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General context

Wild character varieties = moduli spaces of generalised monodromy data
(Stokes data) of meromorphic connections with irregular singularities.

They have a rich structure: they are symplectic, even hyperkähler

Why are they interesting in mathematical physics?
Give rise via isomonodromic deformations to many integrable systems,
eg. Painlevé equations
Appear as phase spaces of some theories (e.g. Coulomb branches of
some d=4 N=2 supersymmetric QFTs)

Jean Douçot Fourier transform of Stokes data



Motivation: dualities of isomonodromy systems

A WCV depends on a choice of "wild Riemann surface" : a curve Σ
together with singularity data Θ.

WCVs coming from different wild Riemann surfaces can be isomorphic.

A manifestation of this is the existence of different Lax pairs for the same
Painlevé equation

Can we understand better these "dualities" between different
isomonodromy systems?

More specifically: there is a notion of Fourier transform for connections
which induces such isomorphisms.

Question: how does the Fourier transform act on generalised monodromy
data?
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Outline

1 Wild character varieties and isomonodromic deformations

2 Fourier transform of irregular connections
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Meromorphic connections

Let Σ be a smooth complex algebraic curve. Here
Σ = P1 = C ∪ {∞}.
Consider (E ,∇) vector bundle with algebraic connection on
Σ ∖ {a1, . . . , am}.
In a local trivialization and with a choice of coordinate:

∇ = d − A(z)dz ,

with A having poles at singular points.
This corresponds to the system of linear differential equations

dY
dz = A(z)Y
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Monodromy

Consider a solution Y of the equation. If we go around one singularity:
Y (z) 7→ Y (z)M, with M ∈ GLn(C).

P1

E

•

•
•

γz γ

Ez

Y (z)
Y (z)M

Example: if ∇ = d − λ
z dz , solution y(z) = zλ, monodromy e2iπλ.

Here ∇ is flat so this only depends on the homotopy class of γ. To ∇ we
associate its monodromy representation ρ : π1(Σ)→ GLn(C).
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Moduli spaces of monodromy data: character varieties

Choose some paths γ1, . . . , γm around ai generating π1(Σo, b)

×a1 ×a2 . . . ×am

•
b

Let Mi = ρ(γi) ∈ G = GLn(C).

The moduli space of monodromy data is the character variety

MB(Σ, a) = {M1, . . . , Mm |M1 . . . Mm = 1}/G .

It is a Poisson manifold (Atiyah-Bott, Goldman).
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Regular Riemann-Hilbert correspondence

Case of regular singularities (i.e basically simple poles)

de Rham moduli space:

MdR(Σ, a) = {connections with regular singularities on Σ \ a} / ∼

Here ∼ corresponds to gauge transformations i.e. changes of trivialisation
g : Σo → GLn(C), doing

A 7→ gAg−1 − dg g−1.

For the system Y ′ = AY , it corresponds to change of variable Z = g(z)Y .

Riemann-Hilbert correspondence (Deligne):

MdR(Σ, a) ≃MB(Σ, a)
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Regular vs irregular singularities

Irregular singularities: higher order poles

∇ = d − A(z)dz , A(z) = As
zs + · · ·+ A1

z + . . .

Monodromy is not enough to reconstruct the connection.

Example:
Regular ∇ = d − λ

z dz , monodromy e2iπλ.
Irregular ∇ = d − dq − λ

z dz , with q ∈ z−1C[z−1] has monodromy
e2iπλ for any q.

⇒ need generalised monodromy data for a topological description of
irregular connections
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Formal data

Turritin-Levelt theorem: it is possible to "diagonalise" ∇ using formal
gauge transformations to a normal form

∇0 = d − dQ − Λ
z dz , Q =




q1
. . .

qn


 , qi ∈ z−1/rC[z−1/r ],

where
qi : exponential factors of ∇,
Q: irregular type of ∇, r ramification order, Q is untwisted if r = 1.
Regular singularity if Q = 0.
Λ: exponent of formal monodromy.

A fundamental solution of ∇0 is eQzΛ.
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Stokes circles
∂ : circle of directions around singularity z = 0

Exponential factors q as germs of functions on ∂, sections of the
exponential local system π : I → ∂.

∂

⟨q⟩

π

Connected components: Stokes circles ⟨q⟩
The map ⟨q⟩ → ∂ is r : 1 with r=ramification index of q (=3 on the
picture)
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Geometric description of formal data

⟨q⟩

∂

π

d

V 0
d ,k1

V 0
d ,k2

V 0
d ,k3

Irregular class Θ = ∑
i ni⟨qi⟩, n ≥ 1.

Local system of formal solutions V 0 → ∂, with a grading
V 0

d = ⊕
π(i)=d V 0

d ,i , and dim(V 0
d ,k) = ni if k ∈ ⟨qi⟩.

The formal monodromy correponds to the monodromy of V 0.
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Stokes phenomenon

Regular singularities: formal solutions are actually convergent

Irregular singularities: when resumming formal solutions, we get analytic
solutions which jump at singular (or anti-Stokes) directions.

Stokes diagram: draw growth rate Re(qi(z)) for |z | → 0 as a function of
the direction (here q1 = z−2, q2 = −z−2)

Stokes arrow i ← j at d if eqi −qj has maximal decay when z → 0 along d .
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Gluing formal and analytic solutions
Modified surface Σ̃(Θ):

Take the real blow up at z = 0 (i.e. replace the singularity by ∂)
Add tangential puncture e(d) for each singular direction d

H
∂

e(d)

Consider:
On the halo H: Formal local system V 0

Outside: Local system of analytic solutions V
⇒ Canonical way to glue them except at tangential punctures (Martinet-Ramis,

Loday-Richaud).
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Stokes local systems

One gets a "Stokes local system" (Boalch) V on Σ̃(Θ).

H
∂

e(d)

Properties: if ρ is the parallel transport in V,
For γd loop around e(d), ρ(γd) belongs to the Stokes group
Stod ⊂ GL(V 0

d )
▶ Identity blocks on the diagonal
▶ Other nontrivial blocks V 0

d,j → V 0
d,i for each Stokes arrow i ←d j .

Formal monodromy ρ(∂) compatible with grading of V 0.
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Explicit description
Doing this for each singularity ai , get global modified surface Σ̃(Θ)

Choosing a basepoint b, get wild monodromy representation
ρ : π1(Σ̃(Θ), b)→ G .

bi b
C (i)

h(i)

S(i)
1

S(i)
2

S(i)
s

The monodromy around ai is the product Mi = C (i)−1h(i)S(i)
ki

. . . S(i)
1 C (i)
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Wild character varieties

Get the wild character variety

MB(a, Θ) =
{

(C (i), h(i), S(i)
k )

∣∣∣∣∣
∏

i
(C (i)−1h(i)S(i)

ki
. . . S(i)

1 C (i)) = 1
}

/G×H

where H = ∏
i Hi and Hi ⊂ G corresponding to changes of graded

framings of Vbi .

It has a quasi-Hamiltonian structure (Boalch)

Riemann-Hilbert-Birkhoff correspondence (Deligne-Malgrange):

MdR(a, Θ) ∼=MB(a, Θ).
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Untwisted example (Pure gaussian case)

Singularity at infinity, two exponential factors q1 = z2, q2 = −z2, 4
singular directions, 4 Stokes matrices.
Moduli space

MB = {hS4S3S2S1 = 1}/H

with S2i+1 =
(

1 ∗
0 1

)
, S2i =

(
1 0
∗ 1

)
, h =

(
∗ 0
0 ∗

)
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Twisted example (Painlevé I)
Singularity at infinity, one exponential factor z5/2, 5 singular
directions, 5 Stokes matrices.
Moduli space (of dimension 2)

MB = {hS5S4S3S2S1 = 1}/H

with S2i+1 =
(

1 ∗
0 1

)
, S2i =

(
1 0
∗ 1

)
, h =

(
0 ∗
∗ 0

)
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Isomonodromic deformations: basic case
Regular case: we want to move the positions ai of the singularities.

We wish to deform ∇ = d − Adz so that the monodromies Mi remain
constant

⇒ consider A = A(z ; ai), isomonodromy gives a nonlinear PDEs satisfied
by the coefficients of A.

Schlesinger equations: for A = ∑
i

Ai
z−ai

, we get

∂Ai
∂aj

= [Ai , Aj ]
ai − aj

, j ̸= i ,

∂Ai
∂ai

= −
∑

j ̸=i

[Ai , Aj ]
ai − aj

.

The ai are the "times" for the isomonodromic deformations.

For rank 2, 4 singularities, we get Painlevé VI
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Geometric POV on (irregular) isomonodromic deformations
Isomonodromy as an (Ehresmann) connection on an admissible family of
wild character varieties (MdR(Σ, ab, Θb))b∈B.

νRHB

B B

MdR MB

·b

MdR(Σ, ab , Θb)

·b

MB(Σ, ab , Θb)

B : space of deformation parameters

The irregular class Θ gives extra deformation parameters: "irregular
times" ti .

"Integrability" here: the connection is flat, the flows ∂ti commute

All Painlevé equations can be obtained in that way
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1 Wild character varieties and isomonodromic deformations

2 Fourier transform of irregular connections
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The Fourier transform

Connections on the Riemann sphere closely related to modules on the
Weyl algebra A1 = C[z ]⟨∂z⟩, with [∂z , z ] = 1.
Fourier transform: automorphism of the Weyl algebra:

{
z 7→ −∂z
∂z 7→ z

If M module over the Weyl algebra, Fourier transform ⇒ FM
More generally: we can act with any matrix A ∈ SL2(C)
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The stationary phase formula [Malgrange 91, Fang 09, Sabbah 08]

It relates the irregular class of a connection and its Fourier transform.
Solutions are linear combinations of terms of the form

f (z) = eq(z)g(z),

The Fourier transform is an integral f̂ (ξ) =
∫

γ eq(z)−ξzg(z)
The behaviour of the integral when ξ →∞ is determined by the
critical point of the exponential factor, i.e. z0 such that

∂q
∂z (z0) = ξ.

New exponential factor q̃(ξ) = q(z0(ξ))− ξz0(ξ)
⇒ Legendre transform of q.
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The stationary phase formula
Different types of circles:

1 The pure circles at infinity, of the form ⟨αz⟩∞, with α ∈ C.
2 Other circles of slope ≤ 1 at infinity, of the form ⟨αz + q⟩∞, with

α ∈ C, and q ̸= 0 of slope < 1,
3 Circles ⟨q⟩∞ of slope > 1 at infinity,
4 Irregular circles at finite distance ⟨q⟩a, with q ̸= 0, a ∈ C.
5 The tame circles ⟨0⟩a, a ∈ C at finite distance.

P1a ∞

⟨0⟩a

⟨q⟩a

⟨−az + q<1⟩a

⟨−az⟩∞

⟨q>1⟩∞
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Diagrams
The Fourier transform (and SL2(C) action) should induces isomorphisms
between moduli spaces.

In many cases, an open dense subset M∗ ⊂MB is a quiver variety
(Crawley-Boevey, Boalch, Hiroe-Yamakawa)

Different readings of the quiver correspond to isomorphisms between
moduli spaces with different (a, Θ)

More generally it is possible to define a diagram which is invariant under
SL2(C) for an arbitrary connection on P1. (D.)

For moduli spaces corresponding to Painlevé equations, the diagrams are
related to the Okamoto symmetries of the equations
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Fourier transform of Stokes data: some history

Well-known case (Balser-Jurkat-Lutz, Malgrange, Boalch, d’Agnolo-Hien-Morando-Sabbah)

One singularity of order 2 at ∞,
Regular singularities at finite distance.

In the "simply-laced case" (one pole of order less than 3 at infinity +
regular singularities at finite distance), some symplectic isomorphisms
obtained (Boalch), but unclear if there are the ones induced by Fourier.

In general, not many explicit examples.

General approaches (Malgrange 1991, T. Mochizuki 2010, 2018): general results but not very
explicit
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The setting

Joint work with A. Hohl: we use results of Mochizuki to obtain explicit
isomorphisms in a large class of cases.

In brief:
Translate a class of cases of T. Mochizuki’s "Stokes shells and Fourier
transform" (2018) into the language of Stokes local systems
Get explicit formulas for the transformation of Stokes matrices

Assumption:
Only Stokes circles of slope >1 at ∞
Circles of pure level r/s > 1 with s, r coprime qi = aizs/r .
Extra hypothesis |ai | = 1.
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Stronger version of Legendre transform

Main idea: the Legendre transform as an homeomorphism between circles
ℓ : ⟨q⟩ ∼= ⟨q̂⟩.

One can use ℓ to transport the nontrivial entries of Stokes data (up to
signs)
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Distinguished intervals
On each Stokes circle, intervals J where q is either increasing or
decreasing when |z | → 0.

Increasing intervals are sent by ℓ to decreasing ones and vice versa

J1

J2

J3

J4

J ′
1

J ′
2

J ′
3 J ′

4

Ĵ1

Ĵ2

Ĵ3

Ĵ4

Ĵ ′
1

Ĵ ′
2

Ĵ ′
3

Ĵ ′
4
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Stokes paths
Nontrivial entry of Stokes matrix ↔ entry of parallel transport in Stokes
local system along a path γi→j

If the Stokes arrow goes from sector I to J , i , j ∈ ∂ are the midpoints of
I, J .

Stokes arrow

Associated path

The Stokes local system can be reconstructed from these entries of the
parallel transport along these Stokes paths
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The algorithm

Start with connection (E ,∇) on C with irregular class Θ, formal local
system V 0, Stokes local system V.

The corresponding objets Θ̂, V̂ 0, V̂ for the Fourier transform are
determined as follows:

Formal part: V̂ 0 obtained from ℓ∗V 0 by adding some signs when
passing from one distinguished sector to the next
Stokes data: for any Stokes path γi→j , the parallel transport is

ρ̂(γi→j) = ±ρ(γℓ−1(i)→ℓ−1(j))

with an explicitly determined sign.
The nontrivial entries of Stokes matrices are exactly the "deformation
data" considered by Mochizuki
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Example : pure gaussian case
Initial irregular class Θ = ⟨z2⟩+ ⟨1+i√

2 z2⟩.

J1

J2

J3

J4

J ′
1

J ′
2

J ′
3 J ′

4

τ

11

1

τ−1

1

1

1 •
b

S1
S2S3

S4

S1 =
(

1 0
s1 1

)
S2 =

(
1 s2
0 1

)
S3 =

(
1 0
s3 1

)
S4 =

(
1 s4
0 1

)
h =

(
τ 0
0 τ ′

)

MB(Θ) = {h, S1, S2, S3, S4 | hS4S3S2S1 = 1}/H.
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New irregular class Θ̂ = ⟨−z2⟩+ ⟨−1+i√
2 z2⟩.

−τ

1−1

1
−τ−1

1

−1

1

•b̂

Ŝ1

Ŝ2Ŝ3

Ŝ4

MB(Θ̂) = {ĥ, Ŝ1, Ŝ2, Ŝ3, Ŝ4 | hS4S3S2S1 = 1}/H.
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Correspondence between distinguished intervals and transformation of the
formal data

J1

J2

J3

J4

J ′
1

J ′
2

J ′
3 J ′

4

τ

11

1

τ−1

1

1

1

Ĵ1

Ĵ2

Ĵ3

Ĵ4

Ĵ ′
1

Ĵ ′
2

Ĵ ′
3

Ĵ ′
4

−τ

1−1

1
−τ−1

1

−1

1
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τ

11

1
τ−1

1

1

1

Inverse image ℓ−1(γ)

−τ

1−1

1
−τ−1

1

−1

1

Stokes arrow

Associated Stokes path γ

With the Legendre transform, transport γ to the initial Stokes diagram
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One obtains the entries of the parallel transport along the Stokes paths

−τ

1−1

1
−τ−1

1

−1

1
−s1/τ

−s2τ 2
−s3/τ 2

−s4τ 2
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Finally we get the new Stokes matrices

−τ

1−1

1
−τ−1

1

−1

1

•
b̂

Ŝ1

Ŝ2Ŝ3

Ŝ4

Ŝi = Si , ĥ = h.
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Example: Painlevé I case
Θ = ⟨−z5/2⟩

S1

S2

S3

S4

S5

J0

J1

J2

J3

J4

J5

J6

J7

J8

J9

MB = {hS5S4S3S2S1 = 1} with h =
(

0 −1
1 0

)
, S1 =

(
1 s1
0 1

)
, S2 =

(
1 0
s2 1

)
, . . .
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Fourier transform Θ̂ = ⟨z5/3⟩.

Ĵ0

Ĵ1

Ĵ2

Ĵ3

Ĵ4

Ĵ5

Ĵ6

Ĵ7

Ĵ8

Ĵ9

Ŝ1

Ŝ2

Ŝ3
Ŝ4

Ŝ5

Ŝ6

Ŝ7

Ŝ8

Ŝ9
Ŝ10

M′
B = {kT10 . . . T1 = 1} with k =

(
0 0 1
1 0 0
0 1 0

)
, T1 =

(
1 0 0
0 1 0
t1 0 1

)
, T2 =

(
1 0 0
0 1 0
0 t2 1

)

Jean Douçot Fourier transform of Stokes data



MB ≃M′
B via Φ : (s1, s2, s3, s4, s5) 7→ (s3,−s5,−s2, s4, s1,−s3, s5, s2,−s4,−s1)

Computation of the isomorphism

coefficient Stokes arrow Stokes matrix entry extra sign
t1 3→ 0 −s5 +
t2 7→ 0 −s2 +
t3 7→ 4 s4 +
t4 1→ 4 −s1 −
t5 1→ 8 s3 −
t6 5→ 8 −s5 −
t7 5→ 2 s2 +
t8 9→ 2 −s4 +
t9 9→ 6 −s1 +
t10 3→ 6 −s3 −

The isomorphism is symplectic!
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Questions

Conjecture: the isomorphisms induced by the Fourier transform preserve
the symplectic structure.

Further questions:
Can we show this?
Obtain explicit isomorphisms for more general situations (several
irregular singularities, etc...)?
How these isomorphisms behave in families: can we relate the
corresponding spaces of times and isomonodromy systems?
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