms turns out to be very similar to what is
done with morphisms,

� they could enjoy symmetric ker and dom notions,

10-b



Automorphisms : the need for a restriction

dom f
f

� our formalisation of automorphisms turns out to be very similar to what is
done with morphisms,

� they could enjoy symmetric ker and dom notions,

� coincide with a morphism on their ’domain’
10-c



Automorphisms : the need for a restriction

dom f
f

� our formalisation of automorphisms turns out to be very similar to what is
done with morphisms,

� they could enjoy symmetric ker and dom notions,

� coincide with a morphism on their ’domain’

� restrict morphic functions, obtain morphisms.
10-d



Restriction of morphic functions : Default Values

11



Restriction of morphic functions : Default Values

Definition mrestr f H :=

[fun x ⇒ if (H x) then (f x) else 1].

Definition morphicrestr f H :=

if ~~(morphic H f)

then (fun ⇒1)

else (mrestr f H).

11-a



Restriction of morphic functions : Default Values

Definition mrestr f H :=

[fun x ⇒ if (H x) then (f x) else 1].

Definition morphicrestr f H :=

if ~~(morphic H f)

then (fun ⇒1)

else (mrestr f H).

Lemma morph1 :

∀ (f:morphism _ _), f 1 = 1.

Lemma dfequal_morphicrestr :

∀ x, x ∈ H ⇒

(f x) = (morphicrestr f H).

Lemma morphic1 :

∀ (f: _ → _) (H: group _)

(Hmorph: morphic H f),

f 1 = 1.

Proof.

rewrite (dfequal_morphicrestr Hmorph);

[exact: morph1|exact:group1].

Qed.

11-b



Morphism Restrictions : Discussion

� we have successfully adapted a number of results from morphisms
(an internalised representation, defined with a Canonical Structure)
to morphic functions
(declarative expression of a local property of a function).

� but we have to treat the trivial case separately, sometimes extensively,

� however, this is usually simpler.

� scales up : automorphisms are permutations that behave well on a domain,
and coı̈ncide wih the identity elsewhere.

12



Cyclic Groups : Application

13



Cyclic Groups : Application

� A cyclic group is a monogenous group: the intersection of all groups
containing a given singleton.

� Given rise to by the iterated multiplication of an element by itself:

Cp(a) = {1, a, a • a, a3, . . . , a(p−1)}

13-a



Cyclic Groups : Application

� A cyclic group is a monogenous group: the intersection of all groups
containing a given singleton.

� Given rise to by the iterated multiplication of an element by itself:

Cp(a) = {1, a, a • a, a3, . . . , a(p−1)}

� Automorphism group has nice properties, isomorphic to Z
n
×

13-b



Cyclic Groups : Application

� A cyclic group is a monogenous group: the intersection of all groups
containing a given singleton.

� Given rise to by the iterated multiplication of an element by itself:

Cp(a) = {1, a, a • a, a3, . . . , a(p−1)}

� Automorphism group has nice properties, isomorphic to Z
n
×

� Cp(a) is isomorphic to Z/pZ

13-c



Cyclic Groups : Application

� A cyclic group is a monogenous group: the intersection of all groups
containing a given singleton.

� Given rise to by the iterated multiplication of an element by itself:

Cp(a) = {1, a, a • a, a3, . . . , a(p−1)}

� Automorphism group has nice properties, isomorphic to Z
n
×

� Cp(a) is isomorphic to Z/pZ

� Hand-proven lemmas for cyclic groups in all their generality,

13-d



Cyclic Groups : Application

� A cyclic group is a monogenous group: the intersection of all groups
containing a given singleton.

� Given rise to by the iterated multiplication of an element by itself:

Cp(a) = {1, a, a • a, a3, . . . , a(p−1)}

� Automorphism group has nice properties, isomorphic to Z
n
×

� Cp(a) is isomorphic to Z/pZ

� Hand-proven lemmas for cyclic groups in all their generality,

� . . . which usually are easier to prove on Z/pZ

13-e



Conclusion

� a dialogue between proofs on a canonical notion of morphism and a
localised property,

� real benefits obtained from Canonical Structures, here and elsewhere
(Message to the Coq team : we want more !)

� a confirmation of the pertinence of our structures over a large development,

� interested about a more architectural way of doing this,

14


