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General context: isomorphisms of wild character varieties
Wild character varieties = moduli spaces of generalized monodromy data
(Stokes data) of meromorphic connections with irregular singularities.

A WCV depends on a choice of "wild Riemann surface": a curve Σ
together with singularity data.

WCVs coming from different wild Riemann surfaces can be isomorphic.
⇒ several "representations" of the same abstract moduli space.

A manifestation of this is the existence of several Lax pairs for
Painlevé-type equations.

Big question: can one classify wild character varieties?

Today: In genus zero, describe a combinatorial way to obtain several
(expected to be) representations of the same moduli space.

This generalizes some known dualities to the case of arbitrary irregular
types.
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Meromorphic connections

Let Σ be a smooth complex algebraic curve. Here
Σ = P1 = C ∪ {∞}.
Consider (E , ∇) vector bundle with algebraic connection on
Σo = Σ ∖ {a1, . . . , am}.
In a local trivialization and with a choice of coordinate z :

∇ = d − A(z)dz ,

with A(z) n × n matrix having poles at singular points.
This corresponds to the system of linear differential equations

dY
dz = A(z)Y .
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Moduli spaces of monodromy data: character varieties
To ∇ we associate its monodromy representation ρ : π1(Σo, b) → GLn(C).

Choose some paths γ1, . . . , γm around ai generating π1(Σo, b)

×a1 ×a2 . . . ×am

•
b

Let Mi = ρ(γi) ∈ G = GLn(C).

The moduli space of monodromy data is the character variety

MB(Σ, a) = {M1, . . . , Mm | M1 . . . Mm = 1}/G .

It is a Poisson manifold (Atiyah-Bott, Goldman).

Symplectic leaves MB(Σ, a, C) obtained by fixing conjugacy classes
Mi ∈ Ci .
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Regular Riemann-Hilbert correspondence
Case of regular singularities (i.e basically simple poles): monodromy data
characterize entirely connections

de Rham moduli space:

MdR(Σ, a) = {connections with regular singularities on Σ \ a} / ∼

Here ∼ corresponds to gauge transformations i.e. changes of trivialization
g : Σo → GLn(C), doing

A 7→ gAg−1 − dg g−1.

For the system Y ′ = AY , it corresponds to change of variable Z = g(z)Y .

Riemann-Hilbert correspondence:

MdR(Σ, a) ≃ MB(Σ, a)
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Regular vs irregular singularities

Irregular singularities: higher order poles

∇ = d − A(z)dz , A(z) = As
zs + · · · + A1

z + . . .

Now monodromy is not enough to reconstruct the connection.

Example:
Regular ∇ = d − λ

z dz , monodromy e2iπλ.
Irregular ∇ = d − dq − λ

z dz , with q ∈ z−1C[z−1] has monodromy
e2iπλ for any q.

⇒ Need generalized monodromy data for a topological description of
irregular connections.
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Formal data
Turritin-Levelt theorem: it is possible to "diagonalise" ∇ using formal
gauge transformations to a normal form:

∇0 = d − dQ − Λ
z dz , Q =

q1
. . .

qn

 , qi ∈ z−1/rC[z−1/r ],

where
qi : exponential factors of ∇,
Q: irregular type of ∇, r ramification order, Q is untwisted if r = 1.
Regular singularity if Q = 0.
Λ: exponent of formal monodromy (constant and block diagonal with
blocks corresponding to the distinct qi).

⇒ Local formal data: (Θ, C) with
Irregular class Θ = n1⟨q1⟩ + . . . nk⟨qk⟩.
C = (C1, . . . , Ck) conjugacy classes of blocks of Λ.
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Stokes phenomenon

A fundamental solution of ∇0 is eQzΛ.

True solutions asymptotic to this can only be found in sectors around the
singularity

This is because growth rates of eqi change when going around the
singularity

Stokes diagram: draw eRe(q(ϵiθ)), here q = z3, ϵ ≪ 1.
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Stokes matrices
Change of dominance between the exponential factors eqi depending on
the direction.

Singular directions: d ∈ A where qi − qj ∈ R<0 for some (i , j).
Stokes arrow ⟨qi⟩ → ⟨qj⟩

Associated block in Stokes matrix Sd =

1 0 ∗
0 . . . 0
0 0 1

 in position (i , j).
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Wild character varieties
Global formal data (Θ, C) = (Θi , Ci)i .

Wild character variety:

MB(Θ) =
{

(C (i), h(i), S(i)
k )

∣∣∣∣∣ ∏
i

(C (i)−1h(i)S(i)
ki

. . . S(i)
1 C (i)) = 1

}
/G

with C (i) ∈ G = GLn(C) connection matrices, h(i) ∈ Hi ⊂ G formal
monodromies, S(i) Stokes matrices.

It has a quasi-Hamiltonian structure (Boalch).

Get symplectic variety MB(Θ, C) = MB(Θ) //C H, where H = ∏
i Hi , if

we fix conjugacy classes of h(i).

Riemann-Hilbert-Birkhoff correspondence:

MdR(Θ) ∼= MB(Θ).
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Example (pure gaussian case)

Singularity at infinity, two exponential factors q1 = z2, q2 = −z2, 4
singular directions, 4 Stokes matrices.
Moduli space

MB = {hS4S3S2S1 = 1}

with S2i+1 =
(

1 ∗
0 1

)
, S2i =

(
1 0
∗ 1

)
, h =

(
∗ 0
0 ∗

)
.
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Isomonodromic deformations
Let’s move the positions of singularities and irregular classes (regular and
irregular "times"): how should ∇ change for the Stokes data to remain
constant?

This can be viewed as a flat (Ehresmann) connection on an admissible
family of wild character varieties (MdR(Θb))b∈B.

νRHB

B B

MdR MB

·b

MdR(Θb)

·b

MB(Θb)

B : space of "times"

All Painlevé equations can be obtained in that way
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Regular case

Isomonodromic "times" : positions of singularities ai .

Only constraint: must have ai ̸= aj for i ̸= j .

⇒ Space of times B = Confn = {a1, . . . , am ∈ C |ai ̸= aj for i ̸= j} .

Example: rank 2 connections on P1 with 4 simple poles

A = A1
z − a1

+ A2
z − a2

+ A3
z − a3

+ A4
z − a4

.

Isomonodromy leads to Painlevé VI:

d2y
dt2 = 1

2

( 1
y

+ 1
y − 1

+ 1
y − t

)(dy
dt

)2
−
(1

t
+ 1

t − 1
+ 1

y − t

) dy
dt

+ y(y − 1)(y − t)
t2(t − 1)2

(
α + β

t
y2 + γ

t − 1
(y − 1)2 + δ

t(t − 1)
(y − t)2

)
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Irregular case: admissible deformations
Local case: we fix a singularity, only vary the irregular type

Q =

q1
. . .

qn

, qi ∈ z−1C[z−1].

Set Q = As
zs + · · · + A1

z , with Ai = diag(a1i , . . . , ani) i.e. qi = ∑
j aijz−j .

Admissibility constraint: we need to have

dij = deg(qi − qj) = constant.

What are equivalence classes of admissible deformations?

Generic case: if As has distinct eigenvalues, dij = n for all i ̸= j

Only constraint when deforming is to keep asi ̸= asj

⇒ The space of times B is homotopy equivalent to Confn.
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Fission trees
Otherwise, look at how eigenspaces of As split as eigenspaces of As−1 etc

Example: Q = A2
z2 + A1

z , A2 =
(

−1
−1

2

)
, A1 =

(
−1

1
0

)

1 2 3

Fission tree T (Q):

Theorem (Boalch-D.-Rembado-Tamiozzo)
Fission trees ⇔ eq. classes of admissble defs. of (local) irreg. classes

The space of irregular times B can be explicitly determined from the tree.

Globally: Fission forest F ⇔ class of admissible defs. of irreg class Θ

Question: find all classes of representations (F, C) of a genus zero wild
nonabelian Hodge space M.
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Harnad duality
Relates connections of the form

d + (A + P(Y − z)−1Q)dz , and d + (Y + Q(A − z)−1P)dλ,

with A, P, Q, Y linear maps between V, W given by:

V WA Y
P

Q

Both sides are connections on P1 with
One irregular sing. at ∞ of order 2
Regular singularities at finite distance

This induces an isomorphism between the corresponding moduli spaces.

The isomonodromic deformation equations on both sides are equivalent.
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The simply-laced case (Boalch 08,12,15)

Connections on P1 with:
Irreg. sing. at ∞ of order ≤ 3,
Regular singularities at finite distance.

Each such connection defines a supernova quiver (+extra data)
Core diagram: complete k-partite graph, basically one vertex for each
exponential factor.
Glue "legs", encoding conjugacy classes of formal monodromies.
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Reading the diagram

Given such a diagram k+1 ways to "read" it, i.e. get k+1 moduli spaces
of connections, all isomorphic:

For each reading, open dense part M∗ ⊂ M of the moduli space is
isomorphic to a Nakajima quiver variety defined by the quiver

The isomonodromy systems for each reading are equivalent
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SL2(C) symmetry

Weyl algebra A1 = C[z , ∂z ] of diff. operators on C = P1 ∖ ∞.

Any A ∈ SL2(C) defines an automorphism of A1

z 7→ az + b∂z
∂z 7→ cz + d∂z

The ODE P(z , ∂z)y = 0 becomes P(az + b∂z , cz + d∂z)y = 0.

This induces a transformation on (irreducible) connections on Zariski open
susbets of P1.

Being of simply-laced type is preserved by this.

The k+1 readings of the quivers correspond to the different types of
formal data that appear in a SL2(C) orbit.
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Arbitrary formal data: diagrams
One can define a diagram for arbitrary formal data on P1 (D. 21).

Given (E , ∇) with formal data (Θ, C), diagram Γ(E , ∇) = Γ(Θ, C).

Same structure as before: core + legs.

The core vertices (almost) correspond to the Stokes circles of Θ.

Now the core can have edges/loops with negative multiplicity.

Quiver variety not defined but formula for the dimension remains true.

Theorem (D. 21)
The diagram is invariant under SL2(C).

Examples: diagrams for Painlevé moduli spaces

Problem: the diagram is not enough to reconstruct the WCVs of elements
of the orbit
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Generic form
Problem: in general the diagram is not enough to reconstruct the formal
data of elements of an SL2(C) orbit.

⇒ Need some extra data! Fission trees will help us.

Say that an exponential factor is of generic form if it is at infinity and of
slope ≤ 2, i.e.

q(z) = −a
2z2 + q<2(z).

(E , ∇) on P1 is of generic form it all its exponential factors are of generic
form.

Then (E , ∇) has just one singularity at ∞.

Lemma
A · (E , ∇) is of generic form for A in an open dense subset of SL2(C).

Remark: the simply-laced case is exactly when this generic form has
unramified irregular class
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The nearby representations
Consider

T: fission tree of generic form (all vertices have height ≤ 2)
C: datum of a conjugacy class for each leaf of T

Let k = ♯ {principal subtrees of T} = ♯ {vertices of height 2}

Theorem (D. 24)
We construct explicitly k classes of admissible defs. (Fi , Ci), 1 ≤ i ≤ k.
({T}, C) and (Fi , Ci) are the classes of admissible defs. of formal data of
elements of the orbit SL2(C) · (E , ∇), for any (E , ∇) of generic form with
formal data of class ({T}, C).

⇒ Expect them to be k + 1 classes of representations of the same moduli
space.

We call
({T}, C) the generic class of reps,
(Fi , Ci) the i-th nongeneric class of reps.
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Properties of representations

Link with diagrams:
▶ The diagram of any such (E , ∇) is determined by (T, C).
▶ The k principal subtrees define a canonical partition of the vertices of

the core diagram: N = N1 ⊔ · · · ⊔ Nk

Define N+
i = leaves in Ni with an ancestor of height 1 < h < 2 and

N−
i = Ni ∖ N+

i .
In the i-th nongeneric representation:

▶ Elements of N+
i correspond to Stokes circles of slope > 1 at ∞.

▶ Elements of N−
i correspond to Stokes circles at finite distance

▶ Elements of Nj for j ̸= i are of generic form
If A · (E , ∇) is in the i-th nongeneric rep.
♯ {singularities ̸= ∞} = ♯ {vertices of height 1 above leaves in N−

i }.
Have an explicit formula for the rank of each rep.
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Example: Painlevé III

1st nongeneric rep.

1

rank 2
2 singularities

Generic rep.

1

2

1/2

rank 4
1 singularity

2nd nongeneric rep.

1/2

rank 2
3 singularities
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Fourier sphere
For a Stokes circle ⟨q⟩, define its Fourier sphere coeff. λ(⟨q⟩) by

If q = −a
2z2 + q<2(z) at ∞ of generic form, let λ(⟨q⟩) := a;

Otherwise λ(⟨q⟩) := ∞.

Lemma
SL2(C) acts by homographies on the Fourier sphere:
A =

(a b
c d

)
acts by λ 7→ aλ+b

cλ+d

•a1

•a2

•ak
P1

k= ♯ {distinct Fourier sphere coeffs. of Stokes circles of (E , ∇)}.

Generic reading: aj ̸= ∞ for all j .
i-th nongeneric reading: ai = ∞.
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Painlevé I

2
5/3
4/3
1

2/3
1/3

Rank Number of singularities
Generic rep. 3 1

Nongeneric rep. 2 1

Two readings of the diagram:

⟨αz5/2⟩∞ ⟨λz2 + βz5/3⟩∞
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Painlevé II

1

2
3/2

Rank Number of singularities
Generic rep. 3 1

1st nongeneric rep. 2 1
2nd nongeneric rep. 2 2

Three readings of the diagram:

⟨αz3⟩∞ ⟨0⟩∞ ⟨λz2 + αz3/2⟩∞ ⟨µz2⟩∞ ⟨αz3/2⟩∞ ⟨0⟩0
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Further questions

Can we prove that MB({T}, C), MB(Fi , Ci) are isomorphic? (cf.
Andreas’ talk)
Do the isomorphisms preserve the symplectic structure?
Deligne-Simpson problem: when is MB nonempty?
Can we also relate the spaces of isomonodromic deformations, and
the full isomonodromy systems?
Here we view Lax representations of Painlevé-type equations in an
abstract sense. Can one write down more explicit parametrizations of
the Lax representations?
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