
A formalization of normalization by evaluation

Deep and shallow embeddings of simple types in Coq

François Garillot, Benjamin Werner

INRIA-Futurs, ENS and LIX

TPHOLs, September 2007, Kaiserslautern

Today : a modest contribution

Main Related Work :

I Catarina Coquand (�rst heard in 1992)

I Ulrich Berger, Helmut Schwichtenberg, Stefan Berghofer,

Pierre Letouzey. . .

I Olivier Danvy a.o.

Motivations :

I not very precise

I understanding and handling of binders

I Challenging problem (for me)

Today : a modest contribution

Main Related Work :

I Catarina Coquand (�rst heard in 1992)

I Ulrich Berger, Helmut Schwichtenberg, Stefan Berghofer,

Pierre Letouzey. . .

I Olivier Danvy a.o.

Motivations :

I not very precise

I understanding and handling of binders

I Challenging problem (for me)

deep vs. shallow

Two "representations" of λx .x in Type Theory :

I Shallow embedding fun x => x : T -> T

I or the deep embedding.

De�ne :

Inductive term : Type :=

Var : id -> term

| Lam : id -> term -> term

| App : term -> term -> term.

Lam x (Var x) : term

p : WT (Lam x (Var x)) (Arr Iota Iota)

How can we switch from one another ?

deep vs. shallow

Two "representations" of λx .x in Type Theory :

I Shallow embedding fun x => x : T -> T

I or the deep embedding.

De�ne :

Inductive term : Type :=

Var : id -> term

| Lam : id -> term -> term

| App : term -> term -> term.

Lam x (Var x) : term

p : WT (Lam x (Var x)) (Arr Iota Iota)

How can we switch from one another ?

Talk outline

1. The picture : basic de�nitions

2. From deep to shallow

3. From shallow to deep

A syntax with named variables

Inductive ST : Set :=

Iota : ST | Arr : ST -> ST -> ST.

Record id : Type := mkid {idx : nat ; idT : ST}.

Inductive term : Type :=

Var : id -> term

| Lam : id -> term -> term

| App : term -> term -> term.

Regular concrete data-types

Typing

Inductively :

xA : A

t : B

λxA.t : A→ B

t : A→ B u : A

t u : B

Not the most practical way when we have dependent types

We take a more computational approach. . .

Typing

Inductively :

xA : A

t : B

λxA.t : A→ B

t : A→ B u : A

t u : B

Not the most practical way when we have dependent types

We take a more computational approach. . .

Typing

Fixpoint inferc (t:term) : option ST :=

match t with

| Var n => Some n.(idT)

| App t u =>

match inferc t, inferc u with

| Some (Arr A B) , Some C =>

if C == A then Some B else None

| _, _ => None

end

| Lam n t => match inferc t with

| Some B => Some (Arr n.(idT) B)

| _ => None

end

end.

Definition WT t T := inferc t = Some T.

Typing

(* The key definition : lifting types to Coq *)

Fixpoint tr (alpha:Type)(T:ST) {struct T}: Type:=

match T with

| Iota => alpha

| Arr A B => (tr alpha A)->(tr alpha B)

end.

Two choices to be made :

I One may prefer a more complex interpretation for arrow types

(see C. Coquand).

I One needs to chose alpha.

I will chose alpha=term

Not the best solution

setting the problem : up and down

shallow deep

Syntax Semantics

Source code Executable code

t :term f : (tr term T)

WT t T condition(s) on f

t : term, WT t T
−→
comp

[t]I : (tr term T)

←−
decomp

I compilation : (relatively) easy

I decompilation : a little trickier

setting the problem : up and down

shallow deep

Syntax Semantics

Source code Executable code

t :term f : (tr term T)

WT t T condition(s) on f

t : term, WT t T
−→
comp

[t]I : (tr term T)

←−
decomp

I compilation : (relatively) easy

I decompilation : a little trickier

setting the problem : up and down

shallow deep

Syntax Semantics

Source code Executable code

t :term f : (tr term T)
WT t T condition(s) on f

t : term, WT t T
−→
comp

[t]I : (tr term T)

←−
decomp

I compilation : (relatively) easy

I decompilation : a little trickier

setting the problem : up and down

shallow deep

Syntax Semantics

Source code Executable code

t :term f : (tr term T)
WT t T condition(s) on f

t : term, WT t T
−→
comp

[t]I : (tr term T)

←−
decomp

I compilation : (relatively) easy

I decompilation : a little trickier

Going up : compilation

Idea : straightforward semantics

[x]I = I(x)

[λx .t]I = fun α 7→ [t]I;x←α

[t u]I = [t]I([u]I)

Only technical di�culty :

The semantics is only de�ned for well-typed terms

env := forall x:id, tr term (x).idT

comp : forall t T, WT t T -> env -> tr T alpha

works but is not practical : the function depends upon t but the

types depend upon T.

Reasonning about such functions can be surprisingly tedious.

Going up : compilation

Idea : straightforward semantics

[x]I = I(x)

[λx .t]I = fun α 7→ [t]I;x←α

[t u]I = [t]I([u]I)

Only technical di�culty :

The semantics is only de�ned for well-typed terms

env := forall x:id, tr term (x).idT

comp : forall t T, WT t T -> env -> tr T alpha

works but is not practical : the function depends upon t but the

types depend upon T.

Reasonning about such functions can be surprisingly tedious.

Going up : compilation

Idea : straightforward semantics

[x]I = I(x)

[λx .t]I = fun α 7→ [t]I;x←α

[t u]I = [t]I([u]I)

Only technical di�culty :

The semantics is only de�ned for well-typed terms

env := forall x:id, tr term (x).idT

comp : forall t T, WT t T -> env -> tr T alpha

works but is not practical : the function depends upon t but the

types depend upon T.

Reasonning about such functions can be surprisingly tedious.

Solution :

I Type-checking is done at compile-time :

comp : term -> option {T:ST |env -> tr T alpha}

I Hide the equality test

Inductive cast_result (a1 a2 : ST) : Type :=

| Cast (k : forall P, P a1 -> P a2)

| NoCast.

eqst : forall T U, cast_result T U

Interpreting free variables

The "default" interpretation of variables :

I(xA) ≡ long(A, Var(xA))

Really simple. . .

Really simple semantics

The semantics are actually simpler than the syntax :

fun f (h:term->term) u => h (f u (Var x)(App (Var y) u))

is the "semantics" of :

Lam (mkid 0 (Iota ==> Iota ==> Iota ==> Iota))

(Lam (mkid 5 (Iota ==> Iota))

(Lam (mkid 4 Iota)

(App (Var (mkid 5 (Iota ==> Iota)))

(App

(App

(App

(Var (mkid 0 (Iota ==> Iota ==> Iota ==> Iota)))

(Var (mkid 4 Iota))) (Var x))

(App (Var y) (Var (mkid 4 Iota)))))))

Decompilation : principle

idea : look for the β-normal, η-long form.

This time, really "type" directed :

decomp(Iota, t) = t

decomp(A⇒ B, f) = Lam(x , decomp(B, f long(A, x)))

where x is fresh

long(Iota, t) = t

long(A⇒ B, t) = a 7→ long(B, App(t, decomp(A, a)))

"little problem" : �nd a fresh x . . .

Decompilation : principle

idea : look for the β-normal, η-long form.

This time, really "type" directed :

decomp(Iota, t) = t

decomp(A⇒ B, f) = Lam(x , decomp(B, f long(A, x)))

where x is fresh

long(Iota, t) = t

long(A⇒ B, t) = a 7→ long(B, App(t, decomp(A, a)))

"little problem" : �nd a fresh x . . .

Good solution : Berger

Have the decompiled function to be parametrized by its context.

context = number upon which variables are free.

use (tr (nat → term) T)

(more complex semantics, free variables more di�cult to handle)

But if I want to stick to (tr term T) ?

"Horrible" trick

1. take a �xed dummy variable d

2. compute decomp(B ,f (long(A,d)))

3. �nd a variable y not free in (decomp(B ,f (long(A,d))))

4. return decomp(f (long(y)))

Works but. . . exponentially slower

(with some optimization, quadratically slower)

Can one do (really) better ? I do not know

Actually, a related construction can be found in Berger &

Schwichtenberg 1991 (LICS).

Normalization proof

Pasting things together

Two steps :

I show that decomp o comp returns normal forms (easy)

I show that it preserves the =βη class (where things happen).

"Main theorem" : weak normalization of simply typed calculus

(decomp o comp) preserves conversion

logical relation :

t 'ι st ⇔ t =βη st

t 'A→B st ⇔ ∀u su, u 'A su ⇒ App(t, u) 'B st(su)

let σ be a substitution,

∀x ∈ FV (t), σ(x) ' I (x)

then

t ' [t]I

(* to be precise : see code *)

How is the dummy trick treated ?

Lemma : if (t x) =βη u and y /∈ FV (u), there exists t ′ =βη t, with

y /∈ FV (t ′).

François found nice de�nitions and lemmas for α-conversion in a

paper by Allen Stoughton : Substitution Revisited.

Use a notion of "α-normalization"

Not surprisingly, the most tedious part of the proof.

See http://benjamin.werner.name

Future versions should be done with nameless variables

Technical conclusion

I NbE is possible with a very simple typing on the semantics'

side

I The good categorical interpretation is for λ-terms with

context ; thus the routine is less elegant and less e�cient

(price to pay for the simplicity of typing)

I No context ⇒ free variables can be added freely ⇒ convenient

but need for dynamically checking which variables are free

(other explanation for the overhead)

Is this of some use ?

Technical conclusion

I NbE is possible with a very simple typing on the semantics'

side

I The good categorical interpretation is for λ-terms with

context ; thus the routine is less elegant and less e�cient

(price to pay for the simplicity of typing)

I No context ⇒ free variables can be added freely ⇒ convenient

but need for dynamically checking which variables are free

(other explanation for the overhead)

Is this of some use ?

Technical conclusion

I NbE is possible with a very simple typing on the semantics'

side

I The good categorical interpretation is for λ-terms with

context ; thus the routine is less elegant and less e�cient

(price to pay for the simplicity of typing)

I No context ⇒ free variables can be added freely ⇒ convenient

but need for dynamically checking which variables are free

(other explanation for the overhead)

Is this of some use ?

Applications ?

Remember Higher-Order Abstract Syntax

A language with binders is described by a context in simply typed

λ-calculus :

[APP : ι→ ι→ ι; LAM : (ι→ ι)→ ι]

a (pure) λ-term is described by a simply typed λ-term of type ι,
whose variables are APP, LAM of variables of type ι.

Future Work

Re-do it with locally nameless (ie. de Bruijn for bounded var.) à la

Pierce, Weirich, Charguéraud. . .

Try to use it : construct the good induction schemes for these

terms, the nice syntactic sugar. . .

. . .Work in progress. . .

Applications ?

Remember Higher-Order Abstract Syntax

A language with binders is described by a context in simply typed

λ-calculus :

[APP : ι→ ι→ ι; LAM : (ι→ ι)→ ι]

a (pure) λ-term is described by a simply typed λ-term of type ι,
whose variables are APP, LAM of variables of type ι.

Future Work

Re-do it with locally nameless (ie. de Bruijn for bounded var.) à la

Pierce, Weirich, Charguéraud. . .

Try to use it : construct the good induction schemes for these

terms, the nice syntactic sugar. . .

. . .Work in progress. . .

