Dualities between genus zero wild nonabelian Hodge spaces

Jean Douçot

Grupo de Física Matemática, Instituto Superior Técnico, Lisboa

September 2024

Conference: "An ODE to geometry"

Fundação para a Ciência e a Tecnologia

Grupo de Física Matemática

General context: isomorphisms of wild character varieties

Wild character varieties = moduli spaces of generalized monodromy data (Stokes data) of meromorphic connections with irregular singularities.

A WCV depends on a choice of "wild Riemann surface": a curve $\boldsymbol{\Sigma}$ together with singularity data.

WCVs coming from different wild Riemann surfaces can be isomorphic. \Rightarrow several "representations" of the same abstract moduli space.

A manifestation of this is the existence of several Lax pairs for Painlevé-type equations.

Big question: can one classify wild character varieties?

Today: In genus zero, describe a combinatorial way to obtain several (expected to be) representations of the same moduli space.

This generalizes some known dualities to the case of arbitrary irregular types.

Meromorphic connections

- Let Σ be a smooth complex algebraic curve. Here $\Sigma = \mathbb{P}^1 = \mathbb{C} \cup \{\infty\}.$
- Consider (E, ∇) vector bundle with algebraic connection on $\Sigma^o = \Sigma \setminus \{a_1, \dots, a_m\}.$
- In a local trivialization and with a choice of coordinate z:

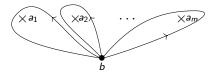
$$\nabla = d - A(z)dz,$$

with A(z) $n \times n$ matrix having poles at singular points.

• This corresponds to the system of linear differential equations

$$\frac{dY}{dz} = A(z)Y.$$

Moduli spaces of monodromy data: character varieties To ∇ we associate its monodromy representation $\rho : \pi_1(\Sigma^o, b) \to GL_n(\mathbb{C})$. Choose some paths $\gamma_1, \ldots, \gamma_m$ around a_i generating $\pi_1(\Sigma^o, b)$



Let $M_i = \rho(\gamma_i) \in G = GL_n(\mathbb{C}).$

The moduli space of monodromy data is the character variety

$$\mathcal{M}_B(\Sigma, \mathbf{a}) = \{M_1, \ldots, M_m \mid M_1 \ldots M_m = 1\}/G.$$

It is a Poisson manifold (Atiyah-Bott, Goldman).

Symplectic leaves $\mathcal{M}_B(\Sigma, \mathbf{a}, \mathcal{C})$ obtained by fixing conjugacy classes $M_i \in C_i$.

Regular Riemann-Hilbert correspondence

Case of regular singularities (i.e basically simple poles): monodromy data characterize entirely connections

de Rham moduli space:

 $\mathcal{M}_{\textit{dR}}(\Sigma, a) = \{ \text{connections with regular singularities on } \Sigma \setminus a \} \, / \sim$

Here \sim corresponds to gauge transformations i.e. changes of trivialization $g: \Sigma^o \to GL_n(\mathbb{C})$, doing

$$A\mapsto gAg^{-1}-dg\,g^{-1}.$$

For the system Y' = AY, it corresponds to change of variable Z = g(z)Y. Riemann-Hilbert correspondence:

$$\mathcal{M}_{dR}(\Sigma, \mathbf{a}) \simeq \mathcal{M}_{B}(\Sigma, \mathbf{a})$$

Regular vs irregular singularities

Irregular singularities: higher order poles

$$\nabla = d - A(z)dz, \qquad A(z) = \frac{A_s}{z^s} + \cdots + \frac{A_1}{z} + \ldots$$

Now monodromy is not enough to reconstruct the connection.

Example:

- Regular $\nabla = d \frac{\lambda}{z} dz$, monodromy $e^{2i\pi\lambda}$.
- Irregular $\nabla = d dq \frac{\lambda}{z} dz$, with $q \in z^{-1}\mathbb{C}[z^{-1}]$ has monodromy $e^{2i\pi\lambda}$ for any q.

 \Rightarrow Need generalized monodromy data for a topological description of irregular connections.

Formal data

Turritin-Levelt theorem: it is possible to "diagonalise" ∇ using formal gauge transformations to a normal form:

$$abla^0 = d - dQ - rac{\Lambda}{z} dz, \quad Q = \begin{pmatrix} q_1 & & \\ & \ddots & \\ & & q_n \end{pmatrix}, \quad q_i \in z^{-1/r} \mathbb{C}[z^{-1/r}],$$

where

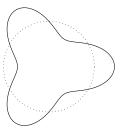
- q_i : exponential factors of ∇ ,
- Q: irregular type of ∇ , r ramification order, Q is untwisted if r = 1.
- Regular singularity if Q = 0.
- Λ: exponent of formal monodromy (constant and block diagonal with blocks corresponding to the distinct q_i).
- \Rightarrow Local formal data: ($\Theta, \mathcal{C})$ with
 - Irregular class $\Theta = n_1 \langle q_1 \rangle + \dots n_k \langle q_k \rangle.$
 - $C = (C_1, \ldots, C_k)$ conjugacy classes of blocks of Λ .

Stokes phenomenon

A fundamental solution of ∇^0 is $e^Q z^{\Lambda}$.

True solutions asymptotic to this can only be found in sectors around the singularity

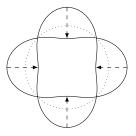
This is because growth rates of e^{q_i} change when going around the singularity



Stokes diagram: draw $e^{\operatorname{Re}(q(\epsilon i\theta))}$, here $q = z^3$, $\epsilon \ll 1$.

Stokes matrices

Change of dominance between the exponential factors e^{q_i} depending on the direction.



Singular directions: $d \in \mathbb{A}$ where $q_i - q_j \in \mathbb{R}_{<0}$ for some (i, j). Stokes arrow $\langle q_i \rangle \rightarrow \langle q_j \rangle$

Associated block in Stokes matrix $S_d = \begin{pmatrix} 1 & 0 & * \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{pmatrix}$ in position (i, j).

Wild character varieties

Global formal data $(\Theta, C) = (\Theta_i, C_i)_i$.

Wild character variety:

$$\mathcal{M}_{B}(\Theta) = \left\{ (C^{(i)}, h^{(i)}, S^{(i)}_{k}) \middle| \prod_{i} (C^{(i)^{-1}} h^{(i)} S^{(i)}_{k_{i}} \dots S^{(i)}_{1} C^{(i)}) = 1 \right\} / G$$

with $C^{(i)} \in G = \operatorname{GL}_n(\mathbb{C})$ connection matrices, $h^{(i)} \in H_i \subset G$ formal monodromies, $S^{(i)}$ Stokes matrices.

It has a quasi-Hamiltonian structure (Boalch).

Get symplectic variety $\mathcal{M}_B(\Theta, \mathcal{C}) = \mathcal{M}_B(\Theta) /\!\!/_{\mathcal{C}} \mathbf{H}$, where $\mathbf{H} = \prod_i H_i$, if we fix conjugacy classes of $h^{(i)}$.

Riemann-Hilbert-Birkhoff correspondence:

$$\mathcal{M}_{dR}(\mathbf{\Theta}) \cong \mathcal{M}_{B}(\mathbf{\Theta}).$$

Example (pure gaussian case)

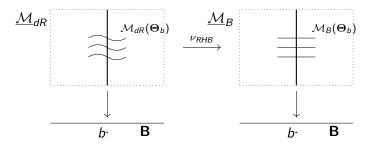
- Singularity at infinity, two exponential factors $q_1 = z^2$, $q_2 = -z^2$, 4 singular directions, 4 Stokes matrices.
- Moduli space

$$\mathcal{M}_{B} = \{hS_{4}S_{3}S_{2}S_{1} = 1\}$$
with $S_{2i+1} = \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix}$, $S_{2i} = \begin{pmatrix} 1 & 0 \\ * & 1 \end{pmatrix}$, $h = \begin{pmatrix} * & 0 \\ 0 & * \end{pmatrix}$.

Isomonodromic deformations

Let's move the positions of singularities and irregular classes (regular and irregular "times"): how should ∇ change for the Stokes data to remain constant?

This can be viewed as a flat (Ehresmann) connection on an admissible family of wild character varieties $(\mathcal{M}_{dR}(\Theta_b))_{b\in \mathbf{B}}$.



B : space of "times"

All Painlevé equations can be obtained in that way

Jean	Douçot	
------	--------	--

Regular case

Isomonodromic "times" : positions of singularities *a_i*.

Only constraint: must have $a_i \neq a_j$ for $i \neq j$.

 $\Rightarrow \text{ Space of times } \mathbf{B} = \operatorname{Conf}_n = \{a_1, \ldots, a_m \in \mathbb{C} \mid a_i \neq a_j \text{ for } i \neq j\}.$

Example: rank 2 connections on \mathbb{P}^1 with 4 simple poles

$$A = \frac{A_1}{z - a_1} + \frac{A_2}{z - a_2} + \frac{A_3}{z - a_3} + \frac{A_4}{z - a_4}$$

Isomonodromy leads to Painlevé VI:

$$\begin{aligned} \frac{d^2y}{dt^2} &= \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t} \right) \left(\frac{dy}{dt} \right)^2 - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t} \right) \frac{dy}{dt} \\ &+ \frac{y(y-1)(y-t)}{t^2(t-1)^2} \left(\alpha + \beta \frac{t}{y^2} + \gamma \frac{t-1}{(y-1)^2} + \delta \frac{t(t-1)}{(y-t)^2} \right) \end{aligned}$$

Irregular case: admissible deformations

Local case: we fix a singularity, only vary the irregular type

$$Q=egin{pmatrix} q_1&&&\ &\ddots&\ && q_n \end{pmatrix},\quad q_i\in z^{-1}\mathbb{C}[z^{-1}].$$

Set $Q = \frac{A_s}{z^s} + \cdots + \frac{A_1}{z}$, with $A_i = \text{diag}(a_{1i}, \ldots, a_{ni})$ i.e. $q_i = \sum_j a_{ij} z^{-j}$. Admissibility constraint: we need to have

$$d_{ij} = \deg(q_i - q_j) = constant.$$

What are equivalence classes of admissible deformations? Generic case: if A_s has distinct eigenvalues, $d_{ij} = n$ for all $i \neq j$ Only constraint when deforming is to keep $a_{si} \neq a_{sj}$

 \Rightarrow The space of times **B** is homotopy equivalent to $Conf_n$.

Fission trees

Otherwise, look at how eigenspaces of A_s split as eigenspaces of A_{s-1} etc

Example:
$$Q = \frac{A_2}{z^2} + \frac{A_1}{z}$$
, $A_2 = \begin{pmatrix} -1 & & \\ & -1 & \\ & & 2 \end{pmatrix}$, $A_1 = \begin{pmatrix} -1 & & \\ & 1 & \\ & & 0 \end{pmatrix}$
Fission tree $\mathcal{T}(Q)$:

Theorem (Boalch-D.-Rembado-Tamiozzo)

Fission trees \Leftrightarrow eq. classes of admissble defs. of (local) irreg. classes

The space of irregular times **B** can be explicitly determined from the tree.

Globally: Fission forest $\textbf{F} \Leftrightarrow$ class of admissible defs. of irreg class Θ

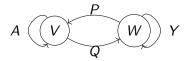
Question: find all classes of representations (F, C) of a genus zero wild nonabelian Hodge space M.

Harnad duality

Relates connections of the form

$$d + (A + P(Y - z)^{-1}Q)dz$$
, and $d + (Y + Q(A - z)^{-1}P)d\lambda$,

with A, P, Q, Y linear maps between V, W given by:



Both sides are connections on \mathbb{P}^1 with

- One irregular sing. at ∞ of order 2
- Regular singularities at finite distance

This induces an isomorphism between the corresponding moduli spaces.

The isomonodromic deformation equations on both sides are equivalent.

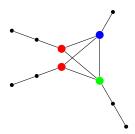
The simply-laced case (Boalch 08,12,15)

Connections on \mathbb{P}^1 with:

- Irreg. sing. at ∞ of order \leq 3,
- Regular singularities at finite distance.

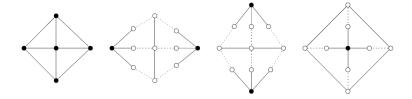
Each such connection defines a supernova quiver (+extra data)

- Core diagram: complete *k*-partite graph, basically one vertex for each exponential factor.
- Glue "legs", encoding conjugacy classes of formal monodromies.



Reading the diagram

Given such a diagram k+1 ways to "read" it, i.e. get k+1 moduli spaces of connections, all isomorphic:



For each reading, open dense part $\mathcal{M}^* \subset \mathcal{M}$ of the moduli space is isomorphic to a Nakajima quiver variety defined by the quiver

The isomonodromy systems for each reading are equivalent

$\operatorname{SL}_2(\mathbb{C})$ symmetry

Weyl algebra $A_1 = \mathbb{C}[z, \partial_z]$ of diff. operators on $\mathbb{C} = \mathbb{P}^1 \setminus \infty$. Any $A \in SL_2(\mathbb{C})$ defines an automorphism of A_1

 $\begin{array}{ll} z & \mapsto az + b\partial_z \\ \partial_z & \mapsto cz + d\partial_z \end{array}$

The ODE $P(z, \partial_z)y = 0$ becomes $P(az + b\partial_z, cz + d\partial_z)y = 0$.

This induces a transformation on (irreducible) connections on Zariski open susbets of \mathbb{P}^1 .

Being of simply-laced type is preserved by this.

The k+1 readings of the quivers correspond to the different types of formal data that appear in a $SL_2(\mathbb{C})$ orbit.

Arbitrary formal data: diagrams

One can define a diagram for arbitrary formal data on \mathbb{P}^1 (D. 21).

Given (E, ∇) with formal data (Θ, C) , diagram $\Gamma(E, \nabla) = \Gamma(\Theta, C)$.

Same structure as before: core + legs.

The core vertices (almost) correspond to the Stokes circles of Θ .

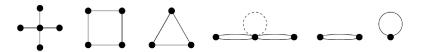
Now the core can have edges/loops with negative multiplicity.

Quiver variety not defined but formula for the dimension remains true.

Theorem (D. 21)

The diagram is invariant under $SL_2(\mathbb{C})$.

Examples: diagrams for Painlevé moduli spaces



Generic form

Problem: in general the diagram is not enough to reconstruct the formal data of elements of an $SL_2(\mathbb{C})$ orbit.

 \Rightarrow Need some extra data! Fission trees will help us.

Say that an exponential factor is of generic form if it is at infinity and of slope \leq 2, i.e.

$$q(z) = -\frac{a}{2}z^2 + q_{<2}(z).$$

 (E, ∇) on \mathbb{P}^1 is of generic form it all its exponential factors are of generic form.

Then (E, ∇) has just one singularity at ∞ .

Lemma

 $A \cdot (E, \nabla)$ is of generic form for A in an open dense subset of $SL_2(\mathbb{C})$.

Remark: the simply-laced case is exactly when this generic form has unramified irregular class

Jean Douçot

The nearby representations

Consider

- T: fission tree of generic form (all vertices have height \leq 2)
- \mathcal{C} : datum of a conjugacy class for each leaf of T

Let $k = \sharp \{ \text{principal subtrees of } \mathbf{T} \} = \sharp \{ \text{vertices of height } 2 \}$

Theorem (D. 24)

We construct explicitly k classes of admissible defs. $(\mathbf{F}_i, \mathcal{C}_i), 1 \leq i \leq k$. $(\{\mathbf{T}\}, \mathcal{C})$ and $(\mathbf{F}_i, \mathcal{C}_i)$ are the classes of admissible defs. of formal data of elements of the orbit $\mathrm{SL}_2(\mathbb{C}) \cdot (E, \nabla)$, for any (E, ∇) of generic form with formal data of class $(\{\mathbf{T}\}, \mathcal{C})$.

 \Rightarrow Expect them to be k + 1 classes of representations of the same moduli space.

We call

- $(\{\mathsf{T}\}, \mathcal{C})$ the generic class of reps,
- $(\mathbf{F}_i, \mathcal{C}_i)$ the *i*-th nongeneric class of reps.

Properties of representations

- Link with diagrams:
 - The diagram of any such (E, ∇) is determined by $(\mathbf{T}, \mathcal{C})$.
 - The k principal subtrees define a canonical partition of the vertices of the core diagram: N = N₁ □ · · · □ N_k

• Define N_i^+ = leaves in N_i with an ancestor of height 1 < h < 2 and $N_i^- = N_i \smallsetminus N_i^+$.

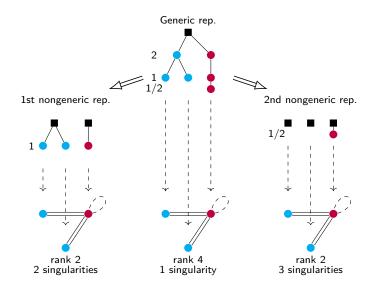
In the *i*-th nongeneric representation:

- Elements of N_i^+ correspond to Stokes circles of slope > 1 at ∞ .
- Elements of N_i^- correspond to Stokes circles at finite distance
- Elements of N_j for $j \neq i$ are of generic form
- If $A \cdot (E, \nabla)$ is in the *i*-th nongeneric rep.

 $\sharp \{\text{singularities} \neq \infty\} = \sharp \{\text{vertices of height } 1 \text{ above leaves in } N_i^-\}.$

• Have an explicit formula for the rank of each rep.

Example: Painlevé III



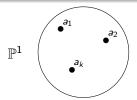
Fourier sphere

For a Stokes circle $\langle q \rangle$, define its Fourier sphere coeff. $\lambda(\langle q \rangle)$ by

- If $q = -\frac{a}{2}z^2 + q_{<2}(z)$ at ∞ of generic form, let $\lambda(\langle q \rangle) := a$;
- Otherwise $\lambda(\langle q \rangle) := \infty$.

Lemma

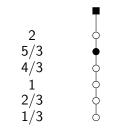
 $\operatorname{SL}_2(\mathbb{C})$ acts by homographies on the Fourier sphere: $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ acts by } \lambda \mapsto \frac{a\lambda + b}{c\lambda + d}$



k = {distinct Fourier sphere coeffs. of Stokes circles of (E, ∇) }.

- Generic reading: $a_j \neq \infty$ for all *j*.
- *i*-th nongeneric reading: $a_i = \infty$.

Painlevé I

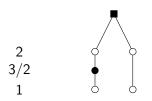


	Rank	Number of singularities
Generic rep.	3	1
Nongeneric rep.	2	1

Two readings of the diagram:

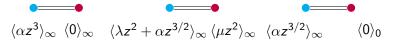
 $\langle \alpha z^{5/2} \rangle_{\infty}$ $\langle \lambda z^2 + \beta z^{5/3} \rangle_{\infty}$

Painlevé II



	Rank	Number of singularities
Generic rep.	3	1
1st nongeneric rep.	2	1
2nd nongeneric rep.	2	2

Three readings of the diagram:



Further questions

- Can we prove that $\mathcal{M}_B(\{\mathsf{T}\}, \mathcal{C})$, $\mathcal{M}_B(\mathsf{F}_i, \mathcal{C}_i)$ are isomorphic? (cf. Andreas' talk)
- Do the isomorphisms preserve the symplectic structure?
- Deligne-Simpson problem: when is \mathcal{M}_B nonempty?
- Can we also relate the spaces of isomonodromic deformations, and the full isomonodromy systems?
- Here we view Lax representations of Painlevé-type equations in an abstract sense. Can one write down more explicit parametrizations of the Lax representations?