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Motivation

Isomonodromic deformations:
» Give rise to many integrable systems.
> Give rise to new special functions, e.g. Painlevé transcendents.

» Links with geometry: Frobenius manifolds, wall-crossing...

Main goals today:
» Geometric point of view on isomonodromic deformations.

» Tell some things about the wild case, i.e. irregular
singularities.

» Describe the spaces of "times" for isomonodromic
deformations and their topology.



Outline

| would like to explain:

» Isomonodromic deformations of linear systems can be seen as
a (nonlinear) connection on a fibration whose fibres are
moduli spaces of linear systems, or equivalently spaces of
monodromy data, aka character varieties.

» Considering the monodromy of these fibrations when we move
the positions of singularities, we get actions of braid groups on
character varieties.

> We can generalise this picture to connections with irregular
singularities: we will get wild mapping class group actions on
wild character varieties.

The last part is based on recent and ongoing work with: G.
Rembado, M. Tamiozzo, P. Boalch.



Linear differential systems

We are interested in systems of linear differential equations on the
Riemann sphere ¥ = P!,

C(lj—: =A(2)Y,
where
» A(z) is a n x n matrix whose coefficients are holomorphic
functions of z, with poles at points ai, ..., an € PL.
» the unknown Y is a vector whose entries are holomorphic
functions of z on X°:=P!\ {a1,...,am}.

We will first conisder the case of regular singularities, i.e. simple
poles.



Link with connections

Fiber bundle X on a manifold M: a manifold X with a map
7 : X — M such that locally on U C M the situation is
diffeomorphic to a projection

FxUw—U.

7 (x)~F

X- M

No canonical way to identify nearby fibres!



Link with connections

Connection on a vector bundle £ — P': way to move

"horizontally" between fibres:

In our setting, consider
V =d - A(z)dz.

A horizontal section of V is Y such that VY =0, i.e. Y/ =AY



(Linear) monodromy

Consider a solution Y of the equation. If we go around one
singularity: Y(z) — MY(z), with M € GL,(C).

E;
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Example: if V = d — 2dz, solution y(z) = z*, monodromy e?™.

If V is flat this only depends on the homotopy class of v. To V we
associate its monodromy representation p : m1(X) — GL,(C).



Moduli spaces of monodromy data: character varieties

Choose some paths 71, ...,vm around a; generating m1(X°, zp)

20

Let M; = p(vi) € G = GL,(C).

The moduli space of monodromy data is the character variety
Mp(X,a)={Mi,...,Mp|M;y...Mp, =1}/G.

It is a Poisson manifold (from Atiyah-Bott, Goldman).



Isonodromic deformations

Now we want to move the positions a; of the singularities.
We wish to deform V = d — Adz so that the M; remain constant

= consider A = A(z; a;), isomonodromy gives a nonlinear PDEs
satisfied by the coefficients of A.

Schlesinger equations: for A = Z, Zoo, we get

% _ [Ai, Al
Oaj a aj — aj’

R D 02)

J#i

£, (0.1)

The a; are the "times" for the isomonodromic deformations.



Moduli spaces of connections with regular singularities
We consider the de Rham moduli space

Mar(X,a) = {connections with regular singularities on X \ a} / ~

where ~ corresponds to gauge transformations.
This means a change of trivialisation g : ¥° — GL,(C), doing

1 1

A— gAg " —dgg .

For the system Y’ = AY/, it corresponds to change of variable
Z=g(2)Y.

A connection V defines a point in Myg(Z, a).

Riemann-Hilbert correspondence:

| Mar(E,a) ~ Mp(X, a)]

Both sides are Poisson manifolds, and the RH map preserves the
Poisson structure.



Geometric point of view on isomonodromy

Isomonodromy as an (Ehresmann) connection on a family of
moduli spaces (Myr(X,ap))secB-

Mar  Mar(=,a) Ms [ Ms(za)
= — -
b B b B

B: space of deformation parameters
On the RHS: connection given by locally constant monodromy.

Using Riemann-Hilbert, get a connection on the LHS =
isomonodromic deformations.



The monodromy of isomonodromy

But now we can consider the (nonlinear) monodromy of this
connection!

A loop v € m1(B, b) in the base B induces an automorphism of the
character variety Mpg(X, ap).

MB(Z, ab)
e

(M:)

J
be )Y

A loop «v € m1(B, b) in the base B induces an automorphism of the
character variety Mpg(X, ap).

B



Braid group actions on character varieties
The natural universal space of deformation parameters is

B = Conf, ={a1,...,am € C|a; # aj for i # j}.

71(B) is the braid group on n strands B, which is also the
mapping class group of the disc with n marked points.

It is generated by s;, i=1,...,n— 1.

y
>

ai dj—1 4 dj41 dj42 am

€ PBp,.

Thus B, acts on the character variety: s; acts as M — M for
k+#j,j+1 and

(Mj, Mj1) = (M3 M Mjx, M3 M7 My MM ).



An example: Painlevé VI

d2y71<1+ 1 N 1 )(dy)2 <1+ 1 N 1 )dy
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It comes from isomonodromic deformations of rank 2 connections
on P! with 4 simple poles, i.e.

A1 Az A3 As

A= + + + :
z—ay zZ—a z—az ZzZ—a,

We can use automorphisms of P! to send (a1, a2, a3, a3) — (0,1, 00, t).
Only one "time" variable t

t going around 0,1, 00 — monodromy of solutions of PVI.

(M;); with finite orbits give algebraic solutions of PV/ (cf.

Dubrovin-Mazzocco, Boalch, Lisovyy) .



Generalisation to the irregular case: outline

Motivation:
» Include cases related to other Painlevé equations.
» Links (e.g Fourier transform) between regular and irregular
cases.
Main differences with regular case:
» Need generalised monodromy data, a.k.a Stokes data to get
analogue of Riemann-Hilbert correspondence.
» The moduli spaces, the wild character varieties Mpg(%, a, Q),
now also depend on irregular types.
» The irregular types give new deformation parameters, and new
groups acting on wild character varieties.



Irregular singularities

Irregular singularities: higher order poles

As A

Monodromy is not enough to reconstruct the connection.

Example:

> Regular V = d — 2dz, monodromy ™.

> Irregular V = d — dq — 2dz, with g € z71C[z7] has
monodromy e for any q.



Irregular types

Turritin-Levelt theorem: it is possible to "diagonalise" V using
formal gauge transformations to a normal form

A q1
v0 = d—dQ—*dZ, Q = . ) qi € Zﬁl/r(c[zil/r]ﬂ
z

dn
where

» g;: exponential factors of V,

> Q: irregular type of V, r ramification order, @ is untwisted if
r=1.

> A: exponent of formal monodromy.
A solution of Vg is e9z".

Main idea: asymptotic behaviour of €9 when z — 0 changes
depending on the direction.



The Stokes phenomenon

Consider the growth rates of g;, g; for z — 0:
» Changes of dominance between €% and e% at Stokes
directions.
> Anti-Stokes/singular directions where the difference of the
growth rates is largest.

Example: q1 = z2,qo = —2°.

Each pair (i, j) gives djj = deg(qi — q;) (anti)Stokes directions.



Wild character varieties

Generalised monodromy:
» One Stokes matrix Sy for each singular direction d.

» Each pair (i, /) gives dj nontrivial Stokes matrix entries.
Consider V on ¥\ a, with irregular type Q; at a;.
To pass to the wild case: replace M; by product
i)y )5(1) s

with h() encoding the formal monodromy, Sjm Stokes matrices.

Space of generalised mondromy data = wild character variety:
MB(Z,a,Q):{C()h ’Hcml 0. sic (>):1}/G

It is a Poisson manifold.



Wild isomonodromic deformations

Riemann-Hilbert-Birkhoff correspondence:

[ Mar(%,a,Q) ~ Mp(T,a,Q)]

Similar picture as before: (Ehresmann) connection on an
admissible family of wild character varieties (Myr(X, ap, Qp))beB-

M M
—dR M ar(X, ap,Qp) —B Mp(X,ap, Qp)
1= VRHE -
b- B b B

The irregular types give new deformation parameters: "irregular
times". One now varies a "wild Riemann surface" (X, a, Q).



Admissible deformations
Local case: we fix a singularity, only vary the irregular type

q1
Q = , qi € 271C[271].
An
Set Q@ = % 4+ -+ %, with A; = diag(aij, ..., an;) i.e.
qi =2 jaz 7.

Admissibility constraint: we need to have

djj = deg(q; — qj) = constant.

Question: what is the analogue of Conf,, the universal base B?

If As has distinct eigenvalues, djj = n for all i # j, the only
constraint is that a5 # asj, and again 71(B) = PB,.



Fission trees

Otherwise, we have to look at how eigenspaces of As split as
eigenspaces of As_1 and so on

Example:
-1 -1
A A
Q=S+ 4= -1 | a=| 1
z 2

Corresponding fission tree 7(Q):



Space of admissible deformations
Admissible deformations of Q:
A M

Q’_z—2+ with Aj = a | Al b

with a,a’, b, b’,c € C such that a # a2’ and b # b'.

The universal space of admissble deformations is
Q)={a,d,b b, c|la+#ad, b+ b}~ Confy x Conf, xC.

Link with the fission tree:

/\
/\\



Wild mapping class group actions

Here the pure WMCG is T(Q) = m1(B(Q)) ~ PBy x PB, ~ 72.
Two generators:

» 0,: a and a’ go around each other.
» o1: b and b’ go around each other.

Wild character variety:

Ms(Q) = {(h, B1, B}, B2, B3, B, BY) | n(B}Bl)(B;B3B3B?) = 1},
with B/ Stokes factors.

Action of the WMCG: ¢; = 512, = 512, with

si(h, BY, BY, B?) = (h, B}, h"1B}h, B1B2BL ),
sy(h, BY, By, B?, B3, B3, B2) = (h, B}, B3, B3, B3, hy *BZhy, hy ' B3 hy).



Cabling of braids
M(Q) is a subgroup of PBs via cabling of braids

_
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0o < o1 < 02 001 <~ /
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This formalises an intuition of Ramis



Extension to the nonpure case

In the tame case:
» Full braid group B,: exchanges the singularities.
» Pure braid group PB, C B,: fixes their order.
Wild analogue:
» Pure local wild mapping class group: fix the order of the g;.
» Full local wild mapping class group: allow to exchange the g;.

Not any two g; can be exchanged, we have to look at
automorphisms of the tree.

Here only g1 and g, can be exchanged.



Twisted irregular types
Twisted case: g; € C[z~/"], with r > 1 ramification order.

In this case g;(z) is multivalued, comes with Galois conjugates
q’_(e2ik7r/rz)_

Example: Painlevé |, related to g = z5/2

7
b

Get new admissibility constraints of the form
at e2ik7r/ra/‘

This gives new types of pieces for m1(B) (related to complex
hyperplane arrangements).



Extension to principal bundles

Similar (untwisted) story for principal G-bundles, for a complex
reductive Lie group G.

Main differences:

> Irregular types Q@ = 3°7_; A;z' with A; € t Cartan subalgebra
of g = Lie(G).

» Instead of differences g; — g;, get a(Q) with a root of g.

» Generic case: instead of As with distinct eigenvalues, get
As € treg, i.e. aAs) # 0 for any root.
The wild mapping class group is 71 (treg), the Artin braid
group of g.

» For classical Lie simple algebras: we can still define fission
trees, but need coloured fission trees.

P This is related to breaking the Dynkin diagram in several
pieces.



Relating different isomonodromy systems

Sometimes we can have Mg(P!,a,Q) ~ Mp(P!,a’,Q’) for wild
Riemann surfaces with different ranks, numbers of singularities...

Example: Fourier transform/Harnad dual of the standard Painlevé
VI Lax pair, relating the cases:

» a= (a1, ar, a3, 00), Q: rank 2, simple poles.

» a’ = (0,00), Q": rank 3, simple pole at 0, second order pole
at oo,
—ai1z
Qo = —axz
—azZz

The regular and irregular times are exchanged! The braidings
match on both sides.



Some further questions

v

Are the spaces of times and wild mapping class groups on
both sides of the Fourier transform related in general?

The global version: move the irregular types and the positions
of singularities, include automorphisms of .

Write down explicitly the wild mapping class group actions.
The twisted case outside type A?

Many people work on the dynamics of mapping class groups
actions on character varieties ("representations of surface
groups"). Can we say some things about the wild dynamics?

Quantization of this picture?



