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(irregular) nonabelian Hodge spaces

M
nonabelian Hodge space

MDol

MdR

MB

mero.Higgs bundles

mero. connections

(Stokes) local systems

MDol ≃ MdR : (wild) nonabelian Hodge correspondence
MdR ≃ MB: (irregular) Riemann-Hilbert correspondence
MB is a (wild) character variety.

Hyperkähler manifold, 3 different algebraic structures.
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Outline
The moduli space depends on the choice of a "wild Riemann surface", i.e.
a Riemann surface Σ together with singularity data (Θ, C).

Several different singularity data can give rise to isomorphic moduli spaces:
different "representations" of the same space

Question: can we classify wild character varieties? Is there a systematic
way to find all wild Riemann surfaces giving rise to the same moduli space?

Idea: associate a diagram to singularity data

(Θ, C)

such that, at least in some cases, wild Riemann surfaces corresponding to
isomorphic moduli spaces have the same diagram.
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Meromorphic connections

Let Σ be a smooth complex algebraic curve. Here
Σ = P1 = A1 ∪ {∞}.
Consider (E , ∇) vector bundle with algebraic connection on
Σ ∖ {a1, . . . , am}.
In a trivialization and with a choice of coordinate:

∇ = d − A(z)dz ,

with A having poles at singular points.
→ corresponds to a system of linear differential equations.
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Formal normal form

Turritin-Levelt theorem
After passing to a finite cover t = z1/r , any connection on the formal
punctured disk is formally isomorphic (via formal gauge transformations)
to a connection of the form

d − (dQ + Λdz
z )

where Q = diag(q1, . . . , qk) diagonal matrix with coefficients in
z−1/rC[z−1/r ], Λ constant block diagonal.

The qi are the exponential factors of the connection: indeed formal
solutions eQzΛ are linear combinations of terms with eqi (z).
Λ: formal monodromy

Untwisted case: when no ramification, i.e. r = 1.
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The exponential local system
Let ∂ be the circle of directions around z = 0.
Exponential local system I → ∂: sections on sectors are germs of
functions of the form

q(z) =
s∑

i=1
biz−i/r ,

Connected components are circles ⟨q⟩. ⟨q⟩ → ∂ cover of ∂ of order r .
I is a collection of circles
r = ram(q) ramification index,
s = Irr(q) irregularity.
s/r is the slope of q.
(local) singularity data: choice of active circles ⟨qi⟩, with
multiplicities ni , and conjugacy classes Ci ⊂ GLni (C)

▶ Irregular class Θ = n1⟨q1⟩ + . . . nk⟨qk⟩.
▶ C = (C1, . . . , Ck) conjugacy classes of blocks of Λ.

Jean Douçot (Université de Genève) April 15, 2022 7 / 36



Stokes phenomenon

Main idea: growth rates of eqi change when going around the singularity

Stokes diagram: draw eRe(q(ϵiθ)), ϵ ≪ 1, here for q = z3.
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Stokes matrices
Change of dominance between the exponential factors eqi depending on
the direction.

Singular directions: d ∈ A where qi − qj ∈ R<0 for some (i , j).
Stokes arrow ⟨qi⟩ → ⟨qj⟩

Associated block in Stokes matrix Sd =

1 0 ∗

0 . . . 0
0 0 1

 in position (i , j).

Jean Douçot (Université de Genève) April 15, 2022 9 / 36



Explicit presentation of wild character varieties

MB ∼= {(C−1
1 h1S(1)

k1
. . . S(1)

1 C1) . . . (C−1
m hmS(m)

km
. . . S(m)

1 Cm) = 1}/G × H,

This corresponds to a quasi-Hamiltonian description
Fission spaces: A(V 0

ai ) ∋ (Ci , hi , S(i)
1 , . . . , S(i)

ki
)

For several singularities, fusion of fission spaces (here G = GLn(C))

HomS(Θ) ≃ A(V 0
a1) ⊛ · · · ⊛ A(V 0

am) // G .

MB is now obtained by taking the multiplicative symplectic reduction
at the conjugacy classes of formal monodromies.

MB(Θ, C) = HomS(Θ) //C H.

where H = H1 × · · · × Hm, Hi is a subgroup of G of block diagonal
matrices
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Untwisted example

Singularity at infinity, two exponential factors q1 = z2, q2 = −z2, 4
singular directions, 4 Stokes matrices.
Moduli space

MB = {hS4S3S2S1 = 1} // H

with S2i+1 =
(

1 ∗
0 1

)
, S2i =

(
1 0
∗ 1

)
, h =

(
∗ 0
0 ∗

)
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Twisted example
Singularity at infinity, one exponential factor z5/2, 5 singular
directions, 5 Stokes matrices.
Moduli space (of dimension 2)

MB = {hS5S4S3S2S1 = 1} // H

with S2i+1 =
(

1 ∗
0 1

)
, S2i =

(
1 0
∗ 1

)
, h =

(
0 ∗
∗ 0

)
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Diagram associated to a connection

General structure:
Core diagram encoding the irregular class Θ
"Legs" (linear quivers) encoding the conjugacy classes of formal
monodromies

This relies on the fact that a conjugacy class C ⊂ GL(N) can be
characterized by a a linear quiver
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Regular connections
Singularity data: conjugacy classes C of formal monodromies.
Quivers from conjugacy classes [Kraft-Procesi 82, Crawley-Boevey 01-06]. Let
C ⊂ GL(N) conjugacy class. Choose marking i.e. polynomial
P = (X − ξ1) . . . (X − ξk) s.t P(A) = 0 for any A ∈ C. Define

d2 d3 dkn
. . .

with di = rank(A − ξ1) . . . (A − ξi−1).
Glue those legs → star-shaped quiver associated to the connection.

L1L2

Lm
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One irregular singularity: core diagram [Boalch-Yamakawa 20]

Setting: only one singularity at infinity, exponential factors qi with
ramification orders ri .

The vertices correspond to the exponential factors qi .

To find the number of edges/loops between qi and qj (one edge = one
arrow in each direction)

Count the number of Stokes arrows between the corresponding circles
in the Stokes diagrams
substract ri rj if i ̸= j , or r2

i − 1 if i = j (corresponds to relations in
the quasi-Hamiltonian presentation)

Notice there can be edges/loops with negative multiplicities
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Simple examples

Untwisted example: 2 − 1 = 1 edges between ⟨q1⟩ and ⟨q2⟩

Twisted example: 5 − 22 + 1 = 2 oriented loops at ⟨q⟩
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Properties of the quivers
Dimension of the wild character variety: dim MB = 2 − (d, d),
with d dimension vector, (·, ·) bilinear form defined by the Cartan matrix
of the diagram.

In the case of regular singularities, or in the "simply-laced" case (one
untwisted irregular singularity of order ≤ 3 + simple poles), we have more:

Quiver modularity theorem: The additive moduli space M∗ ⊂ MB is
isomorphic to the Nakajima quiver variety of Γ

M∗ ≃ N(Γ, d, λ).

MB can be seen as a multiplicative quiver variety. The several
readings correspond to isomorphisms between the wild character
varieties.
Weyl group action: basically corresponds to exchanging eigenvalues of
formal monodromies.
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Extension to several irregular singularities

Idea: use transformations to reduce to the case with one singularity at
infinity.
Action of SL2(C) on singularity data, including Fourier-Laplace transform.

Theorem (D.)
There is a well-defined way to associate to any connection (E , ∇) on a
Zariski open subset of the affine line, with modified formal data (Θ̆, C̆) a
core diagram Γ(Θ̆, C̆) such that

1 If Θ̆ has support at infinity, then Γ(Θ̆, C̆) is the diagram of [BY] .
2 Γ(Θ̆, C̆) = Γ(A · (Θ̆, C̆)) for any A ∈ SL2(C).

The diagram comes together with a dimension vector d ∈ ZI , and a vector
of labels q ∈ (C∗)I (where I is the set of vertices).
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Explicit description

As before, the diagram consists of a core to which we attach legs
The vertices of the core correspond to the active circles
The multiplicity of edges/loops in the core is given by

Definition
Suppose i , j are active circles at ai , aj , with i = ⟨qi⟩, j = ⟨qj⟩ are circles at
ai , aj respectively. Let αi = Irr(qi), βi = ram(qi) and similarly for j . If
ai = aj let us denote by B∞

i ,j the number of edges between i and j in the
diagram of [BY].

1 If ai = aj = ∞ then Bij = B∞
ij .

2 If ai = ∞ and aj ̸= ∞ then Bij = Bji = βi(αj + βj).
3 If ai ̸= ∞, aj ̸= ∞ and ai ̸= aj then Bij = Bji = 0.
4 If ai = aj ̸= ∞ then Bij = Bji = B∞

ij − αiβj − αjβi .
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Fourier-Laplace transformation

Connections on the Riemann sphere closely related to modules on the
Weyl algebra A1 = C[z ]⟨∂z⟩, with [∂z , z ] = 1.
Fourier transform: automorphism of the Weyl algebra:{

z 7→ −∂z
∂z 7→ z

If M module over the Weyl algebra, Fourier transform ⇒ FM
More generally: we can act with any matrix A ∈ SL2(C).
Such symplectic transformations are generated by 3 types of
elementary transformations.

▶ Fourier-Laplace
▶ Scalings z 7→ z/λ
▶ Twists, corresponding to ∇ 7→ ∇ + λzdz .
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The stationary phase formula [Malgrange 91, Fang 09, Sabbah 08]

It relates the irregular class of a connection and its Fourier transform.
Solutions are linear combinations of terms of the form

f (z) = eq(z)g(z),

The Fourier transform is an integral f̂ (ξ) =
∫

γ eq(z)−ξzg(z)
The behaviour of the integral when ξ → ∞ is determined by the
critical point of the exponential factor, i.e. z0 such that

∂q
∂z (z0) = ξ.

New exponential factor q̃(ξ) = q(z0(ξ)) − ξz0(ξ)
⇒ Legendre transform of q.
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The stationary phase formula
Different types of circles:

1 The pure circles at infinity, of the form ⟨αz⟩∞, with α ∈ C.
2 Other circles of slope ≤ 1 at infinity, of the form ⟨αz + q⟩∞, with

α ∈ C, and q ̸= 0 of slope < 1,
3 Circles ⟨q⟩∞ of slope > 1 at infinity,
4 Irregular circles at finite distance ⟨q⟩a, with q ̸= 0, a ∈ C.
5 The tame circles ⟨0⟩a, a ∈ C at finite distance.

P1a ∞

⟨0⟩a

⟨q⟩a

⟨−az + q<1⟩a

⟨−az⟩∞

⟨q>1⟩∞
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Main idea

Putting everything at infinity
Apply twist at infinity q 7→ q + λz2.
Now all active circles at ∞ have slope > 1.
Now apply Fourier: only one singularity at infinity.

Crucial fact: this does not depend on the choices. Indeed

Theorem
If Θ is an irregular class at infinity and A ∈ SL2(C) such that A · Θ is also
at infinity, then

Γc(A · Θ) = Γc(Θ).

Main ingredient of proof: the diagram is invariant under Fourier transform.
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Properties of the diagram

Dimension of the wild character variety: we still have

dim MB(E , ∇) = 2 − (d, d).

Idea of proof: use the quasi-Hamiltonian description of the wild character
variety

MB(V ) = HomS(E , ∇) //C H.

From the invariance under SL2(C), get several readings of the diagram

It is still possible to interpret some Weyl reflections on the diagram as
coming from operations on connections
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Diagrams for Painlevé equations

Painlevé equations can be obtained from isomonodromic deformation
equations of some meromorphic connections. Such a connection is a
Lax pair for the Painlevé equation.
They correspond to two-dimensional moduli spaces.
Standard (rank 2) Lax pairs and diagrams:

VI V IV III II
1+1+1+1 2+1+1 3+1 2+2 4

2

Get affine Dynkin diagrams corresponding to the Okamoto
symmetries of Painlevé equations
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Painlevé VI: several Lax pairs
Standard Lax pair: rank 2, 4 simple poles (including one at infinity)

⟨0⟩∞

⟨0⟩a

⟨0⟩b

⟨0⟩d

Harnad dual: rank 3, one irreg sing. at infinity, and one simple pole at
finite distance

⟨0⟩0

⟨αz⟩∞

⟨βz⟩∞

⟨γz⟩∞
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Painlevé III

From alternative Lax pair [Boalch-Yamakawa 20]: one pole of order 2, twisted, 2
simple poles, rank 2

⟨0⟩a
⟨αz1/2⟩∞

⟨0⟩a

From the usual Lax pair: two irregular poles of order 2

⟨λ1z⟩∞
⟨µz−1⟩0

⟨λ2z⟩∞
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Degenerate Painlevé equations
Degenerate PIII: two second order poles, one of them twisted (slope 1/2).

Θ̆ = ⟨αz1/2⟩∞ + ⟨βz−1⟩0

4

⟨βz−1⟩0 ⟨αz1/2⟩∞

−1−1

Doubly degenerate PIII: two twisted second order poles (slopes 1/2)

Θ̆ = ⟨αz1/2⟩∞ + ⟨βz−1/2⟩0

6

⟨βz−1/2⟩0 α⟨z1/2⟩∞

−1−3
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Higher dimensional cases
Among 4-dimensional Painlevé-type equations, two examples of different
known Lax pairs corresponding to the same diagram:

⟨βz⟩∞
⟨αz3⟩∞

⟨β′z⟩∞

rank 3
⟨0⟩a

⟨λz3/2⟩∞
⟨0⟩b

rank 2

⟨λz−1⟩0

⟨αz⟩∞
⟨βz⟩∞

⟨γz⟩∞

rank 3

⟨λz1/2⟩∞

⟨0⟩a
⟨0⟩b

⟨0⟩c

rank 2

Proposition
All Lax pairs for a same given 4-dimensional Painlevé-type equation listed
by [Kawakami et al. 18] correspond to different readings of the same
diagram.
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Orbits under basic operations

Basic operations:
SL2(C)
Twists
Möbius transformations (change the point at infinity)

The diagram is invariant under SL2(C) but not under other basic
operations.

Question: orbits under repeated application of basic operations? Is there a
minimal diagram?
In the rigid case:

Theorem (Katz ’96, Arinkin ’10)

Any rigid irreducible connection on P1 can be brought to the trivial rank
one connection by repeated application of basic operations.
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Diagrams with one vertex and few loops

Consider an exponential factor ⟨q⟩ at infinity, let k = B⟨q⟩,⟨q⟩/2 the
corresponding number of loops.

Theorem
If k = 0, 1, 2, ⟨q⟩ can be brought by repeated application of basic
operations to an exponential factor which is an admissible deformation of

k simple exponential factor
0 0
1 z5/3

2 z7/5
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Towards explicit isomorphisms?

One expects the different readings of the diagram correspond to
isomorphisms of the moduli spaces, compatible with the symplectic
structure
Such isomorphisms should be obtained by the transformation of
Stokes data under Fourier transform
This has been studied by many people [Malgrange, Mochizuki, Sabbah, Hien, D’Agnolo...],
but difficult to get explicit formulas beyond the simply laced case.
A simple twisted case : connections with only 1 exponential factor
⟨zα/β⟩∞ and ⟨zα/α−β⟩∞ with α > β.
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Isomorphism for slopes 5/2 ↔ 5/3

MB = {s1, . . . , s5, hS5S4S3S2S1 = 1} with
h =

(
0 −1
1 0

)
, S1 =

(
1 s1
0 1

)
, S2 =

(
1 0
s2 1

)
, . . .

M′
B = {t1, . . . , t10, kT10 . . . T1 = 1} with

k =

0 0 1
1 0 0
0 1 0

 , T1 =

1 0 0
0 1 0
t1 0 1

 , T2 =

1 0 0
0 1 0
0 t2 1

 , . . .

MB ≃ M′
B via

Φ : (s1, s2, s3, s4, s5) 7→ (s3, −s5, −s2, s4, s1, −s3, s5, s2, −s4, −s1)
The isomorphism is compatible with the symplectic structures

Jean Douçot (Université de Genève) April 15, 2022 36 / 36


	Wild character varieties
	Construction of diagrams
	Applications to Painlevé equations
	Further questions

