Isomonodromic deformations and generalised braid groups

Jean Douçot

GFM, Universidade de Lisboa

January 30, 2023

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation

Isomonodromic deformations:

- Give rise to many integrable systems.
- Give rise to new special functions, e.g. Painlevé transcendents.
- Links with geometry: Frobenius manifolds, wall-crossing...

Main goals today:

• Geometric point of view on isomonodromic deformations.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- Tell some things about the wild case, i.e. irregular singularities.
- Describe the spaces of "times" for isomonodromic deformations and their topology.

Outline

I would like to explain:

- Isomonodromic deformations of linear systems can be seen as a (nonlinear) connection on a fibration whose fibres are moduli spaces of linear systems, or equivalently spaces of monodromy data, aka character varieties.
- Considering the monodromy of these fibrations when we move the positions of singularities, we get actions of braid groups on character varieties.
- We can generalise this picture to connections with irregular singularities: we will get wild mapping class group actions on wild character varieties.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The last part is based on recent and ongoing work with: G. Rembado, M. Tamiozzo, P. Boalch.

Linear differential systems

We are interested in systems of linear differential equations on the Riemann sphere $\Sigma = \mathbb{P}^1$.

$$\frac{dY}{dz} = A(z)Y,$$

where

- A(z) is a n × n matrix whose coefficients are holomorphic functions of z, with poles at points a₁,..., a_m ∈ P¹.
- the unknown Y is a vector whose entries are holomorphic functions of z on Σ^o := ℙ¹ \ {a₁,..., a_m}.

We will first conisder the case of regular singularities, i.e. simple poles.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Link with connections

Fiber bundle X on a manifold M: a manifold X with a map $\pi : X \to M$ such that locally on $U \subset M$ the situation is diffeomorphic to a projection

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

No canonical way to identify nearby fibres!

Link with connections

Connection on a vector bundle $E \to \mathbb{P}^1$: way to move "horizontally" between fibres:

In our setting, consider

$$abla = d - A(z)dz.$$

A horizontal section of ∇ is Y such that $\nabla Y = 0$, i.e. Y' = AY.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

(Linear) monodromy

Consider a solution Y of the equation. If we go around one singularity: $Y(z) \mapsto MY(z)$, with $M \in GL_n(\mathbb{C})$.

Example: if $\nabla = d - \frac{\lambda}{z} dz$, solution $y(z) = z^{\lambda}$, monodromy $e^{2i\pi\lambda}$.

If ∇ is flat this only depends on the homotopy class of γ . To ∇ we associate its monodromy representation $\rho : \pi_1(\Sigma) \to GL_n(\mathbb{C})$.

Moduli spaces of monodromy data: character varieties

Choose some paths $\gamma_1, \ldots, \gamma_m$ around a_i generating $\pi_1(\Sigma^o, z_0)$

Let $M_i = \rho(\gamma_i) \in G = GL_n(\mathbb{C}).$

The moduli space of monodromy data is the *character variety*

$$\mathcal{M}_{\mathcal{B}}(\Sigma, \mathbf{a}) = \{M_1, \ldots, M_m \mid M_1 \ldots M_m = 1\}/G.$$

人口 医水黄 医水黄 医水黄素 化甘油

It is a Poisson manifold (from Atiyah-Bott, Goldman).

Isonodromic deformations

Now we want to move the positions a_i of the singularities.

We wish to deform $\nabla = d - Adz$ so that the M_i remain constant

 \Rightarrow consider $A = A(z; a_i)$, isomonodromy gives a nonlinear PDEs satisfied by the coefficients of A.

Schlesinger equations: for $A = \sum_{i} \frac{A_i}{z - a_i}$, we get

$$\frac{\partial A_i}{\partial a_j} = \frac{[A_i, A_j]}{a_i - a_j}, \qquad j \neq i, \qquad (0.1)$$
$$\frac{\partial A_i}{\partial a_i} = -\sum_{j \neq i} \frac{[A_i, A_j]}{a_i - a_j}. \qquad (0.2)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The a_i are the "times" for the isomonodromic deformations.

Moduli spaces of connections with regular singularities We consider the de Rham moduli space

 $\mathcal{M}_{dR}(\Sigma, a) = \{\text{connections with regular singularities on } \Sigma \setminus a\} \, / \sim$

where \sim corresponds to gauge transformations.

This means a change of trivialisation $g: \Sigma^o \to GL_n(\mathbb{C})$, doing

$$A\mapsto gAg^{-1}-dg\,g^{-1}.$$

For the system Y' = AY, it corresponds to change of variable Z = g(z)Y.

A connection ∇ defines a point in $\mathcal{M}_{dR}(\Sigma, \mathbf{a})$.

Riemann-Hilbert correspondence:

$$\mathcal{M}_{dR}(\Sigma, \mathbf{a}) \simeq \mathcal{M}_{B}(\Sigma, \mathbf{a})$$

Both sides are Poisson manifolds, and the RH map preserves the Poisson structure.

Geometric point of view on isomonodromy

Isomonodromy as an (Ehresmann) connection on a family of moduli spaces $(\mathcal{M}_{dR}(\Sigma, \mathbf{a}_b))_{b \in \mathbf{B}}$.

B: space of deformation parameters

On the RHS: connection given by locally constant monodromy.

Using Riemann-Hilbert, get a connection on the LHS \Rightarrow isomonodromic deformations.

The monodromy of isomonodromy

But now we can consider the (nonlinear) monodromy of this connection!

A loop $\gamma \in \pi_1(\mathbf{B}, b)$ in the base **B** induces an automorphism of the character variety $\mathcal{M}_B(\Sigma, \mathbf{a}_b)$.

A loop $\gamma \in \pi_1(\mathbf{B}, b)$ in the base **B** induces an automorphism of the character variety $\mathcal{M}_B(\Sigma, \mathbf{a}_b)$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Braid group actions on character varieties

The natural universal space of deformation parameters is

$$\mathbf{B} = \operatorname{Conf}_n = \{a_1, \ldots, a_m \in \mathbb{C} \mid a_i \neq a_j \text{ for } i \neq j\}.$$

 $\pi_1(\mathbf{B})$ is the braid group on *n* strands B_n , which is also the mapping class group of the disc with *n* marked points.

Thus B_n acts on the character variety: s_j acts as $M_k \mapsto M_k$ for $k \neq j, j + 1$ and $(M_j, M_{j+1}) \mapsto (M_{j+1}^{-1} M_j M_{j+1}, M_{j+1}^{-1} M_j^{-1} M_{j+1} M_j M_{j+1}).$

An example: Painlevé VI

$$\begin{aligned} \frac{d^2 y}{dt^2} &= \frac{1}{2} \left(\frac{1}{y} + \frac{1}{y-1} + \frac{1}{y-t} \right) \left(\frac{dy}{dt} \right)^2 - \left(\frac{1}{t} + \frac{1}{t-1} + \frac{1}{y-t} \right) \frac{dy}{dt} \\ &+ \frac{y(y-1)(y-t)}{t^2(t-1)^2} \left(\alpha + \beta \frac{t}{y^2} + \gamma \frac{t-1}{(y-1)^2} + \delta \frac{t(t-1)}{(y-t)^2} \right) \end{aligned}$$

It comes from isomonodromic deformations of rank 2 connections on \mathbb{P}^1 with 4 simple poles, i.e.

$$A = \frac{A_1}{z - a_1} + \frac{A_2}{z - a_2} + \frac{A_3}{z - a_3} + \frac{A_4}{z - a_4}$$

We can use automorphisms of \mathbf{P}^1 to send $(a_1, a_2, a_3, a_4) \mapsto (0, 1, \infty, t)$. Only one "time" variable t

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

t going around $0, 1, \infty \longrightarrow$ monodromy of solutions of PVI.

 $(M_i)_i$ with finite orbits give algebraic solutions of PVI (cf. Dubrovin-Mazzocco, Boalch, Lisovy).

Generalisation to the irregular case: outline

Motivation:

- Include cases related to other Painlevé equations.
- Links (e.g Fourier transform) between regular and irregular cases.

Main differences with regular case:

- Need generalised monodromy data, a.k.a Stokes data to get analogue of Riemann-Hilbert correspondence.
- The moduli spaces, the wild character varieties M_B(Σ, a, Q), now also depend on *irregular types*.
- The irregular types give new deformation parameters, and new groups acting on wild character varieties.

Irregular singularities

Irregular singularities: higher order poles

$$\nabla = d - A(z)dz,$$
 $A(z) = \frac{A_s}{z^s} + \cdots + \frac{A_1}{z} + \ldots$

Monodromy is not enough to reconstruct the connection.

Example:

• Regular
$$\nabla = d - \frac{\lambda}{z} dz$$
, monodromy $e^{2i\pi\lambda}$.

► Irregular
$$\nabla = d - dq - \frac{\lambda}{z}dz$$
, with $q \in z^{-1}\mathbb{C}[z^{-1}]$ has monodromy $e^{2i\pi\lambda}$ for any q .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Irregular types

Turritin-Levelt theorem: it is possible to "diagonalise" ∇ using formal gauge transformations to a normal form

$$abla_0 = d - dQ - rac{\Lambda}{z} dz, \quad Q = \begin{pmatrix} q_1 & & \\ & \ddots & \\ & & q_n \end{pmatrix}, \quad q_i \in z^{-1/r} \mathbb{C}[z^{-1/r}],$$

where

- q_i : exponential factors of ∇ ,
- Q: irregular type of ∇ , r ramification order, Q is untwisted if r = 1.

Λ: exponent of formal monodromy.

A solution of ∇_0 is $e^Q z^{\Lambda}$.

Main idea: asymptotic behaviour of e^{q_i} when $z \to 0$ changes depending on the direction.

The Stokes phenomenon

Consider the growth rates of q_i , q_j for $z \to 0$:

- Changes of dominance between e^{q_i} and e^{q_j} at Stokes directions.
- Anti-Stokes/singular directions where the difference of the growth rates is largest.

Example: $q_1 = z^2, q_2 = -z^2$.

Each pair (i, j) gives $d_{ij} = \deg(q_i - q_j)$ (anti)Stokes directions.

Wild character varieties

Generalised monodromy:

- One Stokes matrix S_d for each singular direction d.
- Each pair (i, j) gives d_{ij} nontrivial Stokes matrix entries.

Consider ∇ on $\Sigma \setminus \mathbf{a}$, with irregular type Q_i at a_i .

To pass to the wild case: replace M_i by product

$$C^{(i)^{-1}}h^{(i)}S^{(i)}_{k_i}\dots S^{(i)}_1C^{(i)}$$

with $h^{(i)}$ encoding the formal monodromy, $S_j^{(i)}$ Stokes matrices. Space of generalised mondromy data = wild character variety:

$$\mathcal{M}_B(\Sigma, \mathbf{a}, \mathbf{Q}) = \left\{ C^{(i)}, h^{(i)}, S^{(i)}_j \middle| \prod_i (C^{(i)^{-1}} h^{(i)} S^{(i)}_{k_i} \dots S^{(i)}_1 C^{(i)}) = 1 \right\} / G$$

It is a Poisson manifold.

Wild isomonodromic deformations

Riemann-Hilbert-Birkhoff correspondence:

$$\mathcal{M}_{\textit{dR}}(\boldsymbol{\Sigma}, \boldsymbol{a}, \boldsymbol{Q}) \simeq \mathcal{M}_{\textit{B}}(\boldsymbol{\Sigma}, \boldsymbol{a}, \boldsymbol{Q})$$

Similar picture as before: (Ehresmann) connection on an admissible family of wild character varieties $(\mathcal{M}_{dR}(\Sigma, \mathbf{a}_b, \mathbf{Q}_b))_{b \in \mathbf{B}}$.

The irregular types give new deformation parameters: "irregular times". One now varies a "wild Riemann surface" (Σ , **a**, **Q**).

Admissible deformations

Local case: we fix a singularity, only vary the irregular type

$$Q = \begin{pmatrix} q_1 & & \ & \ddots & \ & & q_n \end{pmatrix}, \quad q_i \in z^{-1}\mathbb{C}[z^{-1}].$$

Set
$$Q = \frac{A_s}{z^s} + \cdots + \frac{A_1}{z}$$
, with $A_i = \text{diag}(a_{1i}, \ldots, a_{ni})$ i.e. $q_i = \sum_j a_{ij} z^{-j}$.

Admissibility constraint: we need to have

$$d_{ij} = \deg(q_i - q_j) = constant.$$

Question: what is the analogue of $Conf_n$, the universal base **B**?

If A_s has distinct eigenvalues, $d_{ij} = n$ for all $i \neq j$, the only constraint is that $a_{si} \neq a_{sj}$, and again $\pi_1(\mathbf{B}) = PB_n$.

・ロト・西・・田・・田・・日・

Fission trees

Otherwise, we have to look at how eigenspaces of A_s split as eigenspaces of A_{s-1} and so on

Example:

$$Q = rac{A_2}{z^2} + rac{A_1}{z}, \quad A_2 = egin{pmatrix} -1 & & \ & -1 & \ & & 2 \end{pmatrix}, \quad A_1 = egin{pmatrix} -1 & & \ & 1 & \ & & 0 \end{pmatrix},$$

Corresponding fission tree $\mathcal{T}(Q)$:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Space of admissible deformations

Admissible deformations of Q:

$$Q' = rac{A_2'}{z^2} + rac{A_1'}{z}, \quad ext{with } A_2' = egin{pmatrix} a & & \ & a & \ & a' \end{pmatrix}, \quad A_1' = egin{pmatrix} b & & \ & b' & \ & c \end{pmatrix},$$

with $a,a',b,b',c\in\mathbb{C}$ such that $a\neq a'$ and $b\neq b'.$

The universal space of admissble deformations is

 $\mathbf{B}(Q) = \{a, a', b, b', c \mid a \neq a', b \neq b'\} \simeq \mathsf{Conf}_2 \times \mathsf{Conf}_2 \times \mathbb{C}.$

Link with the fission tree:

Wild mapping class group actions

Here the pure WMCG is $\Gamma(Q) = \pi_1(\mathbf{B}(Q)) \simeq PB_2 \times PB_2 \simeq \mathbb{Z}^2$. Two generators:

• σ_2 : *a* and *a'* go around each other.

• σ_1 : *b* and *b'* go around each other.

Wild character variety:

$$\mathcal{M}_B(Q) = \left\{ (h, B_1^1, B_3^1, B_1^2, B_2^2, B_3^2, B_4^2) \mid h(B_3^1 B_1^1)(B_4^2 B_3^2 B_2^2 B_1^2) = 1 \right\},\$$

with B_i^j Stokes factors.

Action of the WMCG: $\sigma_1 = s_1^2$, $\sigma_1 = s_1^2$, with

 $s_1(h, B_1^1, B_3^1, B_i^2) = (h, B_3^1, h^{-1}B_1^1h, B_1^1B_i^2B_1^{1-1}),$ $s_2(h, B_1^1, B_3^1, B_1^2, B_2^2, B_3^2, B_4^2) = (h, B_1^1, B_3^1, B_3^2, B_4^2, h_1^{-1}B_1^2h_1, h_1^{-1}B_2^2h_1).$

Cabling of braids $\Gamma(Q)$ is a subgroup of PB_3 via cabling of braids

・ロト ・ 同ト ・ ヨト ・ ヨト

æ

This formalises an intuition of Ramis

Extension to the nonpure case

In the tame case:

- Full braid group B_n : exchanges the singularities.
- Pure braid group $PB_n \subset B_n$: fixes their order.

Wild analogue:

- Pure local wild mapping class group: fix the order of the q_i.
- Full local wild mapping class group: allow to exchange the q_i . Not any two q_i can be exchanged, we have to look at automorphisms of the tree.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Here only q_1 and q_2 can be exchanged.

Twisted irregular types

Twisted case: $q_i \in \mathbb{C}[z^{-1/r}]$, with r > 1 ramification order.

In this case $q_i(z)$ is multivalued, comes with Galois conjugates $q_i(e^{2ik\pi/r}z)$.

Example: Painlevé I, related to $q = z^{5/2}$.

Get new admissibility constraints of the form

$$a
eq e^{2ik\pi/r}a'$$

This gives new types of pieces for $\pi_1(\mathbf{B})$ (related to complex hyperplane arrangements).

Extension to principal bundles

Similar (untwisted) story for principal G-bundles, for a complex reductive Lie group G.

Main differences:

- ▶ Irregular types $Q = \sum_{i=1}^{s} A_i z^i$ with $A_i \in \mathfrak{t}$ Cartan subalgebra of $\mathfrak{g} = \operatorname{Lie}(G)$.
- ▶ Instead of differences $q_i q_j$, get $\alpha(Q)$ with α root of \mathfrak{g} .
- Generic case: instead of A_s with distinct eigenvalues, get A_s ∈ t_{reg}, i.e. α(A_s) ≠ 0 for any root. The wild mapping class group is π₁(t_{reg}), the Artin braid group of g.
- For classical Lie simple algebras: we can still define fission trees, but need coloured fission trees.
- This is related to breaking the Dynkin diagram in several pieces.

Relating different isomonodromy systems

Sometimes we can have $\mathcal{M}_B(\mathbf{P}^1, \mathbf{a}, \mathbf{Q}) \simeq \mathcal{M}_B(\mathbf{P}^1, \mathbf{a}', \mathbf{Q}')$ for wild Riemann surfaces with different ranks, numbers of singularities...

Example: Fourier transform/Harnad dual of the standard Painlevé VI Lax pair, relating the cases:

The regular and irregular times are exchanged! The braidings match on both sides.

Some further questions

- Are the spaces of times and wild mapping class groups on both sides of the Fourier transform related in general?
- The global version: move the irregular types and the positions of singularities, include automorphisms of Σ.
- Write down explicitly the wild mapping class group actions.
- The twisted case outside type A?
- Many people work on the dynamics of mapping class groups actions on character varieties ("representations of surface groups"). Can we say some things about the wild dynamics?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Quantization of this picture?