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Significance

Integrative and conjugative 
elements (ICEs) are mobile 
genetic entities that can 
introduce genes conferring 
fitness advantages to their 
bacterial hosts. ICEs associated 
with Pseudomonas syringae plant 
pathogens were discovered in 
2000 and have since been shown 
to be responsible for the 
movement of virulence and 
antimicrobial resistance genes. 
We identified previously 
undetected ICEs within the  
P. syringae species complex that 
define a new family. Tn6212, a 
mobile genetic element with 
metabolism-associated genes, 
has recently invaded the  
P. syringae species complex via 
ICEs. Tn6212 carries a set of 
genes that reprogram 
metabolism in the bacterial  
cell to maximize growth.  
The manipulation of bacterial 
host cell metabolism by Tn6212 
can allow pathogens to rapidly 
capitalize on preferred carbon 
sources during niche colonization.
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Integrative and conjugative elements (ICEs) are self-transmissible mobile elements that 
transfer functional genetic units across broad phylogenetic distances. Accessory genes 
shuttled by ICEs can make significant contributions to bacterial fitness. Most ICEs 
characterized to date encode readily observable phenotypes contributing to symbiosis, 
pathogenicity, and antimicrobial resistance, yet the majority of ICEs carry genes of 
unknown function. Recent observations of rapid acquisition of ICEs in a pandemic 
lineage of Pseudomonas syringae pv. actinidae led to investigation of the structural and 
functional diversity of these elements. Fifty-three unique ICE types were identified across 
the P. syringae species complex. Together they form a distinct family of ICEs (PsICEs) 
that share a distant relationship to ICEs found in Pseudomonas aeruginosa. PsICEs are 
defined by conserved backbone genes punctuated by an array of accessory cargo genes, 
are highly recombinogenic, and display distinct evolutionary histories compared to their 
bacterial hosts. The most common cargo is a recently disseminated 16-kb mobile genetic 
element designated Tn6212. Deletion of Tn6212 did not alter pathogen growth in 
planta, but mutants displayed fitness defects when grown on tricarboxylic acid (TCA) 
cycle intermediates. RNA-seq analysis of a set of nested deletion mutants showed that 
a Tn6212-encoded LysR regulator has global effects on chromosomal gene expression. 
We show that Tn6212 responds to preferred carbon sources and manipulates bacterial 
metabolism to maximize growth.

horizontal gene transfer | mobile elements | plant–microbe interactions | microbial evolution

Mobile genetic elements, such as plasmids and integrative and conjugative elements (ICEs), 
can move functional genetic units over broad phylogenetic distances, mediating abrupt 
changes in niche preferences and even contributing to speciation (1, 2). Sequence analyses 
suggest that ICEs are the most abundant type of conjugative element in bacteria (3). ICEs 
are chromosomally integrated elements that are passively replicated as a part of the genome 
but are capable of horizontal transmission facilitated by their encoded excision and con-
jugation systems. During the process of conjugation, ICEs excise and form circular inter-
mediates. A conjugative relaxase introduces a single-strand nick, and the ICE is then 
transferred to the recipient cell via a type IV conjugation apparatus. Site-specific integration 
of reconstituted double-stranded DNA occurs in the recipient cell (4–6). Genes encoding 
integration, excision, conjugation, and regulation are typically encoded within modules 
referred to as “backbone” genes (6). In addition to essential genes, ICEs carry variable sets 
of accessory or “cargo” genes that make contributions to both ICE and host cell fitness. 
These include genes with functions associated with biofilm formation, pathogenicity and 
symbiosis, bacteriocin synthesis, and antibiotic and heavy metal resistance (4, 5, 7).

Pseudomonas syringae is a model organism for the study of microbial evolution and 
plant–microbe interactions due to its ubiquity in both agricultural and nonagricultural 
areas. Different lineages of P. syringae are responsible for frequent outbreaks of disease in 
a variety of crop plants, and P. syringae can be found in association with wild plants, leaf 
litter, rivers, snowpack, and even clouds (8–11). P. syringae is more appropriately referred 
to as a species complex, comprising 13 divergent phylogroups (PGs) (12). Although  
P. syringae is among the most well-studied bacterial plant pathogens, only eight related 
ICEs have been described among 901 complete and draft genomes of members of the  
P. syringae species complex (13–16).

The emergence of a new lineage of P. syringae pv. actinidae (Psa) resulted in a global 
outbreak of bleeding canker disease on kiwifruit (Actinidia spp.), with severe consequences 
for agricultural production in Europe, Asia, New Zealand, Australia, and Chile (17). 
Population genomic analyses of Psa revealed that the global outbreak was caused by a 
pandemic sublineage that emerged from a more diverse population of Psa-3 (18). Separate 
introduction events of this clonal sublineage resulted in outbreaks in nearly all kiwifruit 
growing regions of the world. Initial genome comparisons showed the outbreak strains 
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sampled from Italy, New Zealand, and Chile, which varied by very 
few single nucleotide polymorphisms (SNPs) across the core 
genome, independently acquired three divergent ~100-kb ICEs 
during their global journey. The three ICEs have syntenic back-
bones sharing ∼75% nucleotide identity and carry identical 16-kb 
regions flanked by short palindromic sequences. Although these 
16-kb regions lack features typical of transposons, they were labe-
led Tn6212 (19) [also referred to as “enolase regions” (15)] and 
predicted to be linked to virulence of the pandemic sublineage of 
Psa-3 (15, 19). After introduction of Psa-3 in New Zealand, where 
foliar copper sprays are frequently used to suppress infections, 
genomic surveillance revealed that Psa-3 acquired a diverse pool 
of ICEs conferring copper resistance (16).

Well-characterized ICEs carry accessory genes that confer 
strong phenotypes, such as pathogenicity, antimicrobial resist-
ance, and nodulation/nitrogen fixation (6); however, many ICEs 
transport uncharacterized cargo. We sought to determine the 
distribution and evolutionary history of the only known family 
of ICEs in P. syringae and assess the prevalence of Tn6212 and 
its contribution to bacterial host fitness. We identified a total of 
207 ICEs present among six different PGs of the P. syringae spe-
cies complex. This pool of ICEs is composed of 53 distinct ICEs. 
Hotspots of cargo gene exchange were observed within otherwise 
conserved ICE backbones. Although a diverse cargo of accessory 
genes was identified, Tn6212 was the most common, present 
across 175 ICEs. We then sought to determine whether its car-
riage changes bacterial host phenotypes in plant-associated envi-
ronments. We found that Tn6212 alters bacterial host gene 
expression, conferring a fitness benefit during growth on tricar-
boxylic acid cycle intermediates. While research on plant–path-
ogen interactions often focuses on plant immunity, our results 
suggest that ICEs may play a role in adaptation of pathogens to 
the plant host environment by fine-tuning metabolism in response 
to host-derived cues.

Results

An Expanded Family of ICEs Is Circulating in the P. syringae 
Species Complex. Bacterial whole genome sequences (updated 
to November 2017) and complete bacterial genomes (updated 
to July 2021) in the NCBI GenBank were interrogated 
using BLASTn (20) with ICEPsaCL1 (15), ICEPsaI10 (15), 
ICEPsaNZ13 (15), ICEPsyB728a (14), and ICEPph1302A (21) 
as queries (SI Appendix, Table S1) to identify related ICEs. This 
search resulted in a collection of 207 ICEs, collectively referred to 
as PsICEs (SI Appendix, Table S1). The 207 PsICEs (SI Appendix, 
Table S1) were found integrated in the 3′ end of two tRNA-Lys 
genes, 41% in att-2 and 32% in the att-1 site (in the remaining 
27%, the contig was too short to infer the position of the tRNA-
Lys). The integration leads to the formation of 52-bp direct 
repeats flanking the PsICEs (22) that allow delineation of the 
ICE sequence. The first integration site (att-1) is proximal to clpB 
(Psa NZ13 IYO_024910), and the second site (att-2) is proximal 
to queC (Psa NZ13 IYO_008010) (15, 22). ICEPs309-1 was 
integrated in a tRNA-Lys not adjacent to clpB or queC (att-3). 
Although BLASTn searches were not restricted to any bacterial 
species, only ICEs present in plant-associated Pseudomonas spp. 
[i.e., P. syringae species complex (11, 23)] were identified. PsICEs 
were harbored by diverse strains belonging to PGs 1, 2, 3, 4, 7, 
and 13 (SI Appendix, Fig. S1) (12). PsICEs in PG1 strains are 
overrepresented due to the availability of Psa genomes isolated 
from kiwifruit in China, South Korea, and Japan (18) (BioProject: 
PRJNA1018409). This constitutes a source of sampling-generated 
bias.

SNPs conserved across all 207 PsICEs were used to produce a 
phylogram (Fig. 1). Inter-ICE recombination (4, 7, 16) and the 
limited size of the aligned fragment (1,975 bp) mean that the 
resulting phylogram should be treated with caution and should 
not be considered a reliable representation of ICEs’ evolutionary 
history (Fig. 1, Inset). It is notable, however, that the largest cluster 
includes ICEs isolated from kiwifruit in New Zealand, China, 
Japan, and South Korea from 2010 onward. Interestingly, ICEs 
from divergent P. syringae isolated from larkspur in 1957 
(ICEPdp529), hazel in 1991 (ICEPav013), and ryegrass in 1967 
(ICEPar4457) fall into the same cluster. This cluster includes the 
canonical ICEPsaNZ13. ICEs within this cluster that share the 
same set of accessory genes as ICEPsaNZ13 (see below) are hence-
forward referred to as ICEPsaNZ13-like elements.

Consistent with their capacity for horizontal transfer, PsICE 
distribution is incongruent with host strain phylogeny (SI Appendix, 
Fig. S1). Overall, PsICEs show no correlation with year, plant, or 
geographic location of bacterial host (Fig. 1). For example, 
ICEPsaNZ13-like elements are present in bacterial isolates dis-
tributed across multiple PGs, including PG1 (pandemic sublineage 
Psa-3 strains), PG2 (P. syringae pv. avellanae ISPaVe013), and PG4 
(P. coronafaciens pv. atropurpurea ICMP4457). ICEPsaC15-like 
and ICEPsaC3-like elements are highly similar and have been 
isolated in both P. syringae PG1 (Psa) and P. savastanoi (PG3) host 
strains found in association with kiwifruit in China. Conversely, 
distinctly different ICEs are present in otherwise closely related 
host strains isolated from the same plant host in the same geo-
graphical area. ICEs from different years sometimes cluster 
together, for example, the aforementioned ICEPdp529 (1957) 
and ICEPar4457 (1967) group with ICEPsaNZ13-like elements 
isolated in 2016.

To identify ICEs in Pseudomonas genomes other than those of 
P. syringae, the NCBI GenBank repository (excluding P. syringae) 
was interrogated in April 2017 with the ICEPsaNZ13 DEAD-box 
helicase protein sequence, the most highly conserved gene among 
all PsICEs. Forty-four ICEs carrying DEAD-box helicases were 
identified in 41 Pseudomonas genomes, 82% of which were 
Pseudomonas aeruginosa (SI Appendix, Table S2). All ICEs were inte-
grated in one of the two att sites described for PsICEs, with the 
exception of an ICE in P. aeruginosa PA38182, which did not harbor 
recognizable att sites. Thirty-three ICEs were part of the 
pKLC102/PAGI-2 family of ICEs (24) (SI Appendix, Table S2). 
Although the pKLC102/PAGI-2 and PsICEs form clearly distinct 
families (SI Appendix, Fig. S2), most of the conserved ICE life 
cycle genes are shared among the two families and are syntenic 
(SI Appendix, Fig. S2). This finding thus places the PsICEs in a 
broader context of ICEs found in the gammaproteobacteria (25).

Conservation of Genetic Organization Despite Frequent Inter-
ICE Recombination. ICE sequences are typically composed of 
conserved backbone genes (involved in ICE life cycle function) 
and variable accessory (or cargo) genes. Identification of the PsICE 
backbone was guided by identification of the set of genes present 
among at least 93% of all ICEs using ROARY (26). The backbone 
consists of a set of 62 genes (~56 kb) predicted to be involved in 
ICE maintenance, regulation and transmission, as well as a number 
of conserved hypothetical proteins (SI  Appendix, Fig.  S3 and 
Table S3). Homologs of these genes in other ICEs have been shown 
to encode a conjugative pilus (pil), ICE transfer (tra), partitioning 
(par) and integration (int) functions (6). The relaxed criterion 
chosen here (present in at least 93% ICEs) reflects the possibility of 
misassembly or gene deletion events (SI Appendix, Fig. S3). PsICE 
backbone genes are syntenic, with an average nucleotide identity 
across all genes of 86.4%. Average nucleotide identity varies between D
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Fig. 1.   PsICEs are a large family of ICEs in the P. syringae species complex. An alignment of conserved positions in all PsICEs identified in the P. syringae species 
complex was generated using REALPHY. The 1,975 bp alignment was used to build a Neighbor Joining tree with 100 bootstrap replicates. The tree was rooted 
at midpoint. The Inset panel shows Neighbor-Net generated in SplitsTree using a concatenated alignment of backbone genes conserved in all 53 nonredundant 
ICEs. The scale bar indicates substitutions per site. Colors of terminal nodes indicate the phylogroup of the bacterial host genome harboring each PsICE; asterisks 
before PsICE names indicate nonredundant ICEs. Column A depicts the geographic location of the bacterial host; columns B and C show the plant host from 
which the bacterium was isolated and the year of isolation, respectively. Numbers at nodes represent bootstrap support values; only values >70 are shown. 
The scale bar indicates substitutions per site.
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94.1% for the gene encoding the DEAD-box helicase and 74.8% 
for a hypothetical protein-encoding gene (backbone gene #27). 
When distantly related PsICEs are compared (e.g., ICEPsaNZ13 vs. 
ICEPsaI10 and ICEPsaNZ13 vs. ICEPs309-1), the pairwise identity 
of the DEAD-box helicase gene decreases to 92.7% and to 70.3%, 
respectively (SI Appendix, Fig. S3).

Despite conservation of genes required for core ICE function 
and mobility, signatures of recombination are evident among 
ICEs. Backbone gene trees display phylogenetic incongruity (ILD 
tests, P of type I error = 0.01) (27). ClonalFrameML (28) detects 
several recombination events in an alignment of concatenated 
backbone genes, and Neighbor-net (29) produces a highly retic-
ulated network with a statistically significant Phi test for recom-
bination (P < 0.0001) (Fig. 1, Inset and SI Appendix, Fig. S4) (30). 
Finally, an alignment-free method of sequence comparison (31) 
indicates each PsICE is a chimera of other PsICEs, with short 
stretches of sequence displaying no homology to any known PsICE 
(SI Appendix, Table S4). Thus, inter-ICE recombination is ram-
pant, has shaped PsICE evolution and diversity, and obscured 
evolutionary history.

Variable Cargo Genes Are Present in PsICE Insertion Hotspots. 
A subset of 53 nonredundant PsICEs was identified from the 
initial 207 PsICEs based on their position in the Neighbor 
Joining tree and on differences in gene content within clusters 
(SI  Appendix, Table  S1 and Fig.  1). This set of nonredundant 
PsICEs was used for all subsequent analyses. Comparison of the 
53 nonredundant PsICEs reveals that the backbone serves as a 
scaffold for variation introduced at ten specific regions, referred to 
as cargo regions (CR). The CRs are found in intergenic positions, 
with the exception of CR9, an integration hotspot likely driven 
by the presence of rulAB (genes involved in ultraviolet tolerance 
and SOS response) (32) (Fig.  2). The integration of genes in 
CR9 results in the partial deletion of rulA or rulB. EGGNOG 
functional prediction (33) of the complete set of cargo genes 
shows that 70% have no predicted function. Some cargo genes 
are notably abundant: Tn6212 is integrated into CR4 in 30 of the 
53 nonredundant PsICEs. Imperfect direct repeats found at the 
extremities of Tn6212 (19) may constitute sequences recognized 
by the XerC site-specific tyrosine integrase. Clusters of heavy-
metal resistance genes integrated in CR4, alone, or in tandem 
with Tn6212, are surrounded by the same repeats. It thus seems 
possible that these elements specifically target ICE sequences, as 
was previously shown for integrative and mobilizable elements 
targeting loci in ICEs of the Tn5252 superfamily present in 
Streptococcus genomes (34). Arsenic resistance genes are present in 
13 nonredundant PsICEs; copper (and cadmium) resistance genes 
are found in 8, and two ICEs (ICEPaf4394 and Ps34881) harbor 
a ~7-kb transposon encoding mercury resistance. In contrast, 
PsICEs harbor few type 3 secretion system (T3SS) effectors 
(T3SEs): hopAR1 (formerly avrPphB) is present in ICEPph1302A 
(21), ICEPs304-1 and ICEPfm207, ICEPatATCC11528-att2 
carries hopF2, hopO1-1, hopT1-1, ICEPsaMAFF212036 harbors 
hopAU1, and ICEPs248-6 captured avrRmp1 in the rulAB hotspot.

Tn6212 Enhances the Growth of Psa NZ13 on TCA Cycle 
Intermediates. The high frequency and nucleotide identity of 
Tn6212 across otherwise divergent PsICEs suggest that the 
element has recently spread and may confer a fitness advantage 
in plant-associated bacteria. Tn6212 is a ~16-kb mobile genetic 
element first described as a tyrosine recombinase transposon (19) 
that consists of 20 genes, of which seven are predicted to encode 
hypothetical proteins (SI Appendix, Table S5). While full-length 
Tn6212 is the most common cargo element, eight PsICEs carry 

only subsets of Tn6212 (SI Appendix, Fig. S5). Although PsICE 
backbones often share low levels of pairwise identity, the full-length 
Tn6212 elements share over 99% pairwise nucleotide identity.

The genes encoded by Tn6212 are not obviously associated with 
pathogen virulence or antibacterial resistance. However, Tn6212 
encodes genes implicated in metabolism, including a transporter 
of dicarboxylic acids (DctT) predicted to import TCA cycle inter-
mediates, and enolase, which encodes the penultimate step of 
glycolysis. P. syringae is known to use reverse carbon catabolite 
repression and prefers organic acids as carbon sources (35). The 
presence of a T3SS-targeting signal at the N terminus of DctT led 
to the hypothesis that DctT might be exported via T3SS into plant 
cells to deprive the plant of C4 sugars (15). To determine whether 
DctT is exported, the dctT promoter and its putative T3SS-targeting 
signal (1 to 52 aa) was fused to the C-terminal sequence of avrRpt2 
(pMT1), a T3SE recognized by Arabidopsis thaliana Col-0 (36). 
A second construct (pMT2) included the promoter and full-length 
dctT. Both dctT:avrRpt2 constructs were confirmed as functional 
using transient expression via agroinfiltration into Nicotiana  
benthamiana (SI Appendix, Fig. S6). After introduction into Psa 
NZ13 and Psa NZ13ΔhrcC, which lacks a functional T3SS (37), 
strains were inoculated into A. thaliana, and plants were monitored 
for AvrRpt2 recognition via ion leakage assays and development 
of a hypersensitive response (HR) (SI Appendix, Fig. S6). These 
experiments showed that DctT was not exported via the T3SS, or 
via other means, by Psa NZ13. We then investigated whether 
carriage of Tn6212 was involved in bacterial growth on plant hosts: 
Psa NZ13ΔTn6212 was not significantly impaired in growth 
compared to the wild type after flood inoculation of Actinidia 
chinensis var. chinensis Hort16A (SI Appendix, Fig. S7).

Although there was no evidence of DctT secretion, and no in 
planta phenotype was detected, the presence of genes whose prod-
ucts are associated with energy production and sugar utilization 
(enolase eno, inorganic pyrophosphatase, a catabolism associated 
protein cta, and dctT) nevertheless suggested that Tn6212 is asso-
ciated with bacterial growth and metabolism. To test this hypoth-
esis, competitive fitness assays between Psa NZ13 and Psa 
NZ13ΔTn6212 were performed in M9 minimal media supple-
mented with glucose or TCA cycle intermediates (citrate, succi-
nate, malate or fumarate) as sole carbon sources. Psa NZ13ΔTn6212 
showed a significant reduction in fitness compared to the wild 
type in M9 containing TCA cycle intermediates, but not in glu-
cose (Fig. 3 and SI Appendix, Fig. S8). In order to identify the 
genes responsible, three nonoverlapping deletion mutants were 
generated within different regions of Tn6212 (Fig. 3): Psa NZ13 
Tn6212Δ1 (~6-kb deletion including 8 genes), Psa NZ13 
Tn6212Δ2 (~6-kb deletion including 7 genes), Psa NZ13 
Tn6212Δ3 (~4-kb deletion including 3 genes and xerC), and Psa 
NZ13 Tn6212ΔdctT (SI Appendix, Table S5). Psa NZ13 
Tn6212Δ3 displayed a growth deficit comparable to Psa 
NZ13ΔTn6212 in all TCA intermediates, prompting further 
construction of single gene mutants in this region (Psa NZ13ΔlysR, 
Δcta, Δlpr). Psa NZ13ΔlysR and Psa NZ13Δcta exhibited reduced 
growth on all TCA intermediates, although this reduction was not 
comparable to the growth deficit exhibited by the deletion of 
Tn6212 (Fig. 3 and SI Appendix, Fig. S8). Curiously, Psa 
NZ13Δlpr exhibited enhanced growth in M9 supplemented with 
citrate and malate. It thus seems lysR and cta interact synergistically 
with effects that are distinct from those caused by Δlpr.

Tn6212 Has Global Effects on Psa NZ13 Gene Regulation. After 
observing the contribution of Tn6212 to Psa NZ13 fitness 
on TCA cycle intermediates, we asked whether Tn6212 has 
an impact on the regulation of PsICE activity, and whether D
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Tn6212 instigates broader changes consistent with manipulation 
of host cell metabolism. The latter seemed conceivable given 
the presence of the versatile and promiscuous LysR regulator 
(38). RNA-seq was performed on Psa NZ13 and a set of nested 
deletion mutants (Psa NZ13ΔTn6212, Psa NZ13 Tn6212Δ3, 

and Psa NZ13ΔlysR), plus Psa NZ13ΔdctT. All strains were 
grown in M9 with glucose, citrate and succinate as sole carbon 
sources, and cells were harvested for RNA extractions once 
cultures reached late exponential growth phase. Transcriptional 
responses of each mutant were compared to wild type Psa NZ13 
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Fig. 2.   Genetic organization of PsICEs and hotspots of cargo gene integration. The gene content of the CR is highlighted with gray background; arrows indicate 
their position on the backbone. The distance between contiguous backbone genes varies accordingly to the content of the CR. ICE PsaNZ13 is highlighted with 
a rectangular box.
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grown in the same media and genes and transcriptional responses 
were annotated with KEGG (39).

A plausible null expectation is that strains cluster based on carbon 
source. The Euclidean distance plot displaying the normalized mean 
expression of the wild type and mutants grown in M9 supplemented 
with glucose, citrate, or succinate shows that this is only the case 
when strains are grown in glucose (Fig. 4A). Psa NZ13ΔTn6212, 
Tn6212Δ3, and Tn6212ΔlysR mutants share more similar expres-
sion profiles with each other when grown on citrate and succinate 
than with the wild type strain (Fig. 4A). This indicates the absence 
of Tn6212; lysR, cta and lpr; and lysR alone results in significant 
differences in expression compared to the wild type during growth 
on citrate and succinate. There is greater similarity between 
Tn6212ΔdctT and wild type expression on TCA intermediates than 
between Tn6212ΔdctT and other Tn6212 mutants. This is at odds 
with the fact that the ΔdctT mutation is nested within Tn6212 and 
thus expected to have just a subset of the effects wrought by the 
entire element. Its clustering with the wild type, Psa NZ13, suggests 
that the transcriptional effects of dctT are distinct from those caused 
by the totality of genes on Tn6212.

The number of differentially expressed genes (P < 0.05) and the 
relationship with genetic background and carbon source shows 
that the number of differentially expressed genes is greatest for 
strains grown on succinate (Fig. 4B). The magnitude of effects 
extends well beyond both Tn6212 and the ICE, indicating that 
Tn6212 manipulates host cell metabolism. Leaving aside dctT, 
whose deletion had no effects on fitness at later time points, the 
majority of regulatory effects can be directly attributed to lysR: in 
succinate, of the 792 genes whose expression is significantly altered 
on deletion of Tn6212, 411 are also affected in PsaNZ13ΔlysR  
(r = 0.978, P < 0.001) (SI Appendix, Fig. S9). For each carbon 

source, the number of differentially expressed genes is highest in 
Psa NZ13ΔdctT. This indicates that DctT functions, either 
directly or indirectly, as a repressor of genes on Tn6212. Given 
that DctT is a predicted transporter for dicarboxylic acids, it seems 
likely that the transporter is a conduit of information concerning 
the nature of the external environment that allows Tn6212 to 
coordinate ensuing effects on host cell gene expression.

Making sense of the myriad transcriptional changes poses a 
major challenge. Of particular interest are those genes causally 
responsible for the observed changes. Fig. 4C shows the propor-
tion of genes differentially expressed by Tn6212 when grown 
on succinate and connection to various cellular functions as 
defined by the KEGG database resource (39). Data are ranked 
by the proportion of genes with significantly altered patterns of 
expression: the entire dataset with graphical mapping to KEGG 
pathways can be viewed at https://micropop.evolbio.mpg.de/
data/2020_ICE/ with graphical mapping to KEGG pathways 
at https://micropop.evolbio.mpg.de/data/2020_ICE/kegg/. The 
number of genes whose expression is differentially affected by 
Tn6212 when grown on glucose, for the same set of KEGG 
pathways, is shown for comparison. When grown on succinate, 
Tn6212 significantly, and with primarily positive effects, affects 
the expression of genes in multiple KEGG pathways involved 
in translation (tRNA biosynthesis, one carbon pool by folate, 
protein export, and ribosome), posttranscriptional control 
(RNA degradation), energy metabolism (oxidative phosphoryl-
ation and sulfur metabolism), carbohydrate metabolism (amino 
sugar and nucleotide sugar biosynthesis and TCA cycle), metab-
olism of cofactors and vitamins (thiamine, riboflavin, and biotin 
metabolism), and DNA metabolism (DNA replication, mis-
match repair, and homologous recombination).
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Fig. 3.   Competition assays on different carbon sources. Box plots showing the fitness of Tn6212 mutants relative to Psa NZ13 Psa NZ::tn7-lacZ. Competition 
assays (1:1) were performed in M9 supplemented with different carbon sources; only day 4 is shown. Data for days 2, 3, and 4 are shown in SI Appendix, Fig. S8. 
Values smaller than 1 indicate a lower relative fitness of competitor. The experiment was performed with three replicates and repeated three times. From left 
to right: Psa NZ13 wild type, Psa NZ13ΔTn6212, Psa NZ13 Tn6212Δ1, Psa NZ13 Tn6212Δ2, Psa NZ13 Tn6212Δ3, Psa NZ13ΔdctT, Psa NZ13Δeno, Psa NZ13ΔlysR, 
Psa NZ13Δcta, and Psa NZ13Δlpr. * indicates that the difference in fitness is statistically significant (one-sided one-sample t test P < 0.05).
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Repressive effects are few, with notable exceptions being in sulfur 
metabolism, flagella assembly (and chemotaxis), and beta-alanine 
metabolism. Closer inspection of the affected genes shows that for 
sulfur metabolism, the activity of genes involved in production of 
sulfate or sulfite is decreased, whereas genes contributing to the 
synthesis of homocysteine and thus methionine show enhanced 
expression. For beta-alanine metabolism, genes responsible for 
conversion of beta-alanine to 3-oxopropanoate and then acetyl-CoA 
are repressed, but expression of pantoate-beta-alanine ligase, which 
converts beta-alanine to D-4-phosphopantothenate (and thus pan-
tothenate), is significantly increased. The major repressive effect is 
on flagella assembly and chemotaxis where numerous genes are 
significantly repressed, although the magnitude of change is low 
(~1.5-fold decrease).

Motility of Tn6212 Mutants When Grown on TCA Cycle 
Intermediates. We attempted to connect observed alterations 
in gene regulation to phenotypic changes by focusing on genes 
contributing to motility and chemotaxis. Measurement of cell 
swimming speed, directionality, and cell density in Adler chambers 
showed no significant differences between the mutant and wild 
type genotypes. Having failed to detect differences in cell-level 
behavior, we then examined the rate of radial expansion of wild 
type and ΔTn6212 genotypes stab-inoculated with 105 cells into 
semisolid M9 agar containing either succinate (at pH 7.0 and pH 
6.0), glucose (pH 7.0) or casamino acids (CAA) (pH 7.0) as growth 
substrates. No significant difference in the rate of radial expansion 
was detected on M9 glucose (P = 0.97) or CAA (P = 0.25), but on 
M9 succinate, carriage of Tn6212 significantly increased the rate of 
radial expansion, with the highest rate evident at pH 6.0 (P = 0.009 
and P < 0.001, at pH 6.0 and pH 7.0, respectively). We observed 
substantial variability among all genotypes in growth initiation time 

using an initial density of 105 cells on glucose. Whereas growth on 
succinate or CAA was readily detectable by 1 d for all replicates 
starting at 105 cells, the initiation of growth in glucose was highly 
variable, requiring at least 4 d, and in one replicate, no growth 
was visible even at the final time point of 8 d. Suspecting density-
dependent behavior, an additional treatment was included in which 
106 cells were used to establish the centrally located population. This 
increased inoculum density largely eliminated variation in growth 
initiation and showed that the presence of the Tn6212 decreased the 
rate of radial expansion on glucose (SI Appendix, Fig. S10).

Discussion

ICEs associated with the P. syringae species complex were first 
identified in 2000 as “pathogenicity islands” whose spontaneous 
excision caused switches in virulence phenotypes of P. syringae pv. 
phaseolicola (21). Since 2000, awareness of ICEs as vehicles that 
move ecologically significant genes has rapidly grown, with par-
ticular evidence of diversity and horizontal transfer coming from 
genomic analysis of Psa strains associated with the global kiwifruit 
canker disease pandemic (15, 19), and dramatic evidence of their 
impact arising from study of copper resistant strains in New 
Zealand (16). Here, our bioinformatic analyses show that the P. 
syringae complex harbors numerous and diverse ICEs of the same 
family (PsICEs) distributed across a range of PGs. Although core 
genes show overall synteny, genes of potential ecological relevance 
are found in defined CR.

Comparative analyses clearly show that ICEs are facilitators of 
horizontal transfer, mediating movement of diverse sets of genes 
among a wide range of bacterial hosts and over significant spatial 
scales. Near-identical PsICEs were found in hosts sampled decades 
and thousands of kilometers apart, and near-identical host strains 
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Fig. 4.   Tn6212 alters bacterial host transcriptional responses. (A) For each RNA seq dataset the normalized mean coverage of every open reading frame encoded 
in the chromosome was calculated using Deseq2 (40). The Euclidean distance between the datasets was also calculated with each dataset being represented 
as a vector of normalized mean expression values. A distance of 0.04 means that expression differs on average by 4% per gene. The datasets cluster by carbon 
source used for growth except for NZ13 wild type and NZ13ΔdctT grown in succinate and citrate, which cluster by genotype rather than carbon source. (B) 
Number of differentially expressed genes in each of the genotypes grown in different carbon sources. Negative values indicate the number of genes that are 
significantly (P ≤ 0.05) underexpressed, and positive values the number of genes that are significantly overexpressed compared to the NZ13 wild type grown 
in the same carbon source. (C) KEGG functional categories that are significantly over- (turquoise) or under-expressed (red) in NZ13ΔTn6212 compared to the 
wild type when grown in glucose and succinate. All functional categories containing at least 10 genes and where at least 30% of those genes are significantly 
differentially expressed are shown. We also show level 2 categories from the following top-level KEGG hierarchies: Environmental Information Processing, 
Cellular Processes, Genetic Information Processing, and Metabolism. For example, over 60% of all genes in the aminoacyl-tRNA biosynthesis pathway are 
overexpressed in NZ13ΔTn6212 when grown on succinate compared to the NZ13 wild type. In contrast, there is not a single gene in the same pathway that is 
differentially expressed when grown in glucose.
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carry PsICEs with backbone genes that share less than 95% average 
nucleotide identity, a threshold commonly used to define distinct 
bacterial species (41). While PsICEs are defined by a conserved 
set of core genes, they carry variable accessory genes likely to confer 
ecologically significant functions to hosts. In some instances, these 
accessory genes show matches to known genes, but many are either 
function unknown or have no homologue in databases. The relat-
edness of PsICEs to those from P. aeruginosa raises the possibility 
that ICEs might move genes between plant and opportunistic 
human pathogens, although minimally overlapping ecological 
niches likely limit ICE movement across larger phylogenetic 
distances.

Many PsICEs carry accessory genes that confer a selective advan-
tage to agricultural plant pathogens, like antimicrobial resistance 
and virulence-associated genes. The identification of cargo genes 
relevant to the bacterial host niche is not unusual; STX-R391 ICEs 
of clinical origin typically carry antibiotic resistance genes (42), while 
STX‐R391 ICEs from free-living marine bacteria Alteromonas 
mainly encode for metal resistance and restriction modification 
systems (43). We have previously shown that copper resistance genes 
on a PsICE confer a growth advantage to Psa on leaf surfaces sprayed 
with copper (16). The widespread application of bactericides, insec-
ticides, and herbicides is likely to select for the maintenance of 
copper and arsenic resistance genes after ICE acquisition. Type 3 
secreted effectors (T3SE), known to play an important role in dis-
rupting plant host recognition and immune responses, are also 
present on ICEs. The very first ICE characterized in the P. syringae 
species complex (ICEPph1302A, previously named PPHGI-1) car-
ries hopAR1, which is also present on ICEPs304-1 and ICEPfm207. 
ICEPs248-8 carries avrRpm1, ICEPsaMAFF212036 harbors 
hopAU1, and ICEPatATCC11528-att2 carries three effector genes: 
hopF2, hopO1-1, and hopT1-1. Notably, all of these effectors are 
known to elicit effector-triggered immune responses. The transfer 
of a recognized T3SE onto an ICE may allow the pathogen to evade 
plant host recognition by silencing or maintaining the virulence 

gene at low frequencies in the population (44). In our analysis, the 
most common cargo carried by PsICEs is not associated with agri-
cultural sprays or plant host immunity but is rather a mobile genetic 
element associated with the transport, regulation, and metabolism 
of preferred carbon sources including succinate and other TCA cycle 
intermediates (Tn6212).

The widespread occurrence and high sequence identity of 
Tn6212 from diverse ICEs indicates that it recently invaded ICEs 
circulating among the species complex and likely confers a selective 
advantage to P. syringae. We show here that Tn6212 enhances bac-
terial fitness on TCA cycle intermediates, which are abundant in 
plant tissues and up-regulated during pathogen invasion (45). The 
Tn6212 dicarboxylic acid transporter DctT and transcriptional 
regulator LysR may sense shifts in carbon source availability and 
initiate a signaling cascade altering the expression of chromosomal 
genes. Accordingly, the recent global dissemination of Tn6212 is 
likely connected to capacity of the element to manipulate bacterial 
host cell metabolism and rapidly shift resources toward growth. 
The widespread impact on chromosomal gene expression is a chal-
lenge to interpret; however, examination of patterns of altered 
expression, functional categories, and connections to genes carried 
on Tn6212 suggest that the mechanism behind altered fitness 
caused by Tn6212 may reside in RNA degradation.

Tn6212 encodes the glycolytic enzyme enolase, a major com-
ponent of the RNA degradosome, connecting the physiological 
status of the cell to RNA degradation (46), and enolase is signifi-
cantly overexpressed in the Psa NZ13 Tn6212Δ3 mutant [and 
with elevated expression in ΔlysR (P = 0.90)]. Tn6212 also encodes 
an inorganic pyrophosphatase that contributes to RNA degrado-
some function with the possibility of additional contributions 
from uracil-DNA glycosylase. Beyond genes encoded by Tn6212, 
all major additional components of the RNA degradosome, 
including RNAse E and two different DEAD/DEAH box helicases 
are significantly overexpressed in Psa NZ13 growing on succinate, 
compared with ΔTn6212. Further reason to suggest a role of the 

DctT

LysR

Organic 
acid

RNAEnolase PPase

RNA degradosome 
complex

Tn6212 signal detection
and gene regulation

Transcriptional 
reprogramming

Growth
rate

Growth
yield

One carbon
metabolism

Protein 
synthesis

Cellular 
energy

Fig. 5.   Model of Tn6212-ICE-bacterium–plant interactions. The Tn6212 C4-transporter DctT and transcriptional regulator LysR are predicted to sense shifts in 
carbon source availability and initiate a signaling cascade altering the expression of chromosomal and Tn6212-encoded genes. The expression of genes involved 
in the RNA degradosome complex, such as the genes encoding for enolase, inorganic pyrophosphatase, RNAse E, and two DEAD/DEAH box helicases, is induced. 
Subsequent to posttranscriptional control activity of the RNA degradosome, the expression of genes involved in TCA cycle and gluconeogenesis is stimulated. 
This transcriptional reprogramming rapidly redistributes incoming carbon to maximize ATP, promoting growth.D
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RNA degradosome stems from its role in posttranscriptional reg-
ulation. Growth on succinate triggers the post-transcriptional 
repression of mRNAs involved in the use of alternate carbon 
sources (47, 48). Tn6212 may strengthen carbon catabolite repres-
sion in some manner, perhaps hastening target mRNA degrada-
tion while up-regulating genes involved in organic acid acquisition 
and utilization, rapidly redistributing incoming carbon to maxi-
mize ATP, promoting growth (Fig. 5).

Our results suggest Tn6212 enhances utilization of preferred 
carbon sources present in the plant host and up-regulated during 
pathogen invasion (45). We did not, however, identify a strong 
phenotype for Tn6212 in our pathogenicity tests on kiwifruit 
plants. This may be due to a number of factors. First, Tn6212 does 
not confer a completely new phenotype to the pathogen, but may 
instead accelerate bacterial detection and response to the presence 
of preferred carbon sources. Plant-based assays are not suitable to 
detect small but significant effects on pathogen fitness, as fitness is 
a complex phenotype in which multiple traits may contribute. The 
timing and duration of the phenotype may not be observable under 
the conditions we assayed, particularly if Tn6212 is involved in 
other stages of plant colonization, such as epiphytic growth, even 
in non-host plants. The rapid detection and response to fluctuating 
levels of preferred carbon sources could also enhance the fitness or 
persistence of P. syringae in non-plant-associated environments like 
rivers, snowpack, and even clouds (8, 9).

The rapid redirection of resources to maximize growth may 
enhance the fitness of bacterial strains carrying ICEs with Tn6212. 
It is possible this growth advantage also underlies ICE-mediated 
dissemination of Tn6212. In a mixed population of bacteria that 
are either ICE-less or carrying ICEs without Tn6212, the subpop-
ulation of cells carrying ICE with Tn6212 may be overrepresented 
once the population reaches the stationary phase, when ICE trans-
fer is more likely to occur. Enhanced ICE dissemination— and 
for that matter, enhanced virulence—may be a by-product of the 
effect of Tn6212 on bacterial growth in plant tissues. ICEs may 
therefore contribute to bacterial adaptation by adjusting bacterial 
transcriptional responses to preferred carbon sources.

Materials and Methods

Identification and Assembly of ICEs. A broad family of P. syringae ICEs (PsICEs) 
was identified using BLASTn searches of a collection of sequenced Psa genomes, 
combined with genomes deposited in the NCBI Genbank and WGS databases 
(updated to July 2021 and November 2017, respectively) (20). When matches 
were identified in draft assemblies, contigs were downloaded and used to join 
contigs that overlapped by at least 6 bp. PsICEs sequences are available at 
https://github.com/EC-Rufina/PsICEs. Ten additional PsICEs were identified but 
discarded from the analysis because the elements did not encode a conjugative 
system. To delineate the chromosomal integration sites, flanking sequences were 
inspected for direct repeats sites which form when ICEs integrate in their att site. 
The broader family of ICEs was defined with tBLASTn (20) searches in the NCBI 
GenBank WGS database (updated to April 2017). The DEAD-box helicase from 
ICEPsaNZ13 (IYO_024645) was used as the query, retaining hits with minimum 
81% amino acid identity, excluding all hits in P. syringae.

PsICE Structure and Classification. REALPHY (49) was used to examine and 
classify PsICE diversity, identifying nonredundant PsICEs. REALPHY produced a 
final 1,975 bp alignment, which was in turn used to cluster similar PsICEs by 
building a Neighbor Joining (NJ) tree with 100 bootstrap replicates (50). The NJ 
tree was rooted at midpoint using the midpoint() function from the phangorn 
package in R (51). The NJ tree was used as a guide for the selection of a reduced 
set of representative, nonredundant PsICEs. Nonredundant ICEs may vary in 
multiple ways: 1) they share identical backbone genes but differ according to 
their complement of accessory genes, 2) they share the same accessory genes 
but the backbone genes have average pairwise nucleotide identity values lower 
than 95%, or both (3). For example, ICEPsaI12.29 was selected as nonredundant 

because even though it falls in the same clade of ICEPsaI10, ICEPsaI12.29 does 
not carry Tn6212. The resulting set of 53 nonredundant PsICEs was used for 
subsequent analyses. The identification of conserved backbone genes in PsICEs 
was performed using the pangenome identification tool ROARY (26). Backbone 
genes are here defined as genes present in at least 93% of all nonredundant 
PsICEs. MAFFT alignments using automatic alignment parameters (52) were used 
to examine structural conservation of the backbone genes and identify sites of 
accessory gene integration. Alignments were then separately generated for 58 
backbone genes using MAFFT with automatic parameters (52). Phylogenetic 
incongruence between individual backbone genes was evaluated using the ILD 
test (27) using PAUP* (53). The extent of inter-PsICE recombination was evaluated 
with Neighbor-Net (29) using SplitsTree (54). ClonalFrameML was also used on 
the concatenated alignment of the backbone genes (28). Alfy 9 (31) was used to 
assess the inter-ICE recombination.

Bacterial Host Phylogeny. A PhyML tree (55), using default parameters and 
100 bootstrap replicates, was built using the concatenation of the alignments of 
the housekeeping genes gapA, gltA, gyrB, and rpoD of each P. syringae genome, 
P. fluorescens SBW25 (AM181176.4) was used as outgroup.

Deletion Mutant Generation and Plant and Bacterial Growth Conditions. 
Pseudomonas strains were routinely grown in KB at 28 °C, Escherichia coli in LB 
at 37 °C, and Agrobacterium tumefaciens in LB at 28 °C. N. benthamiana and 
A. thaliana Col0 assays were performed as previously described (56). Deletion 
mutants in genes and regions of ICEPsaNZ13 (SI  Appendix, Table  S5) were 
constructed by marker exchange mutagenesis as described in ref. 37 with plas-
mids and primers listed in SI Appendix, Tables S6 and S7. A lacZ reporter gene 
(SI Appendix, Table S6) was introduced into Psa NZ13 for competition experiments 
via triparental mating as in ref. 16.

Bacterial Protein Secretion and Host Recognition Assays. Two plasmids 
(pMT-1 and pMT-2) were constructed by GenScript® using vector pUCP22. Each 
plasmid was introduced into both Psa NZ13 and Psa NZ13ΔhrcC (37) via tripa-
rental mating. Binary vectors carrying the DctT:AvrRpt2 constructs were created to 
confirm truncated or full-length DctT did not interfere with AvrRpt2-mediated rec-
ognition of secreted proteins. The dctT:avrRpt2 was fused to a C-terminal epitope 
tag (3xFlag) and introduced into pICH86988 using Golden Gate cloning (57). The 
plasmids were electroporated into A. tumefaciens AGL1 as described in ref. 56.

HR assays were carried out in A. thaliana Col-0 with strains diluted in 10 mM 
MgCl2 to a final OD600 of 0.2 as described in ref. 56. The experiment was repeated 
twice. Ion leakage experiments were carried out as in ref. 56. Agrobacterium infil-
tration was used to transiently express DctT:AvrRpt2 constructs in N. benthamiana, 
along with A. tumefaciens strains carrying functional RIN4 and RPS2 expression 
constructs (AGLRIN4 and AGLRPS2, respectively) (58) as previously described (56).

Competition and Growth Experiments. Competition experiments between 
wild type Psa NZ13, Psa NZ13::lacZ, and ICE mutant genotypes were performed 
in vitro using minimal M9 medium (59) supplemented with glucose (10 mM), 
fumarate (10 mM), citrate (10 mM), malate (20 mM), or succinate (10 mM) as sole 
carbon sources. 100 µL of washed cells at OD600 0.2 were used to inoculate 10 mL 
of M9 media (final OD600 of 0.002). Cultures were shaken at 250 rpm at 28 °C, 
measuring bacterial density at 0, 2, 3, and 4 d by plating dilutions on KB amended 
with X-gal (60 µg mL−1) to distinguish between deletion mutants (white col-
onies) and ancestral Psa NZ13 marked with lacZ (blue colonies) (Dataset  S1). 
The experiment was performed using three replicates and repeated three times. 
The fitness of each strain in the competition experiments is expressed as the 
Malthusian parameter (60).

RNA Extraction, Sequencing, and Analysis. Strains were streaked to single 
colonies on KB plates and incubated at 28 °C for 48 to 72 h. Single colonies were 
used to inoculate 5 mL of M9 medium supplemented with 20 mM glucose, 
citrate, or succinate. Liquid cultures were set up with 3 replicates per strain per 
carbon source and shaken at 230 rpm at 28 °C. Cultures were incubated for 26 h  
(M9+succinate), 28 h (M9+citrate) or 48 h (M9+glucose). Cultures were then 
diluted into fresh media using three dilutions per sample to ensure collection at 
mid-log phase: 1:10, 1:25, and 1:50 (M9+glucose and M9+succinate) or 1:10, 
1:20, and 1:40 (M9+citrate). Cells were collected for RNA extraction at OD600 
between 0.4 and 0.5. RNA was extracted using the RNeasy Mini Kit (Qiagen 74106) 
according to the manufacturer’s instructions. Samples were further treated with the D
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Turbo DNA-free TM kit (ThermoFisher AM1907) according to the manufacturer’s 
instructions. 210 ng total RNA was used for rRNA depletion with the bacterial Ribo-
Zero kit (Illumina 20037135), according to the manufacturer’s recommendations. 
After rRNA depletion, the remaining RNA was fragmented, and Illumina-compatible 
libraries were prepared using the NEBNext Ultra™ II Directional RNA Library Prep 
Kit for Illumina (New England Biolabs E7760S). Libraries were sequenced on the 
Illumina HiSeq3000 system. RNA sequencing data were analyzed as described in 
ref. 61. Genes with statistically significant differential expressions (P < 0.05 and P < 
0.01) were annotated with KEGG pathways (39) and visualized using scripts stored 
at https://gitlab.gwdg.de/guilhem.doulcier/pseudomonas_rnaseq/. The results are 
available for browsing at https://micropop.evolbio.mpg.de/data/2020_ICE/ and 
https://micropop.evolbio.mpg.de/data/2020_ICE/kegg/).

Phenotypic Characterization of Motility on TCA Cycle Intermediates. Wild 
type and ΔTn6212 mutant cells were grown in succinate and placed in Adler 
chambers with succinate or casamino acids (CAA) as attractants and a PBS buffer 
control. Time-resolved data were collected by imaging at regular intervals (either 
5-min intervals over the course of 1 h or 500 ms over 15 s). The resulting images 
were subject to analyses that included measurement of cell swimming speed, 
directionality, and cell density at the moving swarm. The rate of radial expansion 
of both wild type and ΔTn6212 cells was measured by stab-inoculating cells into 
semisolid M9 agar containing either succinate (at pH 7.0 and pH 6.0), glucose 
(pH 7.0), or CAA (pH 7.0) as growth substrates. Stab inoculation was performed 
using an initial cell density of either 105 or 106 cells, measuring radial expansion 
daily for 8 d using precision calipers. The experiment was performed twice with, 
on each occasion, five replicates per treatment.

Data, Materials, and Software Availability. Sequencing data have been 
deposited in NCBI. All other data are included in the manuscript and/or sup-
porting information.
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