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Viruses influence ecosystems by modulating microbial population size, diversity, metabolic
outputs, and gene flow. Here, we use quantitative double-stranded DNA (dsDNA) viral-fraction
metagenomes (viromes) and whole viral community morphological data sets from 43 Tara
Oceans expedition samples to assess viral community patterns and structure in the upper
ocean. Protein cluster cataloging defined pelagic upper-ocean viral community pan and core
gene sets and suggested that this sequence space is well-sampled. Analyses of viral protein
clusters, populations, and morphology revealed biogeographic patterns whereby viral
communities were passively transported on oceanic currents and locally structured by
environmental conditions that affect host community structure.Together, these investigations
establish a global ocean dsDNA viromic data set with analyses supporting the seed-bank
hypothesis to explain how oceanic viral communities maintain high local diversity.

O
cean microbes produce half of the oxy-
gen we breathe (1) and drive much of the
substrate and redox transformations that
fuel Earth’s ecosystems (2). However, they
do so in a constantly evolving network

of chemical, physical, and biotic constraints—
interactions that are only beginning to be ex-
plored. Marine viruses are presumably key
players in these interactions (3, 4), as they affect
microbial populations through lysis, repro-
gramming of host metabolism, and horizontal
gene transfer. Here, we strive to develop an over-
view of ocean viral community patterns and eco-
logical drivers.
The Tara Oceans expedition provided a plat-

form for sampling ocean biota from viruses to
fish larvae within a comprehensive environ-
mental context (5). Prior virus-focused work
from this expedition has helped optimize the
double-stranded DNA (dsDNA) viromic sample-
to-sequence workflow (6), evaluate ecological
drivers of viral community structure as inferred
from morphology (7), and map ecological pat-
terns in the large dsDNA nucleo-cytoplasmic
viruses using marker genes (8). Here, we explore
global patterns and structure of ocean viral com-
munities using 43 samples from 26 stations in
the Tara Oceans expedition (see supplemen-
tary file S1) to establish dsDNA viromes from
viral-fraction (<0.22 mm) concentrates and quan-
titative whole viral community morphological
data sets from unfiltered seawater. Viruses lack
shared genes that can be used for investigation
of community patterns. Therefore, we used three
levels of information to study such patterns: (i)
protein clusters (PCs) (9) as a means to organize

virome sequence space commonly dominated
by unknown sequences (63 to 93%) (10), (ii) pop-
ulations, using establishedmetrics for viral contig
recruitment (11), and (iii) morphology, using
quantitative transmission electron microscopy
(qTEM) (7).

The Tara Oceans Viromes (TOV) data set

The 43 Tara Oceans Viromes (TOV) data set
comprises 2.16 billion ~101-base pair (bp) paired-
end Illumina reads (file S1), which largely rep-
resent epipelagic ocean viral communities from
the surface (ENVO:00002042) and deep chloro-
phyll maximum (DCM; ENVO:01000326) through-
out seven oceans and seas; only 1 of 43 viromes
is from mesopelagic waters, EnvironmentOntol-
ogy feature ENVO:00000213 (file S1). The TOV
data set offers deeper sampling of surface ocean
viral communities but underrepresents the deep
ocean relative to the Pacific Ocean Viromes data
set (POV) (10), which includes 16 viromes from
aphotic zonewaters. In all viromes, sampling and
processing affects which viruses are represented
(6, 12–14). We filtered TOV seawater samples
through 0.22-mm-pore–sized filters and then con-
centrated viruses in the filtrate using iron chlo-
ride flocculation (15). These steps would have
removedmost cells but alsowould have excluded
any viruses larger than 0.22 mm.We then purified
the resulting TOV viral concentrates using de-
oxyribonuclease (DNase) treatment, which is as
effective as density gradients for purifying ocean
viral concentrates (14). This DNAse-only step is
unlikely to affect viral representation in the viromes
but reduces nonviral DNA contamination. Fi-
nally, we extracted DNA from the samples and

prepared sequence libraries using linker ampli-
fication (13). These steps preserve quantitative
representation of dsDNA viruses in the result-
ing viromes (12, 13), but the ligation step excludes
RNA viruses and is biased against single-stranded
DNA (ssDNA) viruses (12).
We additionally applied quantitative trans-

mission electron microscopy (qTEM) (7) to
paired whole seawater samples to evaluate pat-
terns in whole viral communities. This method
simultaneously considers ssDNA, dsDNA, and
RNA viruses, although without knowledge of
their relative abundances because particle mor-
phology does not identify nucleic acid type. In
the oceans, total virus abundance estimates based
on TEM analyses, which include all viral parti-
cles, are similar to estimates based on fluorescent
staining, which inefficiently stains ssDNA and
RNA viruses (16–24). This suggests that most
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ocean viruses are dsDNA viruses. However, one
study quantifying nucleic acids at a single ma-
rine location suggests that RNA viruses may
constitute as much as half of the viral commu-
nity there (16). It remains unknown what the
relative contribution of these viral types is to
the whole viral community, but our analyses
suggest small dsDNA viruses likely dominate
as follows. The viromes capture the <0.22-mm
dsDNA viruses of bacteria and archaea that are
thought to dominate marine viral communities,
whereas qTEM analysis includes all viruses re-
gardless of size, nucleic acid type, or host (7). In
these whole seawater samples used for qTEM,
we found that viral capsid diameters ranged
from 26 to 129 nm, with the per-sample average
capsid diameter constrained at 46 to 66 nm
(Fig. 1). We detected no viral particles larger
than 0.22 mm among 100 randomly counted
particles from each of 41 qTEM samples. These
findings are similar to those from a subset of
these TaraOceans stations (14 of the 26 stations)
(7) and indicate that size fractionation using
0.22-mm filtration to prepare viromes did not
substantially bias the TOV data set.

TOV protein clusters for comparison
of local and global genetic richness
and diversity

Across the 43 viromes, a total of 1,075,763 PCs
were observed, with samples beyond the 20th
virome adding few PCs (Fig. 2A). When we
combined TOV with 16 photic-zone viromes
from the POV data set (10), the number of PCs
increased to 1,323,921 but again approached a
plateau (Fig. 2B). These results suggest that,
although it is impossible to sample completely,
the sequence space corresponding to dsDNA
viruses from the epipelagic ocean is now rela-
tively well sampled. This contrasts results from
marine microbial metagenomic surveys using
older sequencing technologies (9) but is con-
sistent with those from this expedition (25), as
well as findings from viral sequence data sets
that suggest a limited range of functional di-
versity derived from bacterial and archaeal viral
isolates (26) and the POV data set (27).
PCs were next used to establish the core genes

shared across the TOV data set (Fig. 2A). Broadly,
there were 220, 710, and 424 core PCs shared
across all surface and DCM viromes, surface
viromes only, and DCM viromes only, respective-
ly. The number of core PCs in the upper-ocean
TOV samples (220 PCs) was thus less than the
number of photic-zone core PCs in POV (565 PCs)
(28), likely because the POVdata set includes only
the Pacific Ocean, whereas TOV includes samples
from seven oceans and seas.However, the number
of core PCs in the upper-ocean TOV samples ex-
ceeded the total number of core PCs observed in
POV (180 PCs) (28), likely because of deep-ocean
representation in POV (half of the samples in
POV are from the aphotic zone). Consistent with
the latter finding, the addition of the sole deep-
ocean TOV sample, TARA_70_MESO, decreased
the number of core PCs shared by all TOV sam-
ples from 220 to 65, which suggests that deep-

ocean viral genetic repertoires are different
from those in the upper oceans. Indeed, niche-
differentiation has been observed in viromes
sampled across these oceanic zones in the POV
data set (28), and similar findings were observed
in the microbial metagenomic counterparts from
the TaraOceans Expedition (25). Thus, viral com-
munities from the deep ocean remain poorly
explored and appear to hold different gene sets
from those in the epipelagic oceans.
Beyond core and pan metagenomic analyses,

PCs also provide a metric for viral commu-
nity diversity comparisons (Fig. 3A and file S1)
from which three trends emerge in the TOV
data set. First, high-latitude viromes (82_DCM
and 85_DCM) were least diverse [the entropy
calculated with the natural log of diversity,
Shannon’s H′, of 8.93 and 9.22 natural digits
(nats)], consistent with patterns in marine mac-
roorganisms (29) and epipelagic ocean bacteria
(25, 30). Second, the remaining viromes had
similar diversity (Shannon’s H′ between 9.47 and
10.55 nats) and evenness (Pielou’s J from 0.85
to 0.91), which indicated low dominance of
any particular PCs (31). Third, local diversity
was relatively similar to global diversity (local:
global ratios of H′ from 0.73 to 0.87), which
suggested high dispersal of viral genes (32)
across the sampled ocean viral communities.

TOV viral populations for assessing global
viral community structure

We next estimated abundances of the 5476 dom-
inant viral populations in TOV, which repre-
sented up to 9.97% of aligned reads in a sample

and were defined by applying empirically de-
rived recruitment cut-offs from naturally occur-
ring T4-like cyanophages (11) to high-confidence
contigs from bacterial and archaeal viruses (see
Methods). Assigning viral populations on the ba-
sis of virome data remains challenging (11, 33),
but here, the assembly of large contigs (up to
100 kb) aided our ability to accomplish not only
analyses at the gene-level using PCs but also the
genome-level using viral populations. Viral pop-
ulations were rarely endemic to one station
(15%) and, instead, were commonly observed
across >4 stations (47%) and up to 24 of the
26 stations (Figs. 4 and 5A). Exceptional sam-
ples include those from the Benguela upwell-
ing region (TARA_67_SUR) and high-latitude
samples from the Falklands and Antarctic Cir-
cumpolar currents (TARA_82_DCM and TARA_
85_DCM, respectively). These samples were also
divergent when we assessed microbial commu-
nities (TARA_82_DCM and TARA_85_DCM dis-
played lower microbial genetic richness) (25) and
eukaryotic communities (TARA_67_SUR had
specific and unique eukaryotic communities in all
size fractions) (34). Although many viral pop-
ulationswere broadly distributed, theyweremuch
more abundant at the original location (origin
inferred from longest contig assembled; see
Methods) compared with alternate stations (Fig.
5B). Thus,most populationswere relativelywide-
spread but with variable sample-to-sample abun-
dances. As was observed with PCs, diversity
and evenness estimates based on viral popu-
lations were similar across all samples except
for high-latitude samples (TARA_82_DCM and
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Fig. 1. Distribution of viral capsid diameters in each sample (n = 100 viruses per sample). Data are
not available for samples TARA_18_DCM and TARA_70_MESO. Boxplots are constructed with the upper
and lower lines corresponding to the 25th and 75th percentiles; outliers are displayed as points.
Longhurst provinces are indicated below samples (MEDI, Mediterranean Sea; REDS, Red Sea; ARAB, NW
Arabian Upwelling; MONS, Indian Monsoon Gyres; ISSG, Indian S. Subtropical Gyre; EAFR, E. Africa
Coastal; BENG, Benguela Current Coastal; SATL, S. Atlantic Gyre; FKLD, SW Atlantic Shelves; APLR,
Austral Polar; PNEC, N. Pacific Equatorial Countercurrent).
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TARA_85_DCM) and one sample in the Red Sea
(TARA_32_DCM) that displayed lower diversity
(Fig. 3B and file S1). Finally, local diversity was
relatively similar to global diversity (local:global
ratios of H′ from 0.23 to 0.86, average 0.74) (file
S1) and reflected the high dispersal of viruses as
highlighted by PC analysis.
Only 39 of the 5476 populations we identified

could be affiliated to cultured viruses, which re-
flects the dearth of reference viral genomes in
databases. These cultured viruses include those
infecting the abundant and widespread hosts
SAR11, SAR116, Roseobacter, Prochlorococcus, and
Synechococcus (Fig. 6). The most abundant and
widespread viral populations observed in TOV
lack cultured representatives (Fig. 6), which sug-
gests that most upper-ocean viruses remain to be
characterized even though viruses from known
dominant microbial hosts (35–39) have been
cultured. Methods independent of cultivation—

including viral tagging (11) and mining of mi-
crobial genomic data sets (40, 41)—show promise
to expand the number of available viral reference
genomes (33).

Drivers of global viral community
composition and distribution

Wenext leveraged this global data set to evaluate
ecological drivers (including environmental vari-
ables, sample location, andmicrobial abundances)
(file S1) of viral community structure using all
three data types—morphology, populations, and
PCs. These metrics revealed increasing resolu-
tion, respectively, and showed that viral commu-
nity structure was influenced by region and/or
environmental conditions (Table 1). We con-
ducted the analysis of ecological drivers using all
samples in this study, as well as a sample subset
that omitted samples with exceptional environ-
mental conditions and divergent viral commu-

nities observed using PC and population analyses
(see above; TARA_67_SUR, TARA_82_ DCM,
TARA_85_DCM, and TARA_70_MESO). With-
in the sample subset, oceanic viral commu-
nities varied significantlywithLonghurst province,
biome, latitude, temperature, oxygen concentra-
tion, and microbial concentrations (including
total bacteria, Synechococcus, and Prochloro-
coccus). Viral communities were not structured
by depth (surface versus DCM) except when con-
sidering PCs, which likely reflects the minimal
variation between samples in the epipelagic zone
compared with that of globally sourced samples,
as well as the higher resolution provided by PCs.
Nutrients influenced viral community structure
when we considered the whole data set but were
much less explanatorywhen the few high-nutrient
samples were removed, except for the influence
of phosphate concentration on viral populations.
Thus, nutrient concentrations may influence viral
community structure, but testing this hypothesis
would require analysis of samples across a more
continuous nutrient gradient.
Global-scale analyses of oceanic macro- (29)

and microorganisms (30) have been conducted,
including a concurrent TaraOceans study show-
ing that temperature and oxygen influence mi-
crobial community structure (25). Environmental
conditions have also been shown to affect global
viral community morphological traits (7). Our
TOV study is consistent with these earlier find-
ings in that viral communities are influenced by
temperature and oxygen concentration, but not
chlorophyll concentration (Table 1). Biogeographic
structuring of TOV viral communities on the basis
of the significant influence of latitude and Long-
hurst provinces is also consistent with the conclu-
sion that geographic region influences community
structure in Pacific Ocean viruses (42). Although
only PC analysis showed depth-based divergence,
this likely reflects poor (n = 1) deep sample rep-
resentation in the TOV data set as discussed
above. Prior POV viral investigation and con-
current Tara Oceans microbial analysis, both of
which have better deep-water representation,
show stronger depth patternswhereby photic and
aphotic zone communities diverge (25, 28, 42).
Thus, our results suggest that the biogeography
of upper-ocean viral communities is structured
by environmental conditions.
Because viruses require host organisms to rep-

licate, viral community structure follows from
environmental conditions shaping the host com-
munity, as observed in paired Tara Oceans mi-
crobial samples (25), which would then indirectly
affect viral community composition. However,
global distribution of viruses can also be directly
influenced by environmental conditions, such as
salinity, that affect their ability to infect their
hosts (43). Additionally, the variable decay rates
observed for cultivated viruses and whole viral
communities (44) could also influence their dis-
tribution as viruses with lower inherent decay
rates will persist for longer in the environment,
and environments with more favorable condi-
tions (such as fewer extracellular enzymes) will
also contribute to increased viral persistence.
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Fig. 2. PC richness in core and pan viromes from the TOV and POV data sets. (A) Accumulation
curves of core and pan PCs in the TOV data set. Vertical axis shows the number of shared (core virome)
and total (pan virome) PCs when n viromes are compared (n = 1 to 43; from 3 to 41 only 1000
combinations are shown). Lines: (i) total number of PCs (1,075,763 PCs), (ii) core surface virome (710
PCs), (iii) core DCM virome (424 PCs), (iv) core surface and DCM virome (220 PCs), (v) all samples
(including the deep-ocean sample TARA_70_MESO; 65 PCs). (B) Core and pan PCs in all TOV and
photic-zone POV samples combined. Vertical axis shows the number of shared (core virome) and total
(pan-virome) PCs when n viromes are compared (n = 1 to 58; from 3 to 58 only 1000 combinations are
shown). Overall, 1,323,921 PCs were identified in all viromes combined.



Until methods to link viruses to their host cells
in natural communities mature to the point of
investigating this issue at larger scales [emerg-
ing possible methods reviewed by (33, 45)],
analyses such as ours remain the only means
to assess ecological drivers of viral community
structure.
To further investigate how ocean viral com-

munities are distributed throughout the oceans,
we compared population abundances between
neighboring samples to assess the net direction
and magnitude of population exchange (Fig. 7
and see Methods). These genomic signals re-
vealed that population exchange between dsDNA
viral communities was largely directed alongma-
jor oceanic current systems (46). For example, the
Agulhas current and subsequent ring formation
(47) connects viral communities between the

Indian and Atlantic Oceans, as also observed in
planktonic communities from the Tara Oceans
expedition (48), whereas increased connection
between the high-latitude stations (TARA_82
and TARA_85) reflects their common origin at
the divergence of the Falklands and Antarctic
Circumpolar currents. Further, current strength
(46) was generally related to the magnitude of
intersample population exchange, as higher and
lower exchange was observed, respectively, in
stronger currents, such as the Agulhas current,
and within the open ocean gyres or between
land-restricted basins such as theMediterranean
and Red Seas. These findings suggest that the
intensity of watermassmovement, in addition to
environmental conditions, may explain the de-
gree to which viral populations cluster globally
(Fig. 4). Beyond such current-drivenbiogeographic

evidence, vertical viral transport from surface to
DCM samples was also observed (Fig. 4). This is
consistent with POV observations wherein deep-
sea viromes include a modest influx of genetic
material derived from surface-ocean viruses that
are presumably transported on sinking parti-
cles (28). Exceptions include areas such as the
Arabian Sea upwelling region, where increased
mixing and upwelling likely exceed sinking with-
in the upper ocean.
Our TOV results enabled evaluation of a hy-

pothesis describing the structure of viral commu-
nities in the environment. Gene marker–based
studies targeting subsets of ocean viruses previ-
ously found high local and low global diversity
(49), a pattern also recently observed genome-
wide in natural cyanophage populations (11). To
explain this, a seed-bank viral community struc-
ture has been invoked, whereby high local genet-
ic diversity can exist by drawing variation from a
common and relatively limited global gene pool
(49). Our results support this hypothesis regard-
ing viral community structure. Ecological driver
analyses suggests that the numerically dominant
members in local communities are influenced by
environmental conditions, which directly impact
their microbial hosts and then indirectly restruc-
ture viral communities. These dominant communi-
ties then form the “bank” in neighboring samples,
presumablywhenpassively transported by ocean
currents as shown here through the population-
level analyses of net viral movement between
samples. This systematically sampled global data
set suggests that large- and small-scale processes
play roles in structuring viral communities and
offers empirical grounding for the seed-bank
hypothesis with regard to viral community dis-
tribution and structure.

Conclusions

Our large-scale data set provides a picture of
global upper-ocean viral communities in which
we assessed patterns using multiple parameters,
including morphology, populations, and PCs.
Our data provide advanced and complementary
views on viral community structure including
diversity estimates not based on marker genes
and broad application of population-based viral
ecology. We affirm the seed-bank model for vi-
ruses, hypothesized nearly a decade ago (49),
which explains how high local viral diversity
can be consistent with limited global diversity
(11, 27). The mechanism underlying this seed-
bank population structure appears to be a local
production of viruses under small-scale environ-
mental constraints and passive dispersal with
oceanic currents. Improving sequencing, assem-
bly, and experimental methods are transform-
ing the investigation of viruses in nature (33, 45)
and pave the way toward assessment of viral
community structure and analysis of virus-host
co-occurrence networks (50) without requiring
marker genes (51, 52). Such experimental and
analytical progress, coupled to sampling oppor-
tunities from the Tara Oceans expedition, are
advancing viral ecology toward the quantita-
tive science needed to model the nanoscale

1261498-4 22 MAY 2015 • VOL 348 ISSUE 6237 sciencemag.org SCIENCE

Fig. 3. Alpha diversity measurements in TOV data set. (A) Shannon’s diversity H′ and Pielou’s
evenness J calculated from protein cluster counts for each sample and a pool of all samples,
normalized to 5 million reads. (B) Shannon’s diversity H′ and Pielou’s evenness J calculated from
relative abundances of viral populations for each sample and a pool of all samples, with subsamples
of 100,000 reads. Outliers corresponding to values outside of the average value T2 SD are colored
green and red, respectively. Values calculated from the pool of all samples are colored blue.
Longhurst provinces are indicated below samples using the same abbreviations as in Fig. 1.
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(viruses) and microscale (microbes) entities driv-
ing Earth’s ecosystems.

Materials and methods

Sample collection

Forty-three samples were collected between 2
November 2009 and 13 May 2011, at 26 locations
throughout the world’s oceans (file S1) through
the Tara Oceans Expedition (5). These included
samples from a range of depths (surface, deep
chlorophyllmaximum, and onemesopelagic sam-
ple) located in seven oceans and seas, four dif-
ferent biomes, and 11 Longhurst oceanographic
provinces (file S1). Longhurst provinces and bi-
omes are defined based on Longhurst (53) and
environmental features are defined based on En-

vironmentOntology (http://environmentontology.
org/). Sampling strategy and methodology for the
Tara Oceans Expedition is fully described by
Pesant et al. (54).

Environmental parameters

Temperature, salinity, and oxygen data were col-
lected from each station by measuring conduc-
tivity, temperature, depth, and pressure using a
CTD (Sea-Bird Electronics, Bellevue, WA, USA;
SBE 911plus with Searam recorder) and with a
dissolved oxygen sensor (Sea-Bird Electronics;
SBE 43). Nutrient concentrations were deter-
mined using segmented flow analysis (55) and
included nitrite, phosphate, nitrite plus nitrate,
and silica. Nutrient concentrations below the

detection limit (0.02 mmol kg−1) are reported as
0.02 mmol kg−1. Chlorophyll concentrations were
measured using high-performance liquid chroma-
tography (56, 57). These environmental param-
eters are available in PANGAEA (www.pangaea.
de) by using the accession numbers in file S1.

Microbial abundances

Flow cytometry was used to determine the con-
centration of Synechococcus, Prochlorococcus,
total bacteria, low-DNA bacteria, high-DNA bac-
teria, and the percentage of bacteria with high
DNA in each sample (58).

Morphological analysis of
viral communities

qTEM was used to evaluate the capsid diameter
distributions of viral communities as previously
described (7). Briefly, preserved unfiltered samples
(electron microscopy–grade glutaraldehyde;
Sigma-Aldrich, St. Louis, MO, USA; 2% final con-
centration) were flash-frozen and stored at –80°C
until analysis. Viruses were deposited onto TEM
grids using an air-driven ultracentrifuge (Airfuge
CLS, Beckman Coulter, Brea, CA, USA), followed

SCIENCE sciencemag.org 22 MAY 2015 • VOL 348 ISSUE 6237 1261498-5

Fig. 4. Relative abundance of viral populations in TOV by sample. This heat map displays the relative
abundance of each population (sorted according to its original sample, y axis) in each sample (x axis). Relative
abundance of one population in a sample is based on recruitment of reads to the population reference contig
and is only considered if more than 75% of the reference contig is covered. Longhurst provinces are indicated
below samples (using the same abbreviations as in Fig. 1) and are outlined in black on the heat map.

Fig. 5. Relative abundance of viral populations
in TOV by station. (A) Evaluation of viral popula-
tion distribution showing the number of stations
(y axis) in which each population (sorted by their
original station, x axis) is distributed. Populations
are grouped by station, merging surface, and DCM
samples from the same station. (B) Relative abun-
dance of populations (bpmapped per Kb of contig
per Mb of metagenome) at the original stations
where the contigs were assembled compared with
their abundance at other stations. Box plots are
constructed as in Fig. 1.
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by positive staining of the deposited material
with 2% uranyl acetate (Ted Pella, Redding, CA,
USA). Samples were then examined by using a
transmission electron microscope (Philips CM12
FEI, Hilsboro, OR, USA) with 100 kV accelerat-
ing voltage. Micrographs of 100 viruses were
collected per sample using a Macrofire Mono-
chrome charge-coupled device camera (Optronics,
Goleta, CA, USA) and analyzed using ImageJ
software (U.S. National Institutes of Health,
Bethesda, MD, USA) (59) to measure the capsid
diameter. A subset (21) of the 41 samples presented
here had previously been analyzed in a different
study (7).

Virome construction

For each sample, 20 L of seawater were 0.22-
mm–filtered, and viruses were concentrated from
the filtrate using iron chloride flocculation (15)
followed by storage at 4°C. After resuspension in
ascorbic-EDTA buffer (0.1 M EDTA, 0.2 M Mg,
0.2 M ascorbic acid, pH 6.0), viral particles were
concentrated using Amicon Ultra 100-kD cen-
trifugal devices (Millipore), treated with DNase I
(100 U/mL) followed by the addition of 0.1 M
EDTA and 0.1 M EGTA to halt enzyme activity,
and extracted as previously described (14). Brief-
ly, viral particle suspensions were treated with
Wizard Polymerase Chain Reaction Preps DNA
Purification Resin (Promega, Fitchburg, WI, USA)
at a ratio of 0.5-ml sample to 1-ml resin, and
eluted with TE buffer (10 mM Tris, pH 7.5, 1 mM
EDTA) using Wizard Minicolumns. Extracted
DNA was Covaris-sheared and size-selected to
160 to 180 bp, followed by amplification and
ligation per the standard Illumina protocol.

Sequencing was done on a HiSEq 2000 system
at the Genoscope facilities (Paris, France).

Quality control of reads
and assembly

Individual reads of 43 metagenomes were con-
trolled for quality by using a combination of
trimming and filtering as previously described
(60). Briefly, bases were trimmed at the 5′ end if
the number of base calls for any base (A, T, G, C)
diverged by more than 2 SD from the average
across all cycles. Conversely, bases were trimmed
at the 3′ end of reads if the quality score was
<20. Finally, reads that were shorter than 95 bp
or reads with a median quality score <20 were
removed from further analyses. Assembly of
reads was done using SOAPdenovo (61), where
insert and k-mer size are calculated at runtime
and are specific to each virome as implemented
in the MOCAT pipeline (62). On average, 34.2%
of the virome reads were included in the assem-
bled contigs (min: 21.08%, max: 48.52%). Virome
readswere deposited in the EuropeanNucleotide
Archive (www.ebi.ac.uk/ena/) under accession
numbers reported in file S1.

Protein clustering

Open reading frames (ORFs) were predicted
from all quality-controlled contigs using Prodigal
(63) with default settings. Predicted ORFs were
clustered on the basis of sequence similarity as
described previously (9, 10). Briefly, ORFs were
initiallymapped to existing clusters [POV, Global
Ocean Sampling expedition, and phage genomes),
by using cd-hit-2d (“-g 1 -n 4 -d 0 -T 24 -M 45000”;
60% identity and 80% coverage). Then, the re-

maining, unmapped ORFs were self-clustered,
using cd-hit with the same options as above.
Only PCs with more than two ORFs were con-
sidered bona fide and were used for subsequent
analyses. To develop read counts per PC for
statistical analyses, reads were mapped back to
predicted ORFs in the contigs data set using
Mosaik with the following settings: “-a all -m all
-hs 15 –minp 0.95 –mmp 0.05 -mhp 100 -act 20”
(version 1.1.0021; http://bioinformatics.bc.edu/
mathlab/Mosaik). Read counts to PCs were nor-
malized by sequencing depth of each virome.
Shannon’s diversity index (H′) was calculated
from PC read counts by using only PCswithmore
than two predicted ORFs. Observed richness is
reported as the total number of reads in each PC.
Pielou’s evenness (J) was calculated as the ratio of
H′/Hmax, where Hmax = ln N, and N = total num-
ber of observed PCs in a sample.

Analysis of viral populations

Considering the size of the entire data set
(3,821,756 assembled contigs), we decided to
focus the analysis of viral populations using
contigs originating from bacterial or archaeal
viruses. For this, we mined only the 22,912
contigs with more than 10 predicted genes (cor-
responding to an average of 6.41% of the as-
sembled reads per sample, min: 1.29%, max:
14.52%), as the origin of contigs with only a few
predicted genes can be spurious. First, we re-
moved 6706 contigs suspected of having orig-
inated from cellular genomes (64), whether due
to free genomic DNA contamination or viral-
encapsidation of cellular DNA (for example, in
gene transfer agents or generalized transducing
phages). These suspect cellular contigswere those
containing no typical viral genes (such as virion-
related genes including major capsid proteins
and large subunits of the terminase) and dis-
playing as many genes with a significant sim-
ilarity to a PFAM domain through Hmmsearch
(65) as a typical cellular genome, whereas phage
genomes are typically enriched in uncharacter-
ized genes (40). We also removed all contigs
posited to originate from eukaryotic viruses.
These were contigs that contained at least three
predicted proteins with best BLAST hits to a
eukaryotic virus, and more than half of the affi-
liated proteins were not associated with bacte-
riophages or archaeal viruses. Not surprisingly,
given that eukaryotes are outnumbered by bac-
teria and archaea in themarine environment, this
step removed only 142 contigs associated with
eukaryotic viruses. From the remaining 16,124
contigs most likely to have originated from bac-
terial or archaeal viruses, the population study
only used those longer than 10 kb in size—a total
of 6322 contigs, which corresponded to an ave-
rage of 4.04% of the assembled reads per sam-
ple (min: 0.98%, max: 9.97%).
These 6322 contigs were then clustered into

populations if they shared more than 80% of
their genes at >95% nucleotide identity; a
threshold derived from naturally occurring T4-
like cyanophages (11). This resulted in 5476 pop-
ulations from the 6322 contigs, where as many
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Fig. 6.Taxonomic affiliation of TOV viral populations sorted by distribution and average abundance.
A population was considered as similar to a known virus when fewer than half of its reference contig
genes were uncharacterized, and all characterized genes had taxonomic affiliations to the same reference
genome. As in Fig. 4, the relative abundance (y axis) is computed for each sample as the number of bp
mapped to a contig per kb of contig per Mb of metagenome sequenced. Here, the relative abundance of a
population is defined as the average abundance of its reference contig across all samples.
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as 12 contigs (average 1.15 contigs) were included
per population. For each population, the longest
contig was chosen as the seed sequence.
The relative abundance of each population

was computed by mapping all quality-controlled
reads to the set of 5476 nonredundant popula-
tions (considering only mapping quality scores
greater than 1) with Bowtie 2 (66). For each
sample-sequence pair, if more than 75% of the
reference sequence was covered by virome reads,
the relative abundancewas computed as the num-
ber of base pairs recruited to the contig normal-
ized to the total number of base pairs available
in the virome and the contig length. Shannon
diversity index (H′) and Pielou’s evenness (J)
were calculated as done for PCs using the rela-
tive abundance of viral populations.
The sample containing the seed sequence

(the longest contig in a population) was also
considered the best estimate of that population’s
origin. We reasoned that this was because the

longest contig in a population would derive
most often from the sample with the highest
coverage (a proxy for population abundance)
and likely corresponded to the location with
the greatest viral abundance for this popula-
tion. This assumption was supported by the
results showing that populationsweremost abun-
dant in their original samples (Figs. 4 and 5B).
Even though some individual cases could diverge
from this rule, we expected to correctly identify
most of these original locations and, hence, to
get an accurate global signal.
The seed sequence was also used to assess tax-

onomic affiliation of the viral population. Cases
where >50% of the genes were affiliated to a
specific reference genome fromRefSeq (based on
a BLASTp comparison with thresholds of 50 for
bit score and 10−5 for e-value) with an identity
percentage of at least 75% (at the protein se-
quence level) were considered confident affili-
ations with the corresponding reference virus.

Finally, estimations of net viral population
movement between samples were made on the
basis of the relative abundance of populations
in one sample compared with that of its neigh-
boring samples (Fig. 4). For each neighboring
sample pair, the average relative abundance of
populations originating from sample A in sam-
ple B was compared with the relative abun-
dance of populations originating from sample
B in sample A. The origin of each population
was defined as the sample in which the longest
contig of the population was assembled. The
magnitude of these differences was carried through
the analysis to estimate the level of transport be-
tween each pair of samples (depicted as line
width in Fig. 7) and the difference between these
values was used to estimate the directionality
of the transfer. For example, if sample B con-
tains many populations from sample A, but
very few populations from sample B are detected
in sample A, we calculate that the net movement
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Table 1. Relations between viral community structure andmetadata.Relations between viral community structure (based on viral morphology, populations,
and PCs) and metadata by using NMDS analysis of all samples and the sample subset (all samples except for TARA_67_SRF,TARA_70_MESO,TARA_82_DCM,
and TARA_85_DCM because of exceptional environmental conditions at these locations). Significant relations are bold.

Category N and n
Viral morphology

(qTEM)
Populations
(contigs)

Protein clusters
(PCs)

Depth category All samples P = 0.354 (N = 41) P = 0.362 (N = 43) P = 0.033 (N = 43)
Sample subset P = 0.228 (n = 38) P = 0.105 (n = 39) P = 0.011 (n = 39)

Province All samples P = 0.098 (N = 41) P < 0.001 (N = 43) P = 0.014 (N = 43)
Sample subset P = 0.029 (n = 38) P < 0.001 (n = 39) P = 0.008 (n = 39)

Biome All samples P = 0.099 (N = 41) P < 0.001 (N = 43) P = 0.097 (N = 43)
Sample subset P = 0.120 (n = 38) P < 0.001 (n = 39) P = 0.543 (n = 39)

Latitude All samples P = 0.003 (N = 41) P < 0.001 (N = 43) P = 0.002 (N = 43)
Sample subset P = 0.014 (n = 38) P < 0.001 (n = 39) P = 0.010 (n = 39)

Temperature All samples P = 0.001 (N = 41) P < 0.001 (N = 43) P < 0.001 (N = 43)
Sample subset P = 0.001 (n = 38) P < 0.001 (n = 39) P = 0.015 (n = 39)

Salinity All samples P = 0.118 (N = 39) P = 0.035 (N = 41) P = 0.029 (N = 41)
Sample subset P = 0.138 (n = 36) P = 0.075 (n = 37) P = 0.001 (n = 37)

Oxygen All samples P = 0.001 (N = 41) P < 0.001 (N = 43) P < 0.001 (N = 43)
Sample subset P = 0.005 (n = 38) P < 0.001 (n = 39) P < 0.001 (n = 39)

Chlorophyll All samples P = 0.711 (N = 41) P < 0.001 (N = 43) P = 0.001 (N = 39)
Sample subset P = 0.738 (n = 38) P = 0.412 (n = 39) P = 0.059 (n = 39)

Nitrite All samples P = 0.951 (N = 39) P = 0.648 (N = 41) P = 0.828 (N = 41)
Sample subset P = 0.851 (n = 36) P = 0.509 (n = 37) P = 0.999 (n = 37)

Phosphate All samples P = 0.275 (N = 39) P < 0.001 (N = 41) P < 0.001 (N = 41)
Sample subset P = 0.411 (n = 36) P < 0.001 (n = 37) P = 0.583 (n = 37)

Nitrite + Nitrate All samples P = 0.046 (N = 39) P < 0.001 (N = 41) P < 0.001 (N = 41)
Sample subset P = 0.290 (n = 36) P = 0.052 (n = 37) P = 0.643 (n = 37)

Silica All samples P = 0.008 (N = 39) P = 0.002 (N = 41) P = 0.008 (N = 41)
Sample subset P = 0.255 (n = 36) P = 0.285 (n = 37) P = 0.191 (n = 37)

Bacteria All samples P = 0.579 (N = 39) P < 0.001 (N = 40) P = 0.119 (N = 40)
Sample subset P = 0.329 (n = 36) P = 0.003 (n = 36) P = 0.007 (n = 36)

Low DNA bacteria All samples P = 0.227 (N = 39) P = 0.090 (N = 40) P = 0.123 (N = 40)
Sample subset P = 0.468 (n = 36) P = 0.018 (n = 36) P = 0.005 (n = 36)

High DNA bacteria All samples P = 0.967 (N = 39) P < 0.001 (N = 40) P = 0.273 (N = 40)
Sample subset P = 0.174 (n = 36) P = 0.027 (n = 36) P = 0.024 (n = 36)

Percentage of high-DNA bacteria All samples P = 0.007 (N = 39) P = 0.078 (N = 40) P = 0.009 (N = 40)
Sample subset P = 0.017 (n = 36) P = 0.059 (n = 36) P < 0.001 (n = 36)

Synechococcus All samples P = 0.143 (N = 39) P = 0.094 (N = 40) P = 0.041 (N = 40)
Sample subset P = 0.142 (n = 36) P = 0.023 (n = 36) P = 0.013 (n = 36)

Prochlorococcus All samples P = 0.118 (N = 39) P = 0.076 (N = 40) P = 0.123 (N = 40)
Sample subset P = 0.249 (n = 37) P = 0.161 (n = 37) P = 0.140 (n = 37)



is from sample A to sample B. Again, although
the sampling of some populations may not be
strong, the net movement was calculated as the
average of all shared populations between neigh-
boring sample pairs, which corresponded to 105
different populations on average (ranging from
2 to 412).

Statistical ordination of samples

Viral community composition based on capsid
diameter distributions (from qTEM; using 7-nm
histogram bin sizes), population abundances,
and normalized PC read counts (using only PCs
with more than 20 representatives) were com-
pared by using nonmetric multidimensional
scaling (NMDS) performed using the “metaMDS”
function (default parameters) of the vegan pack-
age (67) in R version 2.15.2 (68). The influence
of metadata on sample ordination was eval-
uated using the functions in the vegan package
“envfit”—for factor variables including depth
category, Longhurst province, and biome—and
“ordisurf” for all linear variables (67, 69). Several
samples had exceptional environmental condi-
tions (TARA_67_SUR, TARA_70_MESO, TARA_
82_DCM, and TARA_85_DCM), thus all statis-
tical ordination analyses were conducted with

and without these samples (referred to as the
“sample subset”) to evaluate their influence.
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