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Motivation

Isomonodromic deformations:
▶ Give rise to many integrable systems.
▶ Give rise to new special functions, e.g. Painlevé transcendents.
▶ Links with geometry: Frobenius manifolds, wall-crossing...

Main goals today:
▶ Geometric point of view on isomonodromic deformations.
▶ Tell some things about the wild case, i.e. irregular

singularities.
▶ Describe the spaces of "times" for isomonodromic

deformations and their topology.



Outline

I would like to explain:
▶ Isomonodromic deformations of linear systems can be seen as

a (nonlinear) connection on a fibration whose fibres are
moduli spaces of linear systems, or equivalently spaces of
monodromy data, aka character varieties.

▶ Considering the monodromy of these fibrations when we move
the positions of singularities, we get actions of braid groups on
character varieties.

▶ We can generalise this picture to connections with irregular
singularities: we will get wild mapping class group actions on
wild character varieties.

The last part is based on recent and ongoing work with: G.
Rembado, M. Tamiozzo, P. Boalch.



Linear differential systems

We are interested in systems of linear differential equations on the
Riemann sphere Σ = P1.

dY
dz = A(z)Y ,

where
▶ A(z) is a n × n matrix whose coefficients are holomorphic

functions of z , with poles at points a1, . . . , am ∈ P1.
▶ the unknown Y is a vector whose entries are holomorphic

functions of z on Σo := P1 \ {a1, . . . , am}.
We will first conisder the case of regular singularities, i.e. simple
poles.



Link with connections

Fiber bundle X on a manifold M: a manifold X with a map
π : X → M such that locally on U ⊂ M the situation is
diffeomorphic to a projection

F × U 7→ U.

M

X
π−1(x) ≃ F

·x

No canonical way to identify nearby fibres!



Link with connections
Connection on a vector bundle E → P1: way to move
"horizontally" between fibres:

P1

E Ez

·z

In our setting, consider

∇ = d − A(z)dz .

A horizontal section of ∇ is Y such that ∇Y = 0, i.e. Y ′ = AY .



(Linear) monodromy

Consider a solution Y of the equation. If we go around one
singularity: Y (z) 7→ MY (z), with M ∈ GLn(C).

P1

E

•

•
•

γz γ

Ez

Y (z)

MY (z)

Example: if ∇ = d − λ
z dz , solution y(z) = zλ, monodromy e2iπλ.

If ∇ is flat this only depends on the homotopy class of γ. To ∇ we
associate its monodromy representation ρ : π1(Σ) → GLn(C).



Moduli spaces of monodromy data: character varieties

Choose some paths γ1, . . . , γm around ai generating π1(Σo, z0)

×a1 ×a2 . . . ×am

•
z0

Let Mi = ρ(γi) ∈ G = GLn(C).

The moduli space of monodromy data is the character variety

MB(Σ, a) = {M1, . . . , Mm | M1 . . . Mm = 1}/G .

It is a Poisson manifold (from Atiyah-Bott, Goldman).



Isonodromic deformations

Now we want to move the positions ai of the singularities.

We wish to deform ∇ = d − Adz so that the Mi remain constant

⇒ consider A = A(z ; ai), isomonodromy gives a nonlinear PDEs
satisfied by the coefficients of A.

Schlesinger equations: for A =
∑

i
Ai

z−ai
, we get

∂Ai
∂aj

= [Ai , Aj ]
ai − aj

, j ̸= i , (0.1)

∂Ai
∂ai

= −
∑
j ̸=i

[Ai , Aj ]
ai − aj

. (0.2)

The ai are the "times" for the isomonodromic deformations.



Moduli spaces of connections with regular singularities
We consider the de Rham moduli space

MdR(Σ, a) = {connections with regular singularities on Σ \ a} / ∼

where ∼ corresponds to gauge transformations.

This means a change of trivialisation g : Σo → GLn(C), doing

A 7→ gAg−1 − dg g−1.

For the system Y ′ = AY , it corresponds to change of variable
Z = g(z)Y .

A connection ∇ defines a point in MdR(Σ, a).

Riemann-Hilbert correspondence:

MdR(Σ, a) ≃ MB(Σ, a)

Both sides are Poisson manifolds, and the RH map preserves the
Poisson structure.



Geometric point of view on isomonodromy

Isomonodromy as an (Ehresmann) connection on a family of
moduli spaces (MdR(Σ, ab))b∈B.

νRH

B B

MdR MB

·b

MdR(Σ, ab)

·b

MB(Σ, ab)

B: space of deformation parameters

On the RHS: connection given by locally constant monodromy.

Using Riemann-Hilbert, get a connection on the LHS ⇒
isomonodromic deformations.



The monodromy of isomonodromy

But now we can consider the (nonlinear) monodromy of this
connection!
A loop γ ∈ π1(B, b) in the base B induces an automorphism of the
character variety MB(Σ, ab).

B

MB

•

•
•

γb γ

(Mi )

(M′
i )

MB(Σ, ab)

A loop γ ∈ π1(B, b) in the base B induces an automorphism of the
character variety MB(Σ, ab).



Braid group actions on character varieties
The natural universal space of deformation parameters is

B = Confn = {a1, . . . , am ∈ C |ai ̸= aj for i ̸= j} .

π1(B) is the braid group on n strands Bn, which is also the
mapping class group of the disc with n marked points.

It is generated by si , i = 1, . . . , n − 1.

a1

. . .

aj−1 aj aj+1 aj+2

. . .

am

∈ PBm .

Thus Bn acts on the character variety: sj acts as Mk 7→ Mk for
k ̸= j , j + 1 and

(Mj , Mj+1) 7→ (M−1
j+1MjMj+1, M−1

j+1M−1
j Mj+1MjMj+1).



An example: Painlevé VI

d2y
dt2 =

1
2

( 1
y

+
1

y − 1
+

1
y − t

) (dy
dt

)2
−

(1
t

+
1

t − 1
+

1
y − t

) dy
dt

+
y(y − 1)(y − t)

t2(t − 1)2

(
α + β

t
y2 + γ

t − 1
(y − 1)2 + δ

t(t − 1)
(y − t)2

)
It comes from isomonodromic deformations of rank 2 connections
on P1 with 4 simple poles, i.e.

A = A1
z − a1

+ A2
z − a2

+ A3
z − a3

+ A4
z − a4

.

We can use automorphisms of P1 to send (a1, a2, a3, a4) 7→ (0, 1, ∞, t).
Only one "time" variable t

t going around 0, 1, ∞ −→ monodromy of solutions of PVI.

(Mi)i with finite orbits give algebraic solutions of PVI (cf.
Dubrovin-Mazzocco, Boalch, Lisovyy).



Generalisation to the irregular case: outline

Motivation:
▶ Include cases related to other Painlevé equations.
▶ Links (e.g Fourier transform) between regular and irregular

cases.
Main differences with regular case:
▶ Need generalised monodromy data, a.k.a Stokes data to get

analogue of Riemann-Hilbert correspondence.
▶ The moduli spaces, the wild character varieties MB(Σ, a, Q),

now also depend on irregular types.
▶ The irregular types give new deformation parameters, and new

groups acting on wild character varieties.



Irregular singularities

Irregular singularities: higher order poles

∇ = d − A(z)dz , A(z) = As
zs + · · · + A1

z + . . .

Monodromy is not enough to reconstruct the connection.

Example:
▶ Regular ∇ = d − λ

z dz , monodromy e2iπλ.
▶ Irregular ∇ = d − dq − λ

z dz , with q ∈ z−1C[z−1] has
monodromy e2iπλ for any q.



Irregular types
Turritin-Levelt theorem: it is possible to "diagonalise" ∇ using
formal gauge transformations to a normal form

∇0 = d −dQ− Λ
z dz , Q =

q1
. . .

qn

 , qi ∈ z−1/rC[z−1/r ],

where
▶ qi : exponential factors of ∇,
▶ Q: irregular type of ∇, r ramification order, Q is untwisted if

r = 1.
▶ Λ: exponent of formal monodromy.

A solution of ∇0 is eQzΛ.

Main idea: asymptotic behaviour of eqi when z → 0 changes
depending on the direction.



The Stokes phenomenon
Consider the growth rates of qi , qj for z → 0:
▶ Changes of dominance between eqi and eqj at Stokes

directions.
▶ Anti-Stokes/singular directions where the difference of the

growth rates is largest.

Example: q1 = z2, q2 = −z2.

Each pair (i , j) gives dij = deg(qi − qj) (anti)Stokes directions.



Wild character varieties
Generalised monodromy:
▶ One Stokes matrix Sd for each singular direction d .
▶ Each pair (i , j) gives dij nontrivial Stokes matrix entries.

Consider ∇ on Σ \ a, with irregular type Qi at ai .

To pass to the wild case: replace Mi by product

C (i)−1h(i)S(i)
ki

. . . S(i)
1 C (i)

with h(i) encoding the formal monodromy, S(i)
j Stokes matrices.

Space of generalised mondromy data = wild character variety:

MB(Σ, a, Q) =
{

C (i), h(i), S(i)
j

∣∣∣∣∣ ∏
i

(C (i)−1h(i)S(i)
ki

. . . S(i)
1 C (i)) = 1

}
/G

It is a Poisson manifold.



Wild isomonodromic deformations
Riemann-Hilbert-Birkhoff correspondence:

MdR(Σ, a, Q) ≃ MB(Σ, a, Q)

Similar picture as before: (Ehresmann) connection on an
admissible family of wild character varieties (MdR(Σ, ab, Qb))b∈B.

νRHB

B B

MdR MB

·b

MdR(Σ, ab , Qb)

·b

MB(Σ, ab , Qb)

The irregular types give new deformation parameters: "irregular
times". One now varies a "wild Riemann surface" (Σ, a, Q).



Admissible deformations
Local case: we fix a singularity, only vary the irregular type

Q =

q1
. . .

qn

 , qi ∈ z−1C[z−1].

Set Q = As
zs + · · · + A1

z , with Ai = diag(a1i , . . . , ani) i.e.
qi =

∑
j aijz−j .

Admissibility constraint: we need to have

dij = deg(qi − qj) = constant.

Question: what is the analogue of Confn, the universal base B?

If As has distinct eigenvalues, dij = n for all i ̸= j , the only
constraint is that asi ̸= asj , and again π1(B) = PBn.



Fission trees
Otherwise, we have to look at how eigenspaces of As split as
eigenspaces of As−1 and so on

Example:

Q = A2
z2 + A1

z , A2 =

−1
−1

2

 , A1 =

−1
1

0

 ,

Corresponding fission tree T (Q):

1 2 3



Space of admissible deformations
Admissible deformations of Q:

Q′ = A′
2

z2 + A′
1

z , with A′
2 =

a
a

a′

 , A′
1 =

b
b′

c

 ,

with a, a′, b, b′, c ∈ C such that a ̸= a′ and b ̸= b′.

The universal space of admissble deformations is

B(Q) =
{
a, a′, b, b′, c | a ̸= a′, b ̸= b′} ≃ Conf2 × Conf2 ×C.

Link with the fission tree:

b b′ c

a a′

0



Wild mapping class group actions

Here the pure WMCG is Γ(Q) = π1(B(Q)) ≃ PB2 × PB2 ≃ Z2.
Two generators:
▶ σ2: a and a′ go around each other.
▶ σ1: b and b′ go around each other.

Wild character variety:

MB(Q) =
{

(h, B1
1 , B1

3 , B2
1 , B2

2 , B2
3 , B2

4)
∣∣∣ h(B1

3B1
1)(B2

4B2
3B2

2B2
1) = 1

}
,

with Bj
i Stokes factors.

Action of the WMCG: σ1 = s2
1 , σ1 = s2

1 , with

s1(h, B1
1 , B1

3 , B2
i ) = (h, B1

3 , h−1B1
1h, B1

1B2
i B1

1
−1),

s2(h, B1
1 , B1

3 , B2
1 , B2

2 , B2
3 , B2

4) = (h, B1
1 , B1

3 , B2
3 , B2

4 , h−1
1 B2

1h1, h−1
1 B2

2h1).



Cabling of braids
Γ(Q) is a subgroup of PB3 via cabling of braids

σ2 ↔ σ1 ↔ σ2 ◦ σ1 ↔

1 2 3

This formalises an intuition of Ramis



Extension to the nonpure case
In the tame case:
▶ Full braid group Bn: exchanges the singularities.
▶ Pure braid group PBn ⊂ Bn: fixes their order.

Wild analogue:
▶ Pure local wild mapping class group: fix the order of the qi .
▶ Full local wild mapping class group: allow to exchange the qi .

Not any two qi can be exchanged, we have to look at
automorphisms of the tree.

1 2 3

Here only q1 and q2 can be exchanged.



Twisted irregular types
Twisted case: qi ∈ C[z−1/r ], with r > 1 ramification order.

In this case qi(z) is multivalued, comes with Galois conjugates
qi(e2ikπ/r z).

Example: Painlevé I, related to q = z5/2.

Get new admissibility constraints of the form

a ̸= e2ikπ/r a′.

This gives new types of pieces for π1(B) (related to complex
hyperplane arrangements).



Extension to principal bundles

Similar (untwisted) story for principal G-bundles, for a complex
reductive Lie group G .

Main differences:
▶ Irregular types Q =

∑s
i=1 Aiz i with Ai ∈ t Cartan subalgebra

of g = Lie(G).
▶ Instead of differences qi − qj , get α(Q) with α root of g.
▶ Generic case: instead of As with distinct eigenvalues, get

As ∈ treg , i.e. α(As) ̸= 0 for any root.
The wild mapping class group is π1(treg), the Artin braid
group of g.

▶ For classical Lie simple algebras: we can still define fission
trees, but need coloured fission trees.

▶ This is related to breaking the Dynkin diagram in several
pieces.



Relating different isomonodromy systems

Sometimes we can have MB(P1, a, Q) ≃ MB(P1, a′, Q′) for wild
Riemann surfaces with different ranks, numbers of singularities...

Example: Fourier transform/Harnad dual of the standard Painlevé
VI Lax pair, relating the cases:
▶ a = (a1, a2, a3, ∞), Q: rank 2, simple poles.
▶ a′ = (0, ∞), Q′: rank 3, simple pole at 0, second order pole

at ∞,

Q∞ =

−a1z
−a2z

−a3z

 .

The regular and irregular times are exchanged! The braidings
match on both sides.



Some further questions

▶ Are the spaces of times and wild mapping class groups on
both sides of the Fourier transform related in general?

▶ The global version: move the irregular types and the positions
of singularities, include automorphisms of Σ.

▶ Write down explicitly the wild mapping class group actions.
▶ The twisted case outside type A?
▶ Many people work on the dynamics of mapping class groups

actions on character varieties ("representations of surface
groups"). Can we say some things about the wild dynamics?

▶ Quantization of this picture?


