Diagrams and the classification of wild character varieties

Jean Douçot

Université de Genève

April 15, 2022

Jean Douçot (Université de Genève)

→ ▲ 클 → ▲ 클 → 클 → へ (~ April 15, 2022 1/36

(irregular) nonabelian Hodge spaces

- $\mathcal{M}_{Dol} \simeq \mathcal{M}_{dR}$: (wild) nonabelian Hodge correspondence
- $\mathcal{M}_{dR} \simeq \mathcal{M}_{B}$: (irregular) Riemann-Hilbert correspondence
- \mathcal{M}_B is a (wild) character variety.

Hyperkähler manifold, 3 different algebraic structures.

Outline

The moduli space depends on the choice of a "wild Riemann surface", i.e. a Riemann surface Σ together with singularity data (Θ, C) .

Several different singularity data can give rise to isomorphic moduli spaces: different "representations" of the same space

Question: can we classify wild character varieties? Is there a systematic way to find all wild Riemann surfaces giving rise to the same moduli space?

Idea: associate a diagram to singularity data

such that, at least in some cases, wild Riemann surfaces corresponding to isomorphic moduli spaces have the same diagram.

イロト イヨト イヨト ・

2 Construction of diagrams

→ ∃ →

< 円

Meromorphic connections

- Let Σ be a smooth complex algebraic curve. Here $\Sigma=\mathbb{P}^1=\mathbb{A}^1\cup\{\infty\}.$
- Consider (E, ∇) vector bundle with algebraic connection on $\Sigma \setminus \{a_1, \ldots, a_m\}.$
- In a trivialization and with a choice of coordinate:

$$\nabla = d - A(z)dz,$$

with A having poles at singular points.

 \rightarrow corresponds to a system of linear differential equations.

Formal normal form

Turritin-Levelt theorem

After passing to a finite cover $t = z^{1/r}$, any connection on the formal punctured disk is formally isomorphic (via formal gauge transformations) to a connection of the form

$$d - (dQ + \Lambda \frac{dz}{z})$$

where $Q = \text{diag}(q_1, \ldots, q_k)$ diagonal matrix with coefficients in $z^{-1/r}\mathbb{C}[z^{-1/r}]$, Λ constant block diagonal.

The q_i are the *exponential factors* of the connection: indeed formal solutions $e^Q z^{\Lambda}$ are linear combinations of terms with $e^{q_i(z)}$. Λ : formal monodromy

Untwisted case: when no ramification, i.e. r = 1.

(日)

The exponential local system

- Let ∂ be the circle of directions around z = 0.
- Exponential local system $\mathcal{I}\to\partial :$ sections on sectors are germs of functions of the form

$$q(z)=\sum_{i=1}^{s}b_{i}z^{-i/r},$$

- Connected components are *circles* $\langle q \rangle$. $\langle q \rangle \rightarrow \partial$ cover of ∂ of order r. \mathcal{I} is a collection of circles
- r = ram(q) ramification index,
 - s = Irr(q) irregularity.
 - s/r is the slope of q.
- (local) singularity data: choice of active circles ⟨q_i⟩, with multiplicities n_i, and conjugacy classes C_i ⊂ GL_{ni}(ℂ)
 - Irregular class $\Theta = n_1 \langle q_1 \rangle + \dots n_k \langle q_k \rangle$.
 - $C = (C_1, \ldots, C_k)$ conjugacy classes of blocks of Λ .

Stokes phenomenon

Main idea: growth rates of e^{q_i} change when going around the singularity

Stokes diagram: draw $e^{\operatorname{Re}(q(\epsilon i\theta))}$, $\epsilon \ll 1$, here for $q = z^3$.

Stokes matrices

Change of dominance between the exponential factors e^{q_i} depending on the direction.

Singular directions: $d \in \mathbb{A}$ where $q_i - q_j \in \mathbb{R}_{<0}$ for some (i, j). Stokes arrow $\langle q_i \rangle \rightarrow \langle q_j \rangle$

Associated block in Stokes matrix $S_d = \begin{pmatrix} 1 & 0 & * \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{pmatrix}$ in position (i, j).

Explicit presentation of wild character varieties

$$\mathcal{M}_B \cong \{(C_1^{-1}h_1S_{k_1}^{(1)}\dots S_1^{(1)}C_1)\dots (C_m^{-1}h_mS_{k_m}^{(m)}\dots S_1^{(m)}C_m)=1\}/G imes m{H},$$

This corresponds to a quasi-Hamiltonian description

- Fission spaces: $\mathcal{A}(V^0_{a_i}) \ni (C_i, h_i, S^{(i)}_1, \dots, S^{(i)}_{k_i})$
- For several singularities, fusion of fission spaces (here $G = GL_n(\mathbb{C})$)

$$\operatorname{Hom}_{\mathbb{S}}(\Theta) \simeq \mathcal{A}(V^0_{a_1}) \circledast \cdots \circledast \mathcal{A}(V^0_{a_m}) /\!\!/ G.$$

• \mathcal{M}_B is now obtained by taking the multiplicative symplectic reduction at the conjugacy classes of formal monodromies.

$$\mathcal{M}_{B}(\Theta, \mathcal{C}) = \operatorname{Hom}_{\mathbb{S}}(\Theta) /\!\!/_{\mathcal{C}} \mathbf{H}.$$

where $\mathbf{H} = H_1 \times \cdots \times H_m$, H_i is a subgroup of G of block diagonal matrices

イロト イポト イヨト イヨト 二日

Untwisted example

- Singularity at infinity, two exponential factors $q_1 = z^2$, $q_2 = -z^2$, 4 singular directions, 4 Stokes matrices.
- Moduli space

$$\mathcal{M}_{B} = \{hS_{4}S_{3}S_{2}S_{1} = 1\} /\!\!/ H$$

with $S_{2i+1} = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}, S_{2i} = \begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix}, h = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$

→

< 4 ₽ × <

Twisted example

- Singularity at infinity, one exponential factor $z^{5/2}$, 5 singular directions, 5 Stokes matrices.
- Moduli space (of dimension 2)

$$\mathcal{M}_{B} = \{hS_{5}S_{4}S_{3}S_{2}S_{1} = 1\} /\!\!/ H$$

with $S_{2i+1} = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$, $S_{2i} = \begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix}$, $h = \begin{pmatrix} 0 & * \\ * & 0 \end{pmatrix}$

Image: A matrix and a matrix

э

(日) (四) (日) (日) (日)

Diagram associated to a connection

General structure:

- Core diagram encoding the irregular class Θ
- "Legs" (linear quivers) encoding the conjugacy classes of formal monodromies

This relies on the fact that a conjugacy class $C \subset GL(N)$ can be characterized by a a linear quiver

Regular connections

- Singularity data: conjugacy classes ${\cal C}$ of formal monodromies.
- Quivers from conjugacy classes [Kraft-Procesi 82, Crawley-Boevey 01-06]. Let $C \subset GL(N)$ conjugacy class. Choose marking i.e. polynomial $P = (X \xi_1) \dots (X \xi_k)$ s.t P(A) = 0 for any $A \in C$. Define

with $d_i = \operatorname{rank}(A - \xi_1) \dots (A - \xi_{i-1}).$

 $\bullet\,$ Glue those legs $\rightarrow\,$ star-shaped quiver associated to the connection.

One irregular singularity: core diagram [Boalch-Yamakawa 20]

Setting: only one singularity at infinity, exponential factors q_i with ramification orders r_i .

The vertices correspond to the exponential factors q_i .

To find the number of edges/loops between q_i and q_j (one edge = one arrow in each direction)

- Count the number of Stokes arrows between the corresponding circles in the Stokes diagrams
- substract $r_i r_j$ if $i \neq j$, or $r_i^2 1$ if i = j (corresponds to relations in the quasi-Hamiltonian presentation)

Notice there can be edges/loops with negative multiplicities

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

Simple examples

Untwisted example: 2 - 1 = 1 edges between $\langle q_1 \rangle$ and $\langle q_2 \rangle$

Twisted example: $5 - 2^2 + 1 = 2$ oriented loops at $\langle q \rangle$

3 × < 3 ×

Image: A matrix and a matrix

Properties of the quivers

Dimension of the wild character variety: dim $\mathcal{M}_B = 2 - (\mathbf{d}, \mathbf{d})$, with \mathbf{d} dimension vector, (\cdot, \cdot) bilinear form defined by the Cartan matrix of the diagram.

In the case of regular singularities, or in the "simply-laced" case (one untwisted irregular singularity of order \leq 3 + simple poles), we have more:

• Quiver modularity theorem: The additive moduli space $\mathcal{M}^* \subset \mathcal{M}_B$ is isomorphic to the Nakajima quiver variety of Γ

$$\mathcal{M}^* \simeq \mathcal{N}(\Gamma, \mathbf{d}, \lambda).$$

- \mathcal{M}_B can be seen as a multiplicative quiver variety. The several readings correspond to isomorphisms between the wild character varieties.
- Weyl group action: basically corresponds to exchanging eigenvalues of formal monodromies.

Extension to several irregular singularities

Idea: use transformations to reduce to the case with one singularity at infinity.

Action of $SL_2(\mathbb{C})$ on singularity data, including Fourier-Laplace transform.

Theorem (D.)

There is a well-defined way to associate to any connection (E, ∇) on a Zariski open subset of the affine line, with modified formal data $(\breve{\Theta}, \breve{C})$ a core diagram $\Gamma(\breve{\Theta}, \breve{C})$ such that

- If $\check{\Theta}$ has support at infinity, then $\Gamma(\check{\Theta},\check{C})$ is the diagram of [BY].
- **2** $\Gamma(\breve{\Theta},\breve{C}) = \Gamma(A \cdot (\breve{\Theta},\breve{C}))$ for any $A \in SL_2(\mathbb{C})$.

The diagram comes together with a dimension vector $\mathbf{d} \in \mathbb{Z}^{I}$, and a vector of labels $\boldsymbol{q} \in (\mathbb{C}^{*})^{I}$ (where *I* is the set of vertices).

イロト 不得 トイヨト イヨト 二日

Explicit description

- As before, the diagram consists of a core to which we attach legs
- The vertices of the core correspond to the active circles
- The multiplicity of edges/loops in the core is given by

Definition

Suppose *i*, *j* are active circles at a_i, a_j , with $i = \langle q_i \rangle$, $j = \langle q_j \rangle$ are circles at a_i, a_j respectively. Let $\alpha_i = \operatorname{Irr}(q_i), \beta_i = \operatorname{ram}(q_i)$ and similarly for *j*. If $a_i = a_j$ let us denote by $B_{i,j}^{\infty}$ the number of edges between *i* and *j* in the diagram of [BY].

< ロ > < 同 > < 回 > < 回 > < 回 > <

Fourier-Laplace transformation

- Connections on the Riemann sphere closely related to modules on the Weyl algebra $A_1 = \mathbb{C}[z]\langle \partial_z \rangle$, with $[\partial_z, z] = 1$.
- Fourier transform: automorphism of the Weyl algebra:

$$\left\{\begin{array}{ccc} z & \mapsto -\partial_z \\ \partial_z & \mapsto z \end{array}\right.$$

- If M module over the Weyl algebra, Fourier transform $\Rightarrow \mathcal{F}M$
- More generally: we can act with any matrix A ∈ SL₂(ℂ).
- Such symplectic transformations are generated by 3 types of elementary transformations.
 - Fourier-Laplace
 - Scalings $z \mapsto z/\lambda$
 - Twists, corresponding to $\nabla \mapsto \nabla + \lambda z dz$.

The stationary phase formula [Malgrange 91, Fang 09, Sabbah 08]

It relates the irregular class of a connection and its Fourier transform.

• Solutions are linear combinations of terms of the form

$$f(z)=e^{q(z)}g(z),$$

- The Fourier transform is an integral $\widehat{f}(\xi) = \int_{\gamma} e^{q(z) \xi z} g(z)$
- The behaviour of the integral when $\xi \to \infty$ is determined by the critical point of the exponential factor, i.e. z_0 such that

$$\frac{\partial q}{\partial z}(z_0) = \xi.$$

New exponential factor *q̃*(ξ) = q(z₀(ξ)) − ξz₀(ξ) ⇒ Legendre transform of q.

The stationary phase formula

Different types of circles:

- **1** The *pure circles* at infinity, of the form $\langle \alpha z \rangle_{\infty}$, with $\alpha \in \mathbb{C}$.
- **②** Other circles of slope ≤ 1 at infinity, of the form $\langle \alpha z + q \rangle_{\infty}$, with $\alpha \in \mathbb{C}$, and $q \neq 0$ of slope < 1,
- ${\small \textcircled{\ }}{\small \textbf{ O}} \ \ {\rm Circles} \ \langle q \rangle_{\infty} \ {\rm of \ slope} > 1 \ {\rm at \ infinity,}$
- **(**) Irregular circles at finite distance $\langle q \rangle_a$, with $q \neq 0$, $a \in \mathbb{C}$.
- **(**) The tame circles $\langle 0 \rangle_a$, $a \in \mathbb{C}$ at finite distance.

$$\langle q_{>1}
angle_{\infty}$$

Main idea

Putting everything at infinity

- Apply twist at infinity q → q + λz².
 Now all active circles at ∞ have slope > 1.
- Now apply Fourier: only one singularity at infinity.

Crucial fact: this does not depend on the choices. Indeed

Theorem

If Θ is an irregular class at infinity and $A \in SL_2(\mathbb{C})$ such that $A \cdot \Theta$ is also at infinity, then

$$\Gamma_c(A \cdot \Theta) = \Gamma_c(\Theta).$$

Main ingredient of proof: the diagram is invariant under Fourier transform.

く 何 ト く ヨ ト く ヨ ト

Properties of the diagram

Dimension of the wild character variety: we still have

$$\dim \mathcal{M}_B(E,\nabla)=2-(\mathbf{d},\mathbf{d}).$$

Idea of proof: use the quasi-Hamiltonian description of the wild character variety

$$\mathcal{M}_B(V) = \operatorname{Hom}_{\mathbb{S}}(E, \nabla) /\!\!/_{\mathcal{C}} \mathbf{H}.$$

From the invariance under $SL_2(\mathbb{C})$, get several readings of the diagram

It is still possible to interpret some Weyl reflections on the diagram as coming from operations on connections

く 伺 ト く ヨ ト く ヨ ト

э

イロト イポト イヨト イヨト

Diagrams for Painlevé equations

- Painlevé equations can be obtained from isomonodromic deformation equations of some meromorphic connections. Such a connection is a Lax pair for the Painlevé equation.
- They correspond to two-dimensional moduli spaces.
- Standard (rank 2) Lax pairs and diagrams:

• Get affine Dynkin diagrams corresponding to the Okamoto symmetries of Painlevé equations

(4) (日本)

Painlevé VI: several Lax pairs

Standard Lax pair: rank 2, 4 simple poles (including one at infinity)

Harnad dual: rank 3, one irreg sing. at infinity, and one simple pole at finite distance

Painlevé III

From alternative Lax pair [Boalch-Yamakawa 20]: one pole of order 2, twisted, 2 simple poles, rank 2

From the usual Lax pair: two irregular poles of order 2

< 回 > < 三 > < 三 > -

Degenerate Painlevé equations

J

Degenerate PIII: two second order poles, one of them twisted (slope 1/2).

-1

1 10

$$\Theta = \langle \alpha z^{1/2} \rangle_{\infty} + \langle \beta z^{-1} \rangle_{0}$$

$$-1 \langle \overbrace{\langle \beta z^{-1} \rangle_{0}}^{4} = \langle \alpha z^{1/2} \rangle_{\infty} -1$$

Doubly degenerate PIII: two twisted second order poles (slopes 1/2)

$$\breve{\Theta} = \langle \alpha z^{1/2} \rangle_{\infty} + \langle \beta z^{-1/2} \rangle_{0}$$

$$-3 \langle \overbrace{} \\ \langle \beta z^{-1/2} \rangle_{0} \qquad \alpha \langle z^{1/2} \rangle_{\infty}$$

イロト 不得下 イヨト イヨト 二日

Higher dimensional cases

Among 4-dimensional Painlevé-type equations, two examples of different known Lax pairs corresponding to the same diagram:

Proposition

All Lax pairs for a same given 4-dimensional Painlevé-type equation listed by [Kawakami et al. 18] correspond to different readings of the same diagram.

Construction of diagrams

3 Applications to Painlevé equations

э

(日) (四) (日) (日) (日)

Orbits under basic operations

Basic operations:

- *SL*₂(ℂ)
- Twists
- Möbius transformations (change the point at infinity)

The diagram is invariant under $SL_2(\mathbb{C})$ but not under other basic operations.

Question: orbits under repeated application of basic operations? Is there a minimal diagram? In the rigid case:

Theorem (Katz '96, Arinkin '10)

Any rigid irreducible connection on \mathbb{P}^1 can be brought to the trivial rank one connection by repeated application of basic operations.

Diagrams with one vertex and few loops

Consider an exponential factor $\langle q \rangle$ at infinity, let $k = B_{\langle q \rangle, \langle q \rangle}/2$ the corresponding number of loops.

Theorem

If k = 0, 1, 2, $\langle q \rangle$ can be brought by repeated application of basic operations to an exponential factor which is an admissible deformation of

k	simple exponential factor
0	0
1	$z^{5/3}$
2	z ^{7/5}

Towards explicit isomorphisms?

- One expects the different readings of the diagram correspond to isomorphisms of the moduli spaces, compatible with the symplectic structure
- Such isomorphisms should be obtained by the transformation of Stokes data under Fourier transform
- This has been studied by many people [Malgrange, Mochizuki, Sabbah, Hien, D'Agnolo...], but difficult to get explicit formulas beyond the simply laced case.
- A simple twisted case : connections with only 1 exponential factor $\langle z^{\alpha/\beta} \rangle_{\infty}$ and $\langle z^{\alpha/\alpha-\beta} \rangle_{\infty}$ with $\alpha > \beta$.

Isomorphism for slopes $5/2 \leftrightarrow 5/3$

•
$$\mathcal{M}_B = \{s_1, \dots, s_5, hS_5S_4S_3S_2S_1 = 1\}$$
 with
 $h = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, S_1 = \begin{pmatrix} 1 & s_1 \\ 0 & 1 \end{pmatrix}, S_2 = \begin{pmatrix} 1 & 0 \\ s_2 & 1 \end{pmatrix}, \dots$
• $\mathcal{M}'_B = \{t_1, \dots, t_{10}, kT_{10} \dots T_1 = 1\}$ with
 $k = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}, T_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ t_1 & 0 & 1 \end{pmatrix}, T_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & t_2 & 1 \end{pmatrix}, \dots$
• $\mathcal{M}_B \simeq \mathcal{M}'_B$ via
 $\Phi : (s_1, s_2, s_3, s_4, s_5) \mapsto (s_3, -s_5, -s_2, s_4, s_1, -s_3, s_5, s_2, -s_4, -s_1)$

• The isomorphism is compatible with the symplectic structures

Image: A matrix and a matrix