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Netlist language

Very simple

Inspired by the course and the instructions

Easily manipulable by the teachers

Examples

o = clk2(){
o=Z(c)
c=˜ Z(o)

}

s,r = FullAdd(a,b,c){
s = aˆ bˆ c
r = (a & b) | ((aˆ b) & c)
inst o = clk2 () # useless

}
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PHP Netlist language

Drawback: no high-level functions (loops, recursion...)

⇒ Solution: PHP as a Netlist generator

Easy mix of PHP code and netlist language

Netlists are true overview of real circuits
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PHP Netlist language (example)

Example

m = main(<?=listV(”a”,0,$m)? >,<?=listV(”s”,0,$n)? >){
inst m = mux3(<?=listV(”a”,0,$m)? >,<?=listV(”s”,0,$n)? >)
}

Gives for $ m = 3 and $ n = 5

m = main(a[2],a[1],a[0] , s[4],s[3],s[2],s[1],s[0]){
inst m = mux3(a[2],a[1],a[0] , s[4],s[3],s[2],s[1],s[0])
}
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Specifications of the simulator

Ability to set cycle frequency.
Two modes:

Simple interpretation

Compilation towards C++: circuits run like a program

Outputs:

Truthtable

Seven segments interface

Timing diagram
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Circuit watch

1st watch: circuit watch (huge circuit)
⇒ Demonstration
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General presentation

Close to MIPS in order to use our OCAML Compiler.

Harvard architecture
(instruction bus separated from data bus).

One instruction per clock cycle.

Bus length, register length/number, ...

All is 16 !
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General presentation

16 registers of 16 bits

16 bits instructions

Up to 64 K instructions (ROM) (16 bits address length)

Up to 2×64 KB of data RAM (16 bits address/data length)
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Special instructions/features

Up to 8 (+2 for the timer) output ports and 8 (+2 for the
timer) input ports of 16 bits
−→ controlled by input/output instructions.

Sleep instruction

One 16 bits clock timer

Incremented each clock cycle.
Timer period controlled by an output port.
Wake up microprocessor each time it reaches its period.
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External interfaces

Input Output

0-7 real 16 bits input port 0-7 real 16 bits output port 0-7

8 16 bits timer period

9 16 bits timer
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MIPS comparison

MIPS Our microprocessor

Registers 32 × 32 bits 16 × 16 bits

ALU + − × ÷ mod + −

& | ⊕ � � not & | ⊕ �1 not

Conditional branch on a comparision last result (zero, carry)

Special instructions syscall input, output, sleep

Special features 16 bits timer
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Assembly translator

Translates assembly code in machine language (integer
instructions)

Replace labels

Pseudoinstructions : (addui : add a register with a literal)

Simulation in C
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Example

li W0 5 ; W0 <- 5

output 0 W0 ; output W0=5 on port 0

input W1 1 ; read port 1 in W1

addu W1 W1 W0 ; W1 <- W1 + W0

output 0 W1 ; output result on port 0
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Netlist realisation

ROM
Instructions

counter
add by one or

change by jump

Select
4 bits

jump

Source1
4 bits

Source2
4 bits

Destination
4 bits

addu

subu
...

xor

16 bits

16 bits

Mux

16 bits

16 bits

16 bits

ALU carryzero

16 bits

1 bit registers
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Assembly watch

2nd watch: assembly watch (slower)
⇒ Demonstration
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Compilation I

Compile OCAML on our microprocessor thanks to MIni MOdules
(MIMO) project:

Add some OCAML functions (sleep, inputs, outputs)

Software multiplication, division, modulo

Software heap management

Conditional branch conversion

Terminal recursion management
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Compilation II

Drawbacks:

not very well optimized

longer code due to use of stack
(manual watch: only registers !)

big assembly file (1299 line in generated assembly watch
instead of 129 in manual assembly watch)
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Compilation III

Advantages of OCAML (high level language):

easy function call

automatic heap/stack management (for big project)

transparent use of software operation (multiplication, division)

easy debugging (just use OCAML executable)

3rd watch: OCAML watch
⇒ Demonstration
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Netlist

Asm

Ocaml

Compilation Mode Interpreting Mode

6.0× 106 1.5× 106

0.96× 106 0.09× 106

0.96× 106 0.10× 106

Speed Comparison between Different Modes and Different Watches

Number of cycles simulated per minute

Fabrice Ben Hamouda, Yoann Bourse, Hang Zhou Microprocessor project: Digital watch


	Netlists and simulator
	Netlists
	Specifications of the simulator
	Circuit watch

	Global functionning
	Microprocessor
	Instruction set - specifications
	Assembly translator
	Netlist realisation
	Assembly watch

	Results
	Compilation
	Results overview


