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Abstract. Password-authenticated key exchange (PAKE) protocols allow two players
to agree on a shared high entropy secret key, that depends on their own passwords only.
Following the Gennaro and Lindell’s approach, with a new kind of smooth-projective
hash functions (SPHFs), Katz and Vaikuntanathan recently came up with the first
concrete one-round PAKE protocols, where the two players just have to send simulta-
neous flows to each other. The first one is secure in the Bellare-Pointcheval-Rogaway
(BPR) model and the second one in the Canetti’s UC framework, but at the cost of
simulation-sound non-interactive zero-knowledge (SS-NIZK) proofs (one for the BPR-
secure protocol and two for the UC-secure one), which make the overall constructions
not really efficient.
This paper follows their path with, first, a new efficient instantiation of SPHF on
Cramer-Shoup ciphertexts, which allows to get rid of the SS-NIZK proof and leads
to the design of the most efficient one-round PAKE known so far, in the BPR model,
and in addition without pairings.
In the UC framework, the security proof required the simulator to be able to extract the
hashing key of the SPHF, hence the additional SS-NIZK proof. We improve the way the
latter extractability is obtained by introducing the notion of trapdoor smooth projective
hash functions (TSPHFs). Our concrete instantiation leads to the most efficient one-
round PAKE UC-secure against static corruptions to date.
We additionally show how these SPHFs and TSPHFs can be used for blind signatures
and zero-knowledge proofs with straight-line extractability.

1 Introduction
Authenticated Key Exchange protocols are quite important primitives for
practical applications, since they enable two parties to generate a shared high
entropy secret key, to be later used with symmetric primitives in order to protect
communications, while interacting over an insecure network under the control of
an adversary. Various authentication means have been proposed, and the most
practical one is definitely a shared low entropy secret, or a password they can
agree on over the phone, hence PAKE, for Password-Authenticated Key Exchange.
The most famous instantiation has been proposed by Bellovin and Merritt [4],
EKE for Encrypted Key Exchange, which simply consists of a Diffie-Hellman
key exchange [17], where the flows are symmetrically encrypted under the shared
password. Overall, the equivalent of 2 group elements have to be sent.

A first formal security model was proposed by Bellare, Pointcheval and Rog-
away [3] (the BPR model), to deal with off-line dictionary attacks. It essentially
says that the best attack should be the on-line exhaustive search, consisting
in trying all the passwords by successive executions of the protocol with the
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server. Several variants of EKE with BPR-security proofs have been proposed
in the ideal-cipher model or the random-oracle model [27]. Katz, Ostrovsky and
Yung [23] proposed the first practical scheme (KOY), provably secure in the
standard model under the DDH assumption. This is a 3-flow protocol, with the
client sending 5 group elements plus a verification key and a signature, for a
one-time signature scheme, and the server sending 5 group elements. It has been
generalized by Gennaro and Lindell [20] (GL), making use of smooth projective
hash functions.
Smooth Projective Hash Functions (SPHFs) were introduced by Cramer
and Shoup [16] in order to achieve IND-CCA security from IND-CPA encryption
schemes, which led to the first efficient IND-CCA encryption scheme provably
secure in the standard model under the DDH assumption [15]. They can be seen
as a kind of implicit designated-verifier proofs of membership [1, 9]. Basically,
SPHFs are families of pairs of functions (Hash,ProjHash) defined on a language L.
These functions are indexed by a pair of associated keys (hk, hp), where hk,
the hashing key, can be seen as the private key and hp, the projection key, as
the public key. On a word W ∈ L, both functions should lead to the same
result: Hash(hk,L,W ) with the hashing key and ProjHash(hp,L,W,w) with the
projection key only but also a witness w thatW ∈ L. Of course, ifW 6∈ L, such a
witness does not exist, and the smoothness property states that Hash(hk,L,W )
is independent of hp. As a consequence, even knowing hp, one cannot guess
Hash(hk,L,W ).
One-Round PAKE in the BPR Model. Gennaro and Lindell [20] (GL)
extended the initial definition of smooth projective hash functions for an appli-
cation to PAKE. Their approach has thereafter been adapted to the Universal
Composability (UC) framework by Canetti et al. [14], but for static corruptions
only. It has been improved by Abdalla, Chevalier and Pointcheval [1] to resist
to adaptive adversaries. But the 3-flow KOY protocol remains the most efficient
protocol BPR-secure under the DDH assumption.

More recently, the ultimate step for PAKE has been achieved by Katz and
Vaikuntanathan [24] (KV), who proposed a practical one-round PAKE, where the
two players just have to send simultaneous flows to each other, that depend on
their own passwords only. More precisely, each flow just consists of an IND-CCA
ciphertext of the password and an SPHF projection key for the correctness of
the partner’s ciphertext (the word is the ciphertext and the witness consists of
the random coins of the encryption). The shared secret key is eventually the
product of the two hash values, as in the KOY and GL protocols.
Katz and Vaikuntanathan Smooth Projective Hash Functions. Because
of the simultaneous flows, one flow cannot explicitly depend on the partner’s flow,
which makes impossible the use of the Gennaro and Lindell SPHF (later named
GL-SPHF), in which the projection key depends on the word (the ciphertext
here). On the other hand, the adversary can wait for the player to send his
flow first, and then adapt its message, which requires stronger security notions
than the initial Cramer and Shoup SPHF (later named CS-SPHF), in which the
smoothness does not hold anymore if the word is generated after having seen the
projection key. This led Katz and Vaikuntanathan to provide a new definition for
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SPHF (later named KV-SPHF), where the projection key depends on the hashing
key only, and the smoothness holds even if the word is chosen after having seen
the projection key. Variations between CS-SPHF, GL-SPHF and KV-SPHF are
in the way one computes the projection key hp from the hashing key hk and
the word W , but also in the smoothness property, according to the freedom the
adversary has to choose W , when trying to distinguish the hash value from a
random value. As a side note, while CS-SPHF is close to the initial definition,
useful for converting an IND-CPA encryption scheme to IND-CCA, GL-SPHFs and
KV-SPHFs did prove quite useful too: we will use KV-SPHFs for our one-round
PAKE protocols and a GL-SPHF for the blind signature scheme.

As just explained, the strongest definition of SPHF, which gives a lot of free-
dom to the adversary, is the recent KV-SPHF. However, previous SPHFs known
on Cramer-Shoup ciphertexts were GL-SPHFs only. For their one-round PAKE,
Katz and Vaikuntanathan did not manage to construct such a KV-SPHF for an
efficient IND-CCA encryption scheme. They then suggested to use the Naor and
Yung approach [26], with an ElGamal-like encryption scheme and a simulation-
sound non-interactive zero-knowledge (SS-NIZK) proof [28]. Such an SS-NIZK
proof is quite costly in general. They suggested to use Groth-Sahai [21] proofs
in bilinear groups and the linear encryption [10] which leads to a PAKE secure
under the DLin assumption with a ciphertext consisting of 66 group elements
and a projection key consisting of 4 group elements. As a consequence, the two
players have to send 70 group elements each, which is far more costly than the
KOY protocol, but it is one-round only.

More recent results on SS-NIZK proofs or IND-CCA encryption schemes, in
the discrete logarithm setting, improved on that: Libert and Yung [25] proposed
a more efficient SS-NIZK proof of plaintext equality in the Naor-Yung-type cryp-
tosystem with ElGamal-like encryption. The proof can be reduced from 60 to
22 group elements and the communication complexity of the resulting PAKE is
decreased to 32 group elements per user. Jutla and Roy [22] proposed relatively-
sound NIZK proofs as an efficient alternative to SS-NIZK proofs to build new
publicly-verifiable IND-CCA encryption schemes. They can then decrease the
PAKE communication complexity to 20 group elements per user. In any case,
one can remark that all one-round PAKE schemes require pairing computations.
One-Round PAKE in the Universal Composability Framework. Katz
and Vaikuntanathan [24] also proposed another construction of one-round PAKE,
provably secure against static corruptions in the UC framework. To achieve such
a level of security, the simulator has to be more powerful: it should be able to
make a successful execution after a dummy simulation, with a wrong password.
To this aim, Katz and Vaikuntanathan allowed the simulator to extract the
hashing key of the SPHF, to allow it to compute afterwards the hash value on
any word, even outside the language. More precisely, each player additionally
encrypts his hashing key to allow the key recovery by the simulator, so that the
latter can compute the hash value even when a dummy password has initially
been committed, whereas a success is expected. While this is the first one-round
PAKE provably secure in the UC framework, hashing key recovery requires an
additional quite costly simulation-sound extractable NIZK proof. Although the
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latter can also be improved by the above more recent work [22], the UC-secure
one-round PAKE is still much more costly than the BPR-secure protocol.
Achievements. Our first contribution is the description of an instantiation
of KV-SPHF on Cramer-Shoup ciphertexts, and thus the first KV-SPHF on an
efficient IND-CCA encryption scheme. We thereafter use it within the above KV
framework for one-round PAKE [24], in the BPR security model. Our scheme
just consists of 6 group elements in each direction under the DDH assumption
(4 for the ciphertext, and 2 for the projection key). This has to be compared
with the 20 group elements, or more, in the best constructions discussed above,
which all need pairing-friendly groups and pairing computations, or with the
KOY protocol that has a similar complexity but with three sequential flows.

We also present the first GL-SPHFs/KV-SPHFs able to handle multi-exponen-
tiation equations without requiring pairings. Those SPHFs are thus quite ef-
ficient. They lead to two applications. First, our new KV-SPHFs enable sev-
eral efficient instantiations of one-round Language-Authenticated Key-Exchange
(LAKE) protocols [5]. Our above one-round PAKE scheme is actually a particular
case of a more general one-round LAKE scheme, for which we provide a BPR-
like security model and a security proof. Our general constructions also cover
Credential-Authenticated Key Exchange [11]. Second, thanks to a new GL-SPHF,
we improve on the blind signature scheme presented in [9], from 5` + 6 group
elements in G1 and 1 group element in G2 to 3` + 7 group elements in G1 and
1 group element in G2, for an `-bit message to be blindly signed with a Waters
signature [29]. Our protocol is round-optimal, since it consists of two flows, and
leads to a classical short Waters signature.

Our second contribution is the novel extension of SPHFs, called Trapdoor
SPHFs, or TSPHFs. In addition to showing that an SPHF with an encryption
of the hashing key and a simulation-sound extractable NIZK proof, as used in
the UC-secure one-round PAKE of Katz and Vaikuntanathan, can be seen as an
inefficient TSPHF, we provide efficient instantiations of TSPHFs. To do so, we
first describe a new generic framework for SPHFs that allows an easy conver-
sion to TSPHFs. We then apply it to our above KV-SPHF on a Cramer-Shoup
ciphertext. Using our new TSPHF in the UC-secure one-round PAKE framework
from [24], we obtain a scheme which consists of 11 group elements in each di-
rection (actually, 6 group elements in G1 and 5 group elements in G2 in an
asymmetric bilinear setting, using the Cramer-Shoup encryption). It is secure in
the UC framework against static corruptions under the SXDH assumption with
a CRS, and just twice more costly than our above BPR-secure PAKE. This is
the most efficient UC-secure one-round PAKE.

Finally, while SPHFs are often used as implicit designated-verifier proofs
of membership, when one wants to make them explicit, by sending the hash
value, one does not get the zero-knowledge property. We then show that TSPHFs
actually lead to extractable zero-knowledge (E-ZK) arguments.
Outline. In Section 2, we first revisit the different definitions for SPHFs pro-
posed in [16,20,24], respectively denoted CS-SPHFs, GL-SPHFs and KV-SPHFs,
and give the first instantiation of KV-SPHF on Cramer-Shoup ciphertexts. This
leads to our efficient one-round PAKE provably secure in the BPR model.
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We then define our novel extension of SPHFs, called Trapdoor SPHFs, or
TSPHFs, in Section 3. After the presentation of a new framework for SPHFs
together with a generic way to convert SPHFs into TSPHFs, we provide effi-
cient instantiations of TSPHFs in Section 4, and especially on Cramer-Shoup
ciphertexts, which lead to our efficient UC-secure one-round PAKE scheme.

We conclude with more constructions in Section 5 and other applications of
both SPHFs and TSPHFs: First, thanks to the various complex languages we
can handle with SPHFs, in Section 6, we present our one-round LAKE and an
improved blind signature scheme. Finally, we provide another application of our
TSPHF constructions by presenting efficient E-ZK protocols in Section 7.
Full Versions. This paper was formed by merging two Crypto 2013 submis-
sions, both extending SPHFs with applications to PAKE protocols. The first one
provided more evolved SPHFs with the BPR-secure PAKE as an application, and
the second introduced TSPHFs with application to UC-secure PAKE. Because
of lack of space, many details are left to the full versions of both papers that
are referred to along this paper as the SPHF full version [6] and the TSPHF full
version [7] respectively.

2 New SPHF on Cramer-Shoup Ciphertexts

In this section, we first recall the definitions of SPHFs and present our classi-
fication based on the dependence between words and keys. According to this
classification, there are three types of SPHFs: the (almost) initial Cramer and
Shoup [16] type (CS-SPHF) introduced for enhancing an IND-CPA encryption
scheme to IND-CCA, the Gennaro and Lindell [20] type (GL-SPHF) introduced
for PAKE, and the Katz and Vaikuntanathan [24] type (KV-SPHF) introduced
for one-round PAKE.

Then, after a quick review on the Cramer-Shoup encryption scheme, we intro-
duce our new KV-SPHF on Cramer-Shoup ciphertexts which immediately leads
to a quite efficient instantiation of the Katz and Vaikuntanathan one-round
PAKE [24], secure in the BPR model.

2.1 General Definition of SPHFs

Let us consider a language L ⊆ Set, and some global parameters for the SPHF,
assumed to be in the common random string (CRS). The SPHF system for the
language L is defined by four algorithms:

– HashKG(L) generates a hashing key hk for the language L;
– ProjKG(hk,L, C) derives the projection key hp, possibly depending on the

word C;
– Hash(hk,L, C) outputs the hash value of the word C from the hashing key;
– ProjHash(hp,L, C, w) outputs the hash value of the word C from the projec-

tion key hp, and the witness w that C ∈ L.

The correctness of the SPHF assures that if C ∈ L with w a witness of this
membership, then the two ways to compute the hash values give the same re-
sult: Hash(hk,L, C) = ProjHash(hp,L, C, w). On the other hand, the security is
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defined through the smoothness, which guarantees that, if C 6∈ L, the hash value
is statistically indistinguishable from a random element, even knowing hp.

2.2 Smoothness Adaptivity and Key Word-Dependence

This paper will exploit the very strong notion KV-SPHF. Informally, while the
GL-SPHF definition allows the projection key hp to depend on the word C, the
KV-SPHF definition prevents the projection key hp from depending on C, as in
the original CS-SPHF definition. In addition, the smoothness should hold even if
C is chosen as an arbitrary function of hp. This models the fact the adversary can
see hp before deciding which word C it is interested in. More formal definitions
follow, where we denote Π the range of the hash function.
CS-SPHF. This is almost1 the initial definition of SPHF, where the projection
key hp does not depend on the word C (word-independent key), but the word C
cannot be chosen after having seen hp for breaking the smoothness (non-adaptive
smoothness). More formally, a CS-SPHF is ε-smooth if ProjKG does not use its
input C and if, for any C ∈ Set\L, the two following distributions are ε-close:

{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H ← Hash(hk,L, C)}
{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H $← Π}.

GL-SPHF. This is a relaxation, where the projection key hp can depend on the
word C (word-dependent key). More formally, a GL-SPHF is ε-smooth if, for any
C ∈ Set\L, the two following distributions are ε-close:

{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L, C); H ← Hash(hk,L, C)}
{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L, C); H $← Π}.

KV-SPHF. This is the strongest SPHF, in which the projection key hp does
not depend on the word C (word-independent key) and the smoothness holds
even if C depends on hp (adaptive smoothness). More formally, a KV-SPHF is
ε-smooth if ProjKG does not use its input C and, for any function f onto Set\L,
the two following distributions are ε-close:

{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H ← Hash(hk,L, f(hp))}
{(hp, H) | hk $← HashKG(L); hp← ProjKG(hk,L,⊥); H $← Π}.

Remark 1. One can see that a perfectly smooth (i.e., 0-smooth) CS-SPHF is
also a perfectly smooth KV-SPHF, since each value H has exactly the same
probability to appear, and so adaptively choosing C does not increase the above
statistical distance. However, as soon as a weak word C can bias the distribution,
f can exploit it.
1 In the initial definition, the smoothness was defined for a word C randomly chosen from Set\L,
and not necessarily for any such word.
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2.3 SPHFs on Languages of Ciphertexts

We could cover languages as general as those proposed in [5], but for the sake
of clarity, and since the main applications need some particular cases only, we
focus on SPHFs for languages of ciphertexts, whose corresponding plaintexts
verify some relations. We denote these languages LofCfull-aux.

The parameter full-aux will parse in two parts (crs, aux): the public part crs,
known in advance, and the private part aux, possibly chosen later. More con-
cretely, crs represents the public values: it will define the encryption scheme
(and will thus contain the global parameters and the public key of the encryp-
tion scheme) with the global format of both the tuple to be encrypted and the
relations it should satisfy, and possibly additional public coefficients; while aux
represents the private values (indeed, unless specified differently, as in Section 7,
aux is assumed private): it will specify the relations, with more coefficients or
constants that will remain private, and thus implicitly known by the sender and
the receiver (as the expected password, for example, in PAKE protocols).

To keep aux secret, hp should not leak any information about it. We will
thus restrict HashKG and ProjKG not to use the parameter aux, but just crs.
This is a stronger restriction than required for our purpose, since one can use
aux without leaking any information about it. But we already have quite efficient
instantiations, and it makes everything much simpler to present.

2.4 SPHFs on Cramer-Shoup Ciphertexts

Labeled Cramer-Shoup Encryption Scheme (CS). We briefly review the
CS labeled encryption scheme, where we combine all the public information
in the encryption key. We thus have a group G of prime order p, with two
independent generators (g1, g2)

$← G2, a hash function HK
$← H from a collision-

resistant hash function family onto Z∗p, and a reversible mapping G from {0, 1}n

to G. From 5 scalars (x1, x2, y1, y2, z)
$← Zp5, one also sets c = gx11 g

x2
2 , d =

gy11 g
y2
2 , and h = gz1. The encryption key is ek = (G, g1, g2, c, d, h,HK), while

the decryption key is dk = (x1, x2, y1, y2, z). For a message m ∈ {0, 1}n, with
M = G(m) ∈ G, the labeled Cramer-Shoup ciphertext is:

C def= CS(`, ek,M ; r) def= (u = (gr1, g
r
2), e =M · hr, v = (cdξ)r),

with ξ = HK(`,u, e) ∈ Z∗p. If one wants to encrypt a vector of group elements
(M1, . . . ,Mn), all at once in a non-malleable way, one computes all the individ-
ual ciphertexts with a common ξ = HK(`,u1, . . . ,un, e1, . . . , en) for v1, . . . , vn.
Hence, everything done on tuples of ciphertexts will work on ciphertexts of vec-
tors. In addition, the Cramer-Shoup labeled encryption scheme on vectors is
IND-CCA under the DDH assumption.
The (known) GL-SPHF for CS. Gennaro and Lindell [20] proposed an SPHF
on labeled Cramer-Shoup ciphertexts: the hashing key just consists of a random
tuple hk = (η, θ, µ, ν)

$← Z4
p. The associated projection key, on a ciphertext C =

(u = (u1, u2) = (gr1, g
r
2), e = G(m) · hr, v = (cdξ)r), is hp = gη1g

θ
2h

µ(cdξ)ν ∈ G.
Then, one can compute the hash value in two different ways, for the language
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LofCek,m of the valid ciphertexts of M = G(m), where crs = ek is public but
aux = m is kept secret:

H def= Hash(hk, (ek,m), C) def= uη1u
θ
2(e/G(m))µvν

= hpr def= ProjHash(hp, (ek,m), C, r) def= H ′.

A (new) KV-SPHF for CS. We give here the description of the first known
KV-SPHF on labeled Cramer-Shoup ciphertexts: the hashing key just consists of
a random tuple hk = (η1, η2, θ, µ, ν)

$← Z5
p; the associated projection key is the

pair hp = (hp1 = gη11 g
θ
2h

µcν , hp2 = gη21 d
ν) ∈ G2. Then one can compute the hash

value in two different ways, for the language LofCek,m of the valid ciphertexts
of M = G(m) under ek:

H = Hash(hk, (ek,m), C) def= u
(η1+ξη2)
1 uθ2(e/G(m))µvν

= (hp1hp
ξ
2)
r def= ProjHash(hp, (ek,m), C, r) = H ′.

Theorem 2. The above SPHF is a perfectly smooth ( i.e., 0-smooth) KV-SPHF.

The proof can be found in Section 4.1 as an illustration of our new framework.

2.5 An Efficient One-Round PAKE

Review of the Katz and Vaikuntanathan PAKE. As explained earlier, Katz
and Vaikuntanathan [24] recently proposed a one-round PAKE scheme. Their
general framework follows Gennaro and Lindell [20] approach, which needs an
SPHF on a labeled IND-CCA encryption scheme. To allow a SPHF-based PAKE
scheme to be one-round, the ciphertext and the SPHF projection key for verifying
the correctness of the partner’s ciphertext should be sent together, before having
seen the partner’s ciphertext: the projection key should be independent of the
ciphertext. In addition, the adversary can wait until it receives the partner’s
projection key before generating the ciphertext, and thus a stronger smoothness
is required. This is exactly why we need a KV-SPHF in this one-round PAKE
framework.
Our Construction. Our KV-SPHF on Cramer-Shoup ciphertexts can be used
in the Katz and Vaikuntanathan framework for PAKE [24]. It leads to the most
efficient PAKE known so far, and it is one-round. Each user indeed only sends
6 elements of G (see Figure 1), instead of 70 elements of G for the Katz and
Vaikuntanathan’s instantiation using a Groth-Sahai SS-NIZK [21], or 20 group
elements for the Jutla and Roy’s [22] improvement using a relatively-sound NIZK.

The formal security result follows from the Theorem 4 in Section 6. We want
to insist that our construction does not need pairing-friendly groups, and the
plain DDH assumption is enough, whereas the recent constructions made heavy
use of pairing-based proofs à la Groth-Sahai.
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– Players U and U ′ both use ek = (G, g1, g2, c, d, h,HK);
– U , with password pw, chooses hk = (η1, η2, θ, µ, ν)

$← Z5
p,

computes hp = (hp1 = gη11 gθ2h
µcν , hp2 = gη21 dν), sets ` = (U,U ′, hp),

and generates C = (u = (gr1 , g
r
2), e = G(pw) · hr, v = (cdξ)r) with r a random scalar in Zp

and ξ = HK(`,u, e).
U sends hp ∈ G2 and C ∈ G4 to U ′;

– Upon receiving hp′ = (hp′1, hp
′
2) ∈ G2 and C′ = (u′ = (u′1, u

′
2), e

′, v′) ∈ G4 from U ′, U sets
`′ = (U ′, U, hp′) and ξ′ = HK(`′,u′, e′) and computes

skU = u′1
(η1+ξ

′η2)u′2
θ
(e′/G(pw))µv′ν · (hp′1hp

′
2
ξ
)r.

Fig. 1. One-Round PAKE based on DDH

3 Computational Smoothness and Definition of TSPHF

In order to build a one-round PAKE provably secure in the UC framework, one
needs the simulator to be able to compute the hash value even when a dummy
password has initially been committed, whereas a success is expected. Katz and
Vaikuntanathan [24] thus asked the players to add an encryption of the hashing
key together with the projection key, and a proof a correctness (a simulation-
sound extractable NIZK proof). We now improve on this technique.

More precisely, in this section, we introduce TSPHFs, which are SPHFs with a
trapdoor enabling a simulator to compute the hash value on any word C without
knowing hk nor any witness, but only knowing hp. TSPHFs also provide a way to
ensure that hp is valid. It can be seen that, intuitively, in most cases, a TSPHF
cannot be statistically smooth, and so, before introducing TSPHFs, we need to
introduce a new notion of smoothness: computational smoothness.

3.1 Computationally-Smooth SPHF

Let us first suppose there exists an algorithm Setup which takes as input the
security parameter K and outputs a CRS crs together with a trapdoor τ , which
is not the trapdoor of the TSPHF, but just a trapdoor of crs. The trapdoor τ
can be ⊥, but in our article, the trapdoor will contain the decryption key of the
encryption scheme, and possibly other data such that, for any C ∈ Set, it is
possible to check whether C ∈ LofCfull-aux or not, in polynomial time.

Let us then consider the two games Expsmooth−b
K (A) (with b = 0 or 1) depicted

in Figure 2, where Π denotes the set of hash values. There are two variants of
the games: whether the SPHF is adaptively-smooth (KV-SPHF) or not (CS-SPHF
and GL-SPHF).

Let us first explain the games for a non-adaptively-smooth SPHF. The pro-
cedure Initialize generates and outputs the CRS crs and its trapdoor τ . It is
important to notice that computational smoothness has to hold even when the
adversary knows the trapdoor, and so may depend on what is in the trapdoor
τ .

During the execution of the game, the adversary is allowed to make one
query ProjKG(aux, C) to get a projection key hp associated with aux and C,
and then one query Hash(⊥) to get the hash value of C. If C ∈ LofCfull-aux,
smoothness does not apply, thus Hash(C) really returns the hash value H of C:
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Initialize(1K)

(crs, τ)
$← Setup(1K)

return crs, τ

ProjKG(aux, C)

(aux′, C′)← (aux, C)
full-aux← (crs, aux)

hk
$← HashKG(full-aux)

hp← ProjKG(hk, full-aux, C)
return hp

Hash(C)

aux← aux′ ; full-aux← (crs, aux)
C ← C′ . if non-adaptively-smooth SPHF
if b = 0 or C ∈ LofCfull-aux then

H ← Hash(hk, full-aux, C)

else H $← Π
return H

Finalize(b′)
return b′

Fig. 2. Games Expsmooth−b
K (A) (b = 0 or 1) for computational smoothness

H = Hash(hk, full-aux, C), for a hashing key hk associated with hp. Otherwise, the
smoothness should apply with a real-or-random indistinguishability game, and
thus, if b = 0 the real hash value is returned too, whereas a random value in Π is
returned when b = 1. Eventually, the adversary ends the game by querying the
Finalize procedure with its guess b′ for b. We remark that the procedure Hash
may or may not be polynomial time, depending on τ , since it is not necessarily
possible to efficiently check whether C ∈ LofCfull-aux.

For the adaptively-smooth variant, the adversary does not need to provide
the word C when it makes a query to ProjKG. It gives ⊥ instead and can
choose C adaptively after having seen hp, as input to the Hash query.

Formally, an SPHF is (t, ε)-smooth if for all adversary A running in time at
most t: ∣∣Pr [Expsmooth−1

K (A) = 1
]
− Pr

[
Expsmooth−0

K (A) = 1
]∣∣ ≤ ε.

The classical statistical-smoothness implies the (t, ε)-smoothness for any t, and
any non-negligible ε (and whatever is the trapdoor τ).

3.2 Trapdoor SPHF

A TSPHF is an extension of a classical SPHF with an additional algorithm
TSetup, which takes as input the CRS crs and outputs an additional CRS crs′

and a trapdoor τ ′ specific to crs′, which can be used to compute the hash value
of words C knowing only hp. For TSPHF, we assume full-aux = (crs, crs′, aux),
although the language LofCfull-aux still does not depend on crs′. Formally, a
TSPHF is defined by seven algorithms:

– TSetup(crs) takes as input the CRS crs (generated by Setup) and generates
the second CRS crs′, together with a trapdoor τ ′;

– HashKG, ProjKG, Hash, and ProjHash behave as for a classical SPHF;
– VerHP(hp, full-aux, C) outputs 1 if hp is a valid projection key, and 0 other-

wise. When hp does not depend on C (word-independent key), the input C
can be replaced by ⊥;

– THash(hp, full-aux, C, τ ′) outputs the hash value of C from the projection
key hp and the trapdoor τ ′.

It must verify the following properties:
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– Correctness is defined by two properties: hash correctness, which corresponds
to correctness for classical SPHFs, and an additional property called trapdoor
correctness, which states that, for any C ∈ Set, if hk and hp are honestly
generated, we have: VerHP(hp, full-aux, C) = 1 and Hash(hk, full-aux, C) =
THash(hp, full-aux, C, τ ′), with overwhelming probability;

– Smoothness is exactly the same as for SPHFs, except that in the Initialize
procedure, TSetup is also called, but while τ ′ is dropped, crs′ is forwarded
to the adversary (together with crs and τ);

– The (t, ε)-soundness property says that, given crs, τ and crs′, no adversary
running in time at most t can produce a projection key hp, a value aux,
a word C and valid witness w such that VerHP(hp, full-aux, C) = 1 but
THash(hp, full-aux, C, τ ′) 6= ProjHash(hp, full-aux, C, w), with probability at
least ε. The perfect soundness states that the property holds for any t and
any ε > 0.

It is important to notice that τ is not an input of THash and it is possible to use
THash, while generating crs with an algorithm which cannot output τ (as soon
as the distribution of crs output by this algorithm is indistinguishable from the
one output by Setup, obviously). For example, if τ contains a decryption key,
it is still possible to use the IND-CPA game for the encryption scheme, while
making calls to THash.

3.3 A Naive Construction of TSPHFs using NIZK

A naive solution to transform any SPHF into a TSPHF consists in replacing the
projection key hp by a pair (hp, π), where π is an extractable NIZK (ENIZK)
proof of the knowledge of a hashing key hk such that hp is the projection key
of hk. This is essentially the approach of [24]. In the TSPHF full version [7],
we show that this provides a correct, smooth and sound TSPHF. Intuitively
the hash correctness directly comes from the correctness of the original SPHF,
the trapdoor correctness and the soundness come from the extractability of the
ENIZK proof (and may not be perfect) and the smoothness comes from the
zero-knowledge property of the ENIZK proof. We also show some improvements
for this naive construction to make quite efficient TSPHFs, and in particular to
avoid having to do bit-by-bit Groth-Sahai ENIZK proofs. These improvements
can be seen as a generalization of the method proposed by Jutla and Roy in [22,
Section 8]. But even with these improvements, this naive construction is still
less efficient than the constructions described in the sequel.

4 Construction of DDH-based TSPHFs

In the SPHF full version [6], we propose a formal framework for SPHFs using
a new notion of graded rings, derived from [19]. It enables to deal with cyclic
groups, bilinear groups (with symmetric or asymmetric pairings), or even groups
with multi-linear maps. In particular, it helps to construct concrete SPHFs for
quadratic pairing equations over ciphertexts, which enable to construct efficient
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LAKE [5] for any language handled by the Groth-Sahai NIZK proofs, and so for
any NP-language (see Section 6.1).

However, we focus here on cyclic groups, with the basic intuition only, and
provide some illustrations. While we keep the usual multiplicative notation for
the cyclic group G, we use an extended notation: r� u = u� r = ur, for r ∈ Zp
and u ∈ G, and u ⊕ v = u · v, for u, v ∈ G. Basically, ⊕ and � correspond
to the addition and the multiplication in the exponents, that are thus both
commutative. We then extend this notation in a natural way when working on
vectors and matrices.

4.1 Generic Framework for GL-SPHF/KV-SPHF

Our goal is to deal with languages of ciphertexts LofCfull-aux: we assume that
crs is fixed and we write Laux = LofCfull-aux ⊆ Set where full-aux = (crs, aux).
Language Representation. For a language Laux, we assume there exist two
positive integers k and n, a function Γ : Set 7→ Gk×n, and a family of functions
Θaux : Set 7→ G1×n, such that for any word C ∈ Set, (C ∈ Laux) ⇐⇒ (∃λ ∈
Z1×k
p such that Θaux(C) = λ�Γ (C)). In other words, we assume that C ∈ Laux,

if and only if, Θaux(C) is a linear combination of (the exponents in) the rows
of some matrix Γ (C). For a KV-SPHF, Γ is supposed to be a constant function
(independent of the word C). Otherwise, one gets a GL-SPHF.

We furthermore require that a user, who knows a witness w of the member-
ship C ∈ Laux, can efficiently compute the above linear combination λ. This may
seem a quite strong requirement but this is actually verified by very expressive
languages over ciphertexts such as ElGamal, Cramer-Shoup and variants.

We briefly illustrate it on our KV-SPHF on CS: C = (u1 = gr1, u2 = gr2, e =
M · hr, v = (cdξ)r), with k = 2, aux =M and n = 5:

Γ =

(
g1 1 g2 h c
1 g1 1 1 d

)
λ = (r, rξ)

λ� Γ = (gr1, g
rξ
1 , g

r
2, h

r, (cdξ)r)

ΘM(C) = (u1, u
ξ
1, u2, e/M, v).

Essentially, one tries to make the first columns of Γ (C) and the first components
of Θaux(C) to completely determine λ. In our illustration, the first two columns
with u1 = gr1 and uξ1 = grξ1 really imply λ = (r, rξ), and the three last columns
help to check the language membership: we want u2 = gr2, e/M = hr, and
v = (cdξ)r, with the same r as for u1.
Smooth Projective Hash Function. With the above notations, the hashing
key is a vector hk = α = (α1, . . . , αn)

ᵀ $← Znp , while the projection key is, for
a word C, hp = γ(C) = Γ (C) � α ∈ Gk (if Γ depends on C, this leads to a
GL-SPHF, otherwise, one gets a KV-SPHF). Then, the hash value is:
Hash(hk, full-aux, C) def= Θaux(C)�α = λ� γ(C) def= ProjHash(hp, full-aux, C, w).

Our above Γ , λ, and ΘM immediately lead to our KV-SPHF on CS from the
Section 2.4: with hk = (η1, η2, θ, µ, ν)

$← Z5
p, the product with Γ leads to: hp =

(hp1 = gη11 g
θ
2h

µcν , hp2 = gη21 d
ν) ∈ G2, and

H = Hash(hk, (ek,m), C) def= u
(η1+ξη2)
1 uθ2(e/G(m))µvν

= (hp1hp
ξ
2)
r def= ProjHash(hp, (ek,m), C, r) = H ′.
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The generic framework detailed in the SPHF full version [6] also contains a secu-
rity analysis that proves the above generic SPHF is perfectly smooth: Intuitively,
for a word C 6∈ Laux and a projection key hp = γ(C) = Γ (C) � α, the vector
Θaux(C) is not in the linear span of Γ (C), and thus H = Θaux(C) � α is inde-
pendent from Γ (C) � α = hp. This also proves the Theorem 2 as a particular
case.

4.2 Efficient Construction of TSPHFs under DDH

We now explain how to construct a TSPHF in a bilinear group (p,G1,G2,GT , e),
from any SPHF constructed via the above framework, provided the SPHF does
not require pairings (as all the SPHFs described in this paper), and under an
additional assumption detailed later (for the smoothness to hold). To this aim,
we extend our notations with g1 � g2 = g2 � g1 = e(g1, g2), and scalars can
operate on any group element as before. Intuitively, our TSPHF construction
is such that all the “SPHF” part of the TSPHF is in G1, whereas the trapdoor
part is in G2. And the trapdoor part simply contains some representation of α,
representation which cannot be used without knowing the trapdoor τ ′.

The second CRS is a random element crs′ = ζ
$← G2, and its trapdoor is its

discrete logarithm τ ′, such that ζ = gτ
′

2 = τ ′ � g2. The hashing key hk = α is
the same as before. The projection key is the ordered pair hp = (γ,χ), where
γ is the same as before, and χ = ζ � α. The projection key is valid (i.e.,
VerHP(hp, full-aux, C) = 1) if and only if

χ ∈ Gn
2 and ζ � γ = Γ � χ, (1)

Then, for any word C ∈ Lfull-aux with witness w corresponding to the vector λ,
the hash value is

Hash(hk, full-aux, C) def= Θ(C)�α�g2 = λ�γ�g2 def= ProjHash(hp, full-aux, C, w).

Equation (1) means that χ can be written χ = τ ′ �α′, with α′ ∈ Znp verifying
γ = Γ�α′, i.e., hk′ = α′ is a valid hashing key for γ. We do not have necessarily
α = α′, however, for any word C ∈ Lfull-aux, we have and we set

λ� γ � g2 = Θ(C)�α′ � g2 = τ ′−1 �Θ(C)� χ def= THash(hp, full-aux, C, τ ′).

In the TSPHF full version [7], we prove the resulting TSPHF is computationally
smooth under the DDH assumption in G2, if the discrete logarithms of Γaux(C)
can be computed from τ . This latter assumption on Γaux(C) and τ is required
for technical reasons in the proof of smoothness. The correctness and the perfect
soundness are easy to prove from the construction, and so the resulting TSPHF
is correct, smooth and sound.

4.3 TSPHF on Cramer-Shoup Ciphertexts

We apply this technique to extend the SPHF on Cramer-Shoup ciphertexts from
Section 2 into a TSPHF. Let (p,G1,G2,GT , e) be a bilinear group. We consider
the same language and use the same notations as in Section 2 except we replace
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G by G1, g1 and g2 by g1,1 and g1,2 resp., and h by h1, while g2 is a generator of
G2.

To get a TSPHF, we choose a random scalar τ ′ in Zp and set crs′ = ζ = gτ
′

2 .
Then the hashing key, the projection key and the hash value of the TSPHF are
defined as follows:

hk = (η1, η2, θ, µ, ν)
$← Z5

p

hp = (hp1 = gη11,1g
θ
1,2h

µ
1c
ν , hp2 = gη21,1d

ν , hp3) ∈ G2
1 ×G5

2

where hp3 = (χ1,1 = ζη1 , χ1,2 = ζη2 , χ2 = ζθ, χ3 = ζµ, χ4 = ζν) ∈ G5
2

Hash(hk, (ek,m), C) = e(u1
(η1+ξη2)u2

θ(e/G(m))µvν , g2)

ProjHash(hp, (ek,m), C, r) = e((hp1hp2
ξ)r, g2)

The projection key is valid if and only if: e(hp1, ζ) = e(g1,1, χ1,1) · e(g1,2, χ2) ·
e(h1, χ3) ·e(c, χ4) and e(hp2, ζ) = e(g1,1, χ1,2) ·e(d, χ4). For any C ∈ LofC(crs,aux),
the hash value can be computed from C and τ ′ as THash(hp, (ek,m), C, τ ′):(

e(u1, χ1,1 · χξ1,2) · e(u2, χ2) · e(e/G(m), χ3) · e(v, χ4)
)1/τ ′

.

The resulting TSPHF is smooth under the DDH in G2, hence the global SXDH
assumption. More complex and concrete examples of TSPHFs can be found in the
TSPHF full version [7].

4.4 One-Round UC-Secure PAKE from TSPHF

We now show how our TSPHF can lead to a very efficient one-round PAKE,
secure in the UC framework with static corruptions. This is a slight variant of
the one-round PAKE from [24], where the SPHF and the SS-NIZK proofs are
replaced by a TSPHF, which can be much more efficient; and where, as in our
previous PAKE, we use the Cramer-Shoup encryption scheme as commitment
scheme, instead of the original inefficient IND-CCA encryption scheme based on
the Naor-Yung principle [26]. The concrete scheme is depicted in Figure 3. The
communication complexity is of 6 elements in G1 and 5 elements in G2 only in
each direction.

We show in the TSPHF full version [7] that the protocol actually works with
any TSPHF on an IND-CCA encryption scheme, and provide a full generic proof.
It is in the same vein as the KV’s proof but a bit more intricate for two reasons:
we do not assume a prior agreement of the session ID which makes our scheme a
truly one-round protocol; our TSPHF does not guarantee the smoothness (even
computationally) when the trapdoor τ ′ is known, and then, we have to modify
the order of the games to use this trapdoor at the very end only.

One can remark that the original scheme in [24] can be seen as an instantia-
tion of our scheme with the naive TSPHF based on NIZK (Section 3.3). Therefore,
the security of the original KV’s PAKE protocol is actually implied by our proof.
And our proof also shows that their construction can be simplified by remov-
ing the commitment of hk and replacing the SS-NIZK by an ENIZK proof of
knowledge of hk.
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CRS: ek and ζ ∈ G2 Common password: pw
Both users do the same:

– U , with expected partner U ′, generates hk $← Z5
p, hp ∈ G2

1 ×G5
2

and C = CS(`, ek, pw; r) ∈ G4
1, where ` = (U,U ′, hp).

U sends hp ∈ G2
1 ×G5

2 and C ∈ G4
1

– Upon receiving hp′ ∈ G2
1 ×G5

2 and C′ ∈ G4
1,

U checks the validity of hp′. If the validity check fails, U aborts, otherwise U sets
`′ = (U ′, U, hp′). U computes

skU = Hash(hk, (ek, pw), C′) · ProjHash(hp′, (ek,m), C, r)

= e(u′1
(η1+ξ

′αη2
)
u′2
θ
(e′/G(pw))µv′ν , g2) · e((hp′1hp

′
2
ξ
)r, g2)

Fig. 3. UC-Secure One-Round PAKE based on DDH

5 More Constructions of SPHFs

In this section, we first illustrate more our generic framework, by constructing
more evolved SPHFs, and then we show some interesting applications. One can
note that all these constructions are without pairings, the generic framework
can thus be used to extend them with trapdoors, with some more applications
presented in Section 7.

5.1 KV-SPHF for Linear Multi-Exponentiation Equations

We present several instantiations of KV-SPHFs, in order to illustrate our frame-
work, but also to show that our one-round PAKE protocol from Section 2.5 can be
extended to one-round LAKE [5]. In PAKE/LAKE, we use SPHFs to prove that the
plaintexts associated with some ElGamal-like ciphertexts verify some relations.
The communication complexity of these protocols depends on the ciphertexts
size and of the projection keys size. We first focus on ElGamal ciphertexts, and
then explain how to handle Cramer-Shoup ciphertexts. More constructions are
detailed in the SPHF full version [6].
Notations. We work in a group G of prime order p, generated by g, in which
we assume the DDH assumption to hold. We define ElGamal encryption scheme
with encryption key ek = (g, h = gx). Let n, m and t be three positive integers.
In the following i, j and k always range from 1 to n, from 1 to m and from 1 to
t respectively in all the products

∏
i,
∏

j,
∏

k and tuples (·)i, (·)j, (·)k. We are
interested in languages of the ciphertexts Ci = (ui = gri , ei = hri ·Xi), for which
X1, . . . , Xn ∈ G satisfy

∃y1, . . . , ym ∈ Zp,
∀k ∈ {1, . . . , t},

n∏
i=1

X
ak,i
i ·

m∏
j=1

A
yj
k,j = Bk, with crs = (p,G, ek, (Ak,j)k,j)

aux = ((ak,i)k,i, (Bk)k),
(2)

where (Ak,j)k,j ∈ Gt×m are public and known in advance (i.e., are in crs), while
((ak,i)k,i, (Bk)k) ∈ Zt×np ×Gt can be kept secret (i.e., can be in aux). This can be
seen as a system of t linear multi-exponentiation equations.
The Groth-Sahai Approach. Naive use of the Groth Sahai framework invites
us to also commit to scalars as Yj = gyj and to show that the plaintexts (Xi)i
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and (Yj)j satisfy:

∃y1, . . . , ym ∈ Zp, ∀k ∈ {1, . . . , t},
∏

iX
ak,i
i ·

∏
j A

yj
k,j = Bk,

∀j ∈ {1, . . . ,m}, Yj = gyj .

Since there is no efficient way to extract yj from Yj, committing to yj is often
not useful.
A First SPHF. We thus consider the language of the ciphertexts Ci = (ui =
gri , ei = hri · Xi), for X1, . . . , Xn ∈ G satisfying (2). The witnesses are (Xi)i,
(ri)i and (yj)j, or just (ri)i and (yj)j. The matrix Γ is the following one:

Γ =



g

1
. . .

1
g

h

1
. . .

1
h

1
A−11,1· · ·A−1t,1
...

...
A−11,m· · ·A−1t,m



Θaux(C) =
((∏

i u
ak,i
i

)
k
,
(∏

i e
ak,i
i /Bk

)
k

)
λ =

((∑
i ak,iri

)
k
, (yj)j

)
λ� Γ =

((∏
i g

ak,iri
)
k
,(∏

i h
ak,iri/

∏
j A

yj
k,j

)
k

)
The upper-left diagonal block imposes the first t values on λ, while the last
t columns define the t relations: The last t components of Θaux(C), namely∏

i e
ak,i
i /Bk =

∏
i h

ak,iri ·
∏

iX
ak,i
i /Bk (for k = 1, . . . , t), are equal to the last t

components of λ � Γ , namely
∏

i h
ak,iri/

∏
j A

yj
k,j ((yj)j are just the last t com-

ponents of λ), if and only if the relations in (2) are all satisfied. It thus leads
to the following KV-SPHF, with (hp1,k = gηkhµk)k and (hp2,j =

∏
k A
−µk
k,j )j, for

hk = ((ηk)k, (µk)k):

H =
∏

k

(∏
i
(uηki e

µk
i )/Bµk

k

)
=
∏

k
hp

∑
i ak,iri

1,k ·
∏

j
hp

yj
2,j = H ′.

As a consequence, the ciphertexts and the projection keys globally consist of
2n+t+m elements from G only. This is much more compact than the 2n+4m+t
elements one would get by additionally committing the (Yj = gyj)j.
Ciphertexts with Randomness Reuse. In some cases, even the constants
(ak,i)k,i can be public and known in advance, and thus moved from aux to crs. In
this case, one can furthermore shorten ElGamal ciphertexts by using multiple
independent encryption keys for encrypting the Xi’s: eki = (g, hi = gxi), for
i = 1, . . . ,m. This allows to reuse the same random coins [2]. More precisely,
we are now interested in the language of the ciphertexts C = (u = gr, (ei =
hri · Xi)i), for X1, . . . , Xn ∈ G still satisfying (2). This improves on the length
of the ciphertexts, from 2n group elements in G to n + 1, and the t first rows
of the matrix can be combined into the unique row (g,

∏
i h

a1,i
i , . . . ,

∏
i h

at,i
i ). It

thus leads to the following KV-SPHF, with hp1 = gη ·
∏

k(
∏

i h
ak,i
i )µk , (hp2,j =∏

k A
−µk
k,j )j, for hk = (η, (µk)k):

H = uη ·
∏

k

(∏
i
e
ak,i
i /Bk

)µk
= hpr1 ·

∏
j
hp

yj
2,j = H ′.

Globally, the ciphertexts and the projection keys consist of n+m+ 2 elements
from G: this is independent of the number of equations. This randomness-reuse
technique will be exploited in Section 6.2 for improving blind signature schemes.
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From ElGamal to Cramer-Shoup Encryption. In order to move from
ElGamal ciphertexts to Cramer-Shoup ciphertexts (when non-malleability is
required), if one already has Γ , Θaux, and Λ to guarantee that the ElGamal
plaintexts satisfy a relation, one simply has to make a bigger matrix, diagonal
per blocks, with the block Γ and the smaller blocks (Γk)k for every ciphertext
Ck, where each block Γk is the Cramer-Shoup matrix from Section 4.1 without
the fourth column (the column with h). The initial matrix Γ guarantees the
relations on the ElGamal sub-ciphertexts, and the matrices Γk guarantee the
validity of the Cramer-Shoup ciphertexts. Since some witnesses are the same,
some rows/columns can be packed together. More complex languages on Cramer-
Shoup ciphertexts will be exploited in Section 6.1, we thus illustrate how the
above combination can be optimized in the case of multi-exponentiation equa-
tions.
KV-SPHF on Cramer-Shoup Ciphertexts for Linear Multi-Exponen-
tiation Equations. Let us convert the above KV-SPHF to Cramer-Shoup ci-
phertexts, with some optimizations: we write C = (u1 = gr1, u2 = g2

r, e1 =
hr1 ·X1, . . . , en = hrn ·Xn, v = (cdξ)r), where ξ = HK(u1, u2, e1, . . . , en) ∈ Z∗p, for
X1, . . . , Xn ∈ G satisfying (2). We make the matrix more compact as follows,
with λ = (r, rξ, (yj)j):

Γ =


g1 1 g2

∏
i h

a1,i
i . . .

∏
i h

at,i
i c

1 g1 1 1 . . . 1 d

1
...
1

1
...
1

1
...
1

A−11,1· · ·A−1t,1
...

...
A−11,m· · ·A−1t,m

1
...
1

 .

This leads to the following KV-SPHF, with hp1 = gη11 g2
θ ·
∏

k(
∏

i h
ak,i
i )µk · cν ,

hp2 = gη21 d
ν , (hp3,j =

∏
k A
−µk
k,j )j, for hk = (η1, η2, θ, (µk)k, ν):

H = uη1+ξη21 · uθ2 ·
∏

k

(∏
i
e
ak,i
i /Bk

)µk · vν = (hp1hp
ξ
2)
r ·
∏

j
hp

yj
3,j = H ′.

5.2 GL-SPHF on Bit Encryption

Our general framework allows to construct KV-SPHFs for any language handled
by the Groth-Sahai NIZK proofs (see the SPHF full version [6]). While these
KV-SPHFs encompass the language of ciphertexts encrypting a bit, they require
pairing evaluations. We show here a more efficient GL-SPHF for bit encryption,
which does not need pairings.

Let us consider an ElGamal ciphertext C = (u = gr, e = hrgy), in which one
wants to prove that y ∈ {0, 1}. We can define the following matrix that depends
on C, hence a GL-SPHF:

Γ (C) =

g h 1 1
1 g u e/g
1 1 g h

 Θaux(C) = (u, e, 1, 1) λ = (r, y,−ry)
λ� Γ (C) = (gr, hrgy, (u/gr)y, (e/ghr)y)

Because of the triangular block in Γ (C), one sees that Θaux(C) = λ�Γ (C) if and
only if gy(y−1) = 1, and thus that y ∈ {0, 1}. With hp1 = gνhθ, hp2 = gθuη(e/g)λ,
and hp3 = gηhλ, for hk = (ν, θ, η, λ): H = uνeθ = hpr1 · hp

y
2/hp

ry
3 = H ′.
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6 More Applications of SPHFs

6.1 One-Round LAKE

Since we have shown that our framework allows to design KV-SPHFs for complex
languages, we extend our PAKE protocol to LAKE [5]. To this aim, we provide a
new security model, inspired from BPR [3] and a complete security proof, which
implies the security of our PAKE protocol from Section 2.5.
Review of Language-Authenticated Key Exchange. LAKE is a general
framework [5] that generalizes AKE primitives: each player U owns a word W
in a certain language L and expects the other player to own a word W ′ in a
language L′. If everything is compatible (i.e., the languages are the expected
languages and the words are indeed in the appropriate languages), the players
compute a common high-entropy secret key, otherwise they learn nothing about
the partner’s values. In any case, external eavesdroppers do not learn anything,
even not the outcome of the protocol: did it succeed or not?

More precisely, we assume the two players have initially agreed on a com-
mon public part pub for the languages, but then they secretly parametrize the
languages with the private parts priv: Lpub,priv is the language they want to use,
and Lpub,priv ′ is the language they assume the other player will use. In addition,
each player owns a word W in his language. We will thus have to use SPHFs
on ciphertexts on W , priv and priv ′, with a common crs = (ek, pub) and aux
with the private parameters. For simple languages, this encompasses PAKE and
Verifier-based PAKE. We refer to [5] for more applications of LAKE.
A New Security Model for LAKE. The first security model for LAKE [5]
has been given in the UC framework [13], as an extension of the UC security
for PAKE [14]. In this paper, we propose an extension of the PAKE security
model presented by Bellare, Pointcheval, and Rogaway [3] model for LAKE: the
adversary A plays a find-then-guess game against n players (Pi)i=1,...,n. It has
access to several instancesΠs

U for each player U ∈ {Pi} and can activate them (in
order to model concurrent executions) via several queries: Execute-queries model
passive eavesdroppings; Send-queries model active attacks; Reveal-queries model
a possible bad later use of the session key; the Test-query models the secrecy
of the session key. The latter query has to be asked to a fresh instance (which
basically means that the session key is not trivially known to the adversary)
and models the fact that the session key should look random for an outsider
adversary.

Our extension actually differs from the original PAKE security model [3] when
defining the quality of an adversary. The goal of an adversary is to distinguish
the answer of the Test-query on a fresh instance: a trivial attack is the so-
called on-line dictionary attack which consists in trying all the possibilities when
interacting with a target player. For PAKE schemes, the advantage of such an
attack is qs/N , where qs is the number of Send-queries and N the number of
possible passwords. A secure PAKE scheme should guarantee this is the best
attack, or equivalently that the advantage of any adversary is bounded by qs ×
2−m, where m is the min-entropy of the password distribution. In our extension,
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– Players U and U ′ both use ek and agreed on pub.
– U , with (priv, priv ′,W ), generates hk = HashKG(ek, pub)

and hp = ProjKG(hk, (ek, pub),⊥).
U computes ` = (U,U ′, hp) and C = Encrypt(`, ek, (priv, priv ′,W ); r), with r a random scalar
in Zp, and sends hp, C to U ′.

– Upon receiving hp′, C′ from U ′, it sets `′ = (U ′, U, hp′),
U computes H = Hash(hk, ((ek, pub), (priv ′, priv)), (`′, C′)),

H ′ = ProjHash(hp′, ((ek, pub), (priv, priv ′)), (`, C), r), and sk = H ·H ′.

For crs = (ek, pub) and aux = (priv, priv ′),

LofCcrs,aux =

{
(`, C)

∣∣∣∣ ∃r,∃W, C = Encrypt(`, ek, (priv, priv ′,W ); r)
and W ∈ Lpub,priv

}
.

Fig. 4. One-Round LAKE

for LAKE, the trivial attack consists in trying all the possibilities for priv, priv ′

with a word W in Lpub,priv.

Definition 3 (Security for LAKE). A LAKE protocol is claimed (t, ε)-secure
if the advantage of any adversary running in time t is bounded by qs × 2−m ×
SuccL(t) + ε, where m is the min-entropy of the pair (priv, priv′), and SuccL(t)
is the maximal success an adversary can get in finding a word in any Lpub,priv

within time t.

Note that the min-entropy of the pair (priv, priv′) might be conditioned to the
public information from the context.
Our Instantiation. Using the same approach as Katz and Vaikuntanathan for
their one-round PAKE [24], one can design the scheme proposed on Figure 4, in
which both users U and U ′ use the encryption key ek and the public part pub.
This defines crs = (ek, pub). When running the protocol, U owns a word W for
a private part priv, and thinks about a private part priv ′ for U ′, while U ′ owns
a word W ′ for a private part priv′, and thinks about a private priv for U .

This gives a concrete instantiation of one-round LAKE as soon as one can
design a KV-SPHF on the language LofC(ek,pub),(priv,priv ′) = {(`, C) | ∃r,∃W, C =
Encrypt(`, ek, (priv, priv ′,W ); r) and W ∈ Lpub,priv}. More precisely, each player
encrypts (priv, priv ′,W ) as a vector, which thus leads to C = (C1, C2, C3). We
then use the combination of three SPHFs: two on equality-test for the plaintexts
priv (for C1) and priv ′ (for C2), and one on LofC(ek,pub),priv for the ciphertext C3

of W ∈ Lpub,priv.
We stress that hk and hp can depend on crs but not on aux, hence the

notations used in the Figure 4. Using a similar proof as in [24], one can state the
following theorem (more details on the security model and the full proof can be
found in the SPHF full version [6]):

Theorem 4. If the encryption scheme is IND-CCA, and LofC(ek,pub),(priv,priv ′)

languages admit KV-SPHFs, then our LAKE protocol is secure.

From LAKE to PAKE. One can remark that this theorem immediately proves
the security of our PAKE from Figure 1: one uses priv = priv′ = pw and pub = ∅,
for the language of the ciphertexts of pw.
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6.2 Two-Flow Waters Blind Signature

In [9], the authors presented a technique to do efficient blind signatures using
an SPHF: it is still the most efficient Waters blind signature known so far. In
addition, the resulting signature is a classical Waters signature.

The construction basically consists in encrypting the message bit-by-bit un-
der distinct bases, that will allow the generation of a masked Waters hash of the
message. Thereafter, the signer will easily derive a masked signature the user
will eventually unmask. However, in order to generate the masked signature, the
signer wants some guarantees on the ciphertexts, namely that some ciphertexts
contain a bit (in order to allow extractability) and that another ciphertext con-
tains a Diffie-Hellman value. Using our new techniques, we essentially improve
on the proof of bit encryption by using the above randomness-reuse technique.
Construction. We refer the reader to [9] for the notations and to the SPHF
full version [6] for details on the proof, and also for the complete construction of
the GL-SPHF. Here, we give a sketch of the protocol (in which i always ranges
from 1 to `, except if stated otherwise) and its communication cost:
– Setup(1K), where K is the security parameter, generates a pairing-friendly

system (p,G1,G2,GT , e; g1, g2), with g1 and g2 generators of G1 and G2 re-
spectively, a random generator hs ∈ G1 as well as independent generators
u = (ui)i∈{0,...,`} ∈ G`+1

1 for the Waters hash function F(M) = u0
∏

i u
Mi
i ,

for M = (Mi)i ∈ {0, 1}`, and finally random scalars (xi)i ∈ Z`p. It also
sets ek = (hi)i = (gxi1 )i and gs =

∏
i hi. It outputs the global parameters

param = (p,G1,G2,GT , e, g1, g2, ek, gs, hs,u). Essentially, g1 and ek compose
the encryption key for an ElGamal ciphertext on a vector, applying the
randomness-reuse technique, while gs, g2 and hs are the bases used for the
Waters signature;

– KeyGen(param) picks at random x ∈ Zp, sets the signing key sk = hxs and
the verification key vk = (gxs , g

x
2 );

– BSProtocol〈S(sk),U(vk,M)〉 runs as follows, where U wants to get a signa-
ture on M = (Mi)i ∈ {0, 1}`:
• Message Encryption: U chooses a random r ∈ Zp and encrypts uMi

i for
all the i’s with the same random r: c0 = gr1 and (ci = hriu

Mi
i )i. U also

encrypts vkr1, into d0 = gs1, d1 = hs1vk
r
1, with a different random s: It

eventually sends (c0, (ci)i, (d0, d1)) ∈ G`+3
1 ;

• Signature Generation: S first computes the masked Waters hash of the
message c = u0

∏
i ci = (

∏
i hi)

rF(M) = grsF(M), and generates the
masked signature (σ′1 = hxsc

t = hxsg
rt
s F(M)t, σ2 = (gts, g

t
2)) for a random

t
$← Zp;

• SPHF: S needs the guarantee that each ElGamal ciphertext (c0, ci) en-
crypts either 1 or ui under the key (g1, hi), and (d0, d1) encrypts the
Diffie-Hellman value of (g1, c0, vk1) under the key (g1, h1). The signer
chooses a random hk = (η, (θi)i, (νi)i, γ, (µi)i, λ) and sets hp1 = gη1 ·∏

ih
θi
i · vk

λ
1 , (hp2,i = uθii c

νi
0 (ci/ui)

µi)i, (hp3,i = gθi1 h
µi
i )i, and hp4 = gγ1h

λ
1 ,

then H = cη0 ·
∏

ic
θi
i · d

γ
0 · dλ1 = hpr1 ·

∏
ihp

Mi
2,i · hp

−rMi
3,i · hps4 = H ′ ∈ G1. This

SPHF is easily obtained from the above GL-SPHF on bit encryption, as
shown in the SPHF full version [6];
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• Masked Signature: S sends (hp, Σ = σ′1 ·H, σ2) ∈ G2`+3
1 ×G2;

• Signature Recovery: Upon receiving (hp, Σ, σ2), using his witnesses and
hp, U computes H ′ and unmasks σ′1. Thanks to the knowledge of r, it
can compute σ1 = σ′1 ·(σ2,1)−r. Note that if H ′ = H, then σ1 = hxsF(M)t,
which together with σ2 = (gts, g

t
2) is a valid Waters signature on M ;

– Verif(vk,M, (σ1, (σ2,1, σ2,2)), checks whether both e(σ2,1, g2) = e(gs, σ2,2) and
e(σ1, g2) = e(h, vk2) · e(F(M), σ2,2) are satisfied or not.

Complexity. The whole process requires only 3`+ 7 elements in G1 (`+ 3 for
the ciphertexts, 2` + 4 for the projection key, Σ and σ2,1) and 1 in G2 (σ2,2).
This is more efficient than the instantiation from [9] (5`+ 6 elements in G1 and
1 in G2) already using an SPHF, and much more efficient than the instantiation
from [8] (6`+7 elements in G1 and 6`+5 in G2) using a Groth-Sahai [21] NIZK
proof.

7 Application of TSPHFs to Zero-Knowledge Arguments

In this section, we are interested in the application of SPHFs and TSPHFs to
zero-knowledge arguments. Zero-knowledge arguments are used to convince a
verifier that some statement or word x is in a given NP-language L, defined by
a polynomial time relation R: L = {x | ∃(w, y), R(x, (w, y)) = 1}. This means
that a word x is valid if there exists a witness (w, y) such that R(x, (w, y)) = 1.
The witness is divided in two parts (w, y): we want to prove that we know some
w for which there exists y such that R(x, (w, y)) = 1. We use the notation of [12]
and write this as:

Kw, ∃y, R(x, (w, y)) = 1.

This formalism generalizes both extractable arguments of knowledge (when
y = ⊥) and non-extractable zero-knowledge arguments (when w = ⊥). More
precisely, we are interested in (partially) extractable zero-knowledge arguments
(E-ZK) and extractable honest-verifier zero-knowledge arguments (HVE-ZK).
E-ZK have to be complete, sound, extractable and zero-knowledge. Complete-
ness states that an honest verifier always accepts a proof made by an honest
prover for a valid statement and using a valid witness. Soundness states that
no adversary can make an honest verifier accept a proof of a false statement x.
Extractability states that there exists an extractor able to simulate a verifier
and to output a valid partial witness w from any successful interaction with
an adversary playing the role of a prover. The zero-knowledge property ensures
that it is possible to simulate a prover for any true statement x even without
access to a witness (w, y) for this statement x. HVE-ZK are similar to E-ZK
with the difference, that for HVE-ZK, the zero-knowledge property holds only
when verifiers are honest. Formal definitions can be found in the TSPHF full
version [7].

We first show that SPHFs enable efficient constructions of HVE-ZK argu-
ments. But these constructions are often not witness-indistinguishable, i.e., a
malicious prover may be able to distinguish which witness has been used by
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an honest prover2, in general. Then we show that TSPHFs can overcome this
limitation and we provide efficient constructions of E-ZK from TSPHFs.

7.1 Honest-Verifier Zero-Knowledge Arguments from SPHFs

The idea of the construction is that a prover, who knows some valid statement x
together with a valid witness (w, y), encrypts w, using an IND-CPA encryption
scheme, in some ciphertext C, under some encryption key ek contained in crs.
Then, using an SPHF, he shows that the ciphertext C is an encryption of a valid
partial witness w for the word x: the verifier chooses some hashing key hk and
sends the corresponding projection key hp to the prover; the prover sends back
the hash value H of the ciphertext C computed from hp, w, y and the random
coins used in C, using ProjHash; and the verifier checks he gets the same hash
value from hk, using Hash. If the SPHF is a KV-SPHF, the prover can send the
ciphertext C together with H after receiving hp from the verifier. This yields a
two-flow protocol. More precisely, we use a KV-SPHF for the following language:

LofCfull-aux = {C | ∃w, ∃r, ∃y, C = Encrypt(ek, w; r) and R(x, (w, y))},

where aux is the statement x, and crs contains the encryption key ek and possibly
some global parameters related to the language L associated with the relationR.
The complete protocol is depicted in Figure 5. In all this section, aux is public,
and so it is no more required that ProjHash does not use its input aux.

It is possible to use a GL-SPHF instead of a KV-SPHF for the above language,
if the ciphertext C is sent before hp. The protocol becomes three-flow but can
require fewer bits to be transmitted, because GL-SPHFs are often more efficient
than KV-SPHFs. Details can be found in the TSPHF full version [7].

Completeness comes from the correctness of the SPHF and soundness comes
from the statistical smoothness of the SPHF. The extractor just acts as an honest
verifier and decrypts the ciphertext C of the adversarial prover at the end.
The simulator for the honest-verifier zero-knowledge property just encrypts an
arbitrary value in C and computes H using hk: H = Hash(hk, full-aux, C). The
IND-CPA property of the encryption scheme used for C ensures the simulator
transcripts are computationally indistinguishable from real transcripts, and so
the proposed construction is honest-verifier zero-knowledge.

7.2 Limitation of SPHFs

Unfortunately, without any extra property on the SPHF, the above construction
is not witness indistinguishable, and so not zero-knowledge, in general. The main
problem is that, for some SPHFs, it may be possible to generate hp in such a
way that the hash value H computed by the prover (through ProjHash) depends
on the witness used. This happens, in particular, when the language LofCfull-aux
of the SPHF (and also the language L of the HVE-ZK) is a disjunction of two
languages and when the generic construction of [1] for disjunctions is used to
construct the SPHF.
2 The formal definition of witness-indistinguishability can be found in the TSPHF full version [7].
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Prover Verifier
Input: (aux = x, (w, y)) Input: aux = x

hp←−−−−−−
hk

$← HashKG(full-aux)
hp← ProjKG(hk, full-aux,⊥)

C ← Encrypt(ek, w; r)
H ← ProjHash(hp, full-aux, C, (w, r, y))

C,H−−−−−−→
H ′ ← Hash(hk, full-aux, C)
if H = H ′ then accept
else reject

Fig. 5. Extractable Honest-Verifier Zero-Knowledge Argument from KV-SPHFs.

Prover Verifier
Input: (aux = x, (w, y)) Input: aux = x

hp←−−−−−−
hk

$← HashKG(full-aux)
hp← ProjKG(hk, full-aux,⊥)

if VerHP(hp, full-aux,⊥) = 0 then
abort

C ← Encrypt(ek, w; r)
H ← ProjHash(hp, full-aux, C, (w, r, y))

C,H−−−−−−→
H ′ ← Hash(hk, full-aux, C)
if H = H ′ then accept
else reject

Fig. 6. Extractable Zero-Knowledge Argument from KV-TSPHFs

The previous problem does not happen for SPHFs where it is easy to distin-
guish valid hp from invalid ones, such as all SPHFs of this article. However, even
in this case, we do not see how to prove that the resulting generic construction
yields a zero-knowledge argument, because, if the simulator does not have access
to hk, but only to hp, there is no trivial way to compute H.

7.3 Zero-Knowledge Arguments from TSPHFs

Let us now introduce our generic two-flow construction of E-ZK arguments from
TSPHFs. The scheme is depicted in Figure 6. It is similar to the above generic
construction of HVE-ZK arguments from SPHFs, except the KV-SPHF is replaced
by a KV-TSPHF and the verifier aborts if the received hp is not valid.

It is also possible to use a GL-TSPHF (instead of a KV-TSPHF), at the expense
of requiring three flows instead of two. In addition, if the IND-CPA encryption
scheme is replaced by a labeled IND-CCA encryption scheme and the TSPHF
is adapted, the resulting zero-knowledge argument becomes true-simulation ex-
tractable, which roughly means that it is possible to extract the witness of any
successful proof from an adversarial prover, even if this adversarial prover has
access to simulated transcripts of true statements. Details can be found in the
TSPHF full version [7].

Completeness and correctness can be proven as above. For the zero-knowledge
property, the simulator consists in encrypting an arbitrary value in C and com-
puting H using hp and the trapdoor τ ′: THash(hp, full-aux, C, τ ′). This works
thanks to the IND-CPA property of the encryption scheme.
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Soundness and extractability are slightly more complex to prove and require
that, for any w and x, knowing τ provides a way to test whether x is valid
and w is a partial witness of x, with overwhelming probability. This property
is actually always verified by TSPHFs constructed as in Section 4.2. Proofs are
given in the TSPHF full version [7].

7.4 Instantiations and Comparison with Ω-Protocols

Let us consider the KV-SPHFs on ElGamal ciphertexts of Section 5.1, in which
possibly some of the ak,i’s, Ak,j’s and Bk’s are moved from crs to aux, which is
possible here, since ProjHash is now allowed to depend on aux. If we apply the
generic constructions of HVE-ZK and E-ZK to these KV-SPHFs (after transform-
ing them to KV-TSPHFs, using the generic transformation of Section 4.2, for the
E-ZK construction), we get HVE-ZK and E-ZK for languages of systems of linear
multi-exponentation relations in cyclic groups:

K(Xi)i ∈ Gn, ∃(yj)j ∈ Zmp , ∀k ∈ {1, . . . , t},
n∏
i=1

X
ak,i
i ·

m∏
j=1

A
yj
k,j = Bk,

where a statement x is a tuple containing all the constants ak,i, Ak,j and Bk, or
some of them (in this case, the other constants are in crs).

Compared to Ω-protocols [18], which are the classical way to do a HVE-ZK,
our HVE-ZK protocol from KV-SPHFs is two-flow instead of three-flow and has
a lower communication complexity. Whereas our E-ZK protocol from TSPHFs is
still two-flow instead of three-flow, it verifies a stronger notion of security (zero-
knowledge versus honest-verifier zero-knowledge) and has just a slightly greater
communication complexity.
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