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It was recently revealed that a rotating compact body responds dynamically when it is subjected to a
gravitomagnetic tidal field, even when this field is idealized as time independent. The dynamical response
is characterized by time-changing internal currents, and it was suspected to originate from zero-frequency
g-modes and r-modes driven by the tidal forces. In this paper, we provide additional insights into the
phenomenon by examining the tidal response of a rotating body within the framework of post-Newtonian
gravity. This approach allows us to develop an intuitive picture for the phenomenon, which relies on the
close analogy between post-Newtonian gravity and Maxwell’s theory of electromagnetism. In this picture,
the coupling between the gravitomagnetic tidal field and the body’s rotational velocity is naturally expected
to produce an unbalanced Lorentz-like force within the body, and it is this force that is responsible for the
tidal currents. The simplicity of the fluid equations in the post-Newtonian setting allows us to provide a
complete description of the zero-frequency modes and demonstrate their precise role in the establishment
of the tidal currents. We estimate the amplitude of these currents, and find that for neutron-star binaries of
relevance to LIGO, the scale of the velocity perturbation is measured in kilometers per second when the
rotation period is comparable to 100 milliseconds. This estimate indicates that the tidal currents may have a
significant impact on the physics of neutron stars near merger.
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I. INTRODUCTION

The tidal interaction between neutron stars in a close
binary system has recently been the subject of intense
investigation, following the remarkable observation [1,2]
that the tidal deformation of each body could have a
measurable impact on the emitted gravitational waves.
The effect depends on the tidal polarizability of each
neutron star, and a large effort has been devoted to
computing relativistic Love numbers [3–5] for realistic
models of neutron stars, and to ascertaining the importance
of the tidal deformation on the gravitational-wave signal
[6–26]. While this work was restricted to the regime of
static tides (or adiabatic tides), in which the external, orbital
time scale is long compared with the internal, hydrody-
namical time scale of the neutron star, an extension to the
regime of dynamical tides was recently developed [27–30],
following the pioneering work of Flanagan and Hinderer
[1]. The dynamical aspects of the tidal interaction, during
which the body’s internal fluid modes are driven by the
external tidal forces, were shown to be significant for
binaries with mass ratios up to approximately 3, when they
implicate stiff neutron stars with large radii [30].
An unexpected aspect of the tidal dynamics of compact

binaries was recently revealed by Landry and Poisson [31].
These authors demonstrated that a rotating compact body
responds dynamically when it is subjected to a gravito-
magnetic tidal field—the inhomogeneous piece of the
gravitational field produced by the mass current associated
with the orbital motion of the companion body. Most
strikingly, the phenomenon was revealed in the idealization

in which the gravitomagnetic tidal field is taken to be
stationary; in this case the tidal interaction produces an
internal velocity field that grows linearly with time. The
phenomenon was attributed to zero-frequency fluid modes,
which do not provide a restoring force that would balance
out the external tidal forces and keep the fluid stationary.
The analysis presented inRef. [31]was performedwithin a

perturbative context in which the tidal forces are weak and
idealized as time independent, and in which the body is only
allowed to rotate slowly. The calculations, however, were
carried out in full general relativity, and therefore incorpo-
rated all strong-field effects in the interior of the compact
body. The intrinsic complexity of the computations pre-
vented these authors from developing an intuitive physical
picture for the phenomenon, and kept them from assessing its
significance. In particular, the zero-frequency modes were
presented as a likely culprit for the phenomenon, but their
precise role could not be ascertained.
In this paper, we provide the physics insights that were

missing from the original analysis. Our strategy is to
approach the problem anew in the framework of post-
Newtonian gravity, assuming that the internal gravity of the
compact body is not too strong. While the predictions of
this analysis are likely to have limited accuracy from a
quantitative point of view, they will be qualitatively robust,
and they come with an intuitive understanding that was not
easily accessible in the general-relativistic treatment. We
retain the assumption that the tidal forces are weak, but we
no longer rely on the stationary idealization; our tidal field
can now vary with time, on a time scale that is assumed to
be long compared with the body’s internal, hydrodynamical
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time scale. We also retain the assumption that the body is
rotating slowly.
In this post-Newtonian setting, the generation of grav-

itomagnetic tidal currents inside a rotating neutron star can
be revealed with a relatively simple analysis. More impor-
tantly, the close analogy between post-Newtonian gravity
and Maxwell’s electromagnetism provides us with a strong
intuitive basis. The phenomenon no longer looks so
mysterious when viewed in this particular way.
We may now state the problem more precisely, and

develop the intuition behind the phenomenon. We consider
a body of mass M, radius R, and angular velocity Ω
immersed in a gravitomagnetic tidal environment created
by a remote companion of massM0 moving with velocity v0
on an orbit of radius r0. Just as an orbiting electric charge
would create a magnetic field, the orbiting companion
creates a gravitomagnetic field B around the body. The
inhomogeneous piece of this field, the one responsible for
the tidal interaction, scales as GMv0x=r03, in which x is the
position from the body’s center of mass. The tidal field
couples to the body’s rotational velocity v ¼ Ω × x and
creates, inside the body, a force density given by

f ¼ 1

c2
ρv × B; ð1:1Þ

the gravitational analogue of the Lorentz force. Unlike the
typical situation encountered in Newtonian tides, or in
general-relativistic, gravitoelectric tides, this force is not
balanced out by pressure-gradient forces within the fluid.
Instead, the gravitomagnetic tidal forces act on the body
and establish a velocity perturbation δv proportional to the
time integral of the tidal field. In the idealization of a time-
independent B, the velocity field would grow linearly in
time, just as revealed in Ref. [31]. In the more realistic case
of a time-changing B, δv is modulated by the changes in the
tidal environment.
The root of the phenomenon is therefore an unbalanced

force that arises from the coupling between the gravito-
magnetic tidal field and the body’s rotational velocity.
These elementary considerations imply that the velocity
perturbation must scale as

δv ¼ GM0v0ΩR2

c2ω0r03
; ð1:2Þ

where ω0 ≔ v0=r0 is the orbital angular velocity, which
corresponds to the frequency of oscillation of the tidal field.
In this expression, the factor GM0=r03 indicates that the
effect is the result of a tidal interaction, the factor v0=c2
further reveals that it is a post-Newtonian, gravitomagnetic
effect, the factor ΩR shows that the effect results from the
coupling with the body’s rotational velocity, the factor R
comes from the scaling of B with the position relative to the
body’s center of mass, and the last factor 1=ω0 comes from
the time integral of the force density.

The scale of the velocity perturbation can be reexpressed
in terms of the massesM andM0, the body’s rotation period
P ≔ 2π=Ω and radius R, and the orbital frequency
f0 ≔ ω0=ð2πÞ. We rely on Kepler’s law ω02 ¼ GðM þ
M0Þ=r03 to eliminate the orbital radius r0, and get

δv ¼ ð2πÞ7=3G1=3

c2
M0

ðM þM0Þ2=3
R2

P
f4=3: ð1:3Þ

Inserting fiducial values for a typical binary system of
neutron stars near merger, we find that the scale of the
velocity perturbation is given by

δv ¼ 2

�
M0

1.4 M⊙

��
2.8 M⊙
M þM0

�
2=3

�
R

12 km

�
2

×

�
100 ms

P

��
f

100 Hz

�
4=3

km=s: ð1:4Þ

The amplitude of the tidal currents is measured in kilo-
meters per second, and should therefore be significant in
these systems.
In the remaining sections of the paper, we give a precise

statement of these results and provide a complete deriva-
tion, taking the compact body to be a rigidly rotating
perfect fluid, and considering generic tidal environments.
As we stated previously, our treatment is based on four key
assumptions. First, we take the gravitational field inside the
body to be sufficiently weak to permit a post-Newtonian
approximation carried out to the first order. Second, we
assume that the tidal perturbation is small and can be
adequately described by a first-order perturbative treat-
ment. Third, we assume that the gravitomagnetic tidal field
changes on a time scale that is long compared with the
body’s internal, hydrodynamical time scale. And fourth, we
assume that the body rotates slowly, so that all equations
can be linearized with respect to the angular velocity Ω.
We begin in Sec. II with a presentation of those aspects

of post-Newtonian gravity that are relevant for our pur-
poses. In particular, we introduce the vector potential U
associated with the gravitomagnetic field, and describe a
generic gravitomagnetic tidal environment in terms of a
symmetric trace-free tensor BabðtÞ. In Sec. III, we introduce
the post-Newtonian version of Euler’s equation, which
governs the behavior of a perfect fluid. We first integrate
this equation for the unperturbed configuration of a non-
rotating star, and then switch on the tidal field and the
rotation. We find that the perturbation equations take the
same form as those governing a nonrotating fluid in
Newtonian gravity, but with a driving force that couples
the gravitomagnetic tidal field to the body’s rotational
velocity. In Sec. IV, we recast the perturbation equations in
a convenient form involving a Lagrangian displacement
vector ξ. This reformulation provides the basis for the
schematic mode analysis carried out in Sec. V, in which we
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introduce the crucial zero-frequency modes and describe
how they can give rise to a velocity perturbation that
behaves as in Eq. (1.2).
In Sec. VI, we prepare the way for an actual integration

of the perturbation equations by expanding each variable in
spherical harmonics. Because the overall perturbation is a
composition of an l ¼ 1 rotational perturbation with an
l ¼ 2 tidal perturbation, the decomposition involves
spherical harmonics with l ¼ 1, l ¼ 2, and l ¼ 3.
These come in two types: even-parity harmonics to
represent scalars and vectors, and odd-parity harmonics
to represent pseudovectors. The decomposition turns the
perturbation equations into three decoupled sets of equa-
tions, one set for each value of l. The explicit integration of
these equations is carried out in Sec. VII. For concreteness
and simplicity we adopt a stellar model based on the
polytropic equation of state p ∝ ρ2, and the solution is
obtained with a mixture of analytical and numerical
methods. The precise expression of Eq. (1.2) is provided
by Eq. (7.6) and the following equations, as well as by
Eq. (7.28) and the following equations. The integration
reveals that the velocity field includes dipole (l ¼ 1) and
quadrupole (l ¼ 2) components only; the expected octu-
pole (l ¼ 3) contribution is absent because of a fortuitous
cancellation of the driving force at the first post-
Newtonian order.
We return to the mode analysis in Sec. VIII, and convert

the schematic discussion of Sec. V into an actual method to
solve the perturbation equations for δv. We confirm that the
solution constructed in Sec. VII is indeed generated by a
degenerate family of zero-frequency modes, which can be
segregated into even-parity g-modes (those relevant for the
dipole piece of the velocity perturbation) and odd-parity
r-modes (which are relevant for the quadrupole piece of
the perturbation). We therefore validate the suggestion of
Ref. [31], that zero-frequency modes are responsible for
the gravitomagnetic tidal currents inside a rotating compact
body.
A number of additional results are worked out in

appendixes. In Appendix A, we calculate the post-
Newtonian approximation to the octupole, rotational-tidal
Love number of a p ∝ ρ2 polytrope. In Appendix B, we
justify the subtle boundary conditions of the l ¼ 1 per-
turbation equations at the stellar surface. And finally, in
Appendix C, we show that the l ¼ 1 acceleration field
inside the body averages to a zero overall acceleration for
the body’s center of mass.

II. GRAVITOMAGNETIC TIDAL FIELD

Throughout this work we adopt the post-Newtonian
approximation to relativistic gravity (see Chap. 8 of
Poisson and Will’s Gravity [32]), based on the
(Newtonian) gravitoelectric potential U and the gravito-
magnetic vector potential Ua. These satisfy the field
equations

∇2U ¼ −4πGρ; ∇2Ua ¼ −4πGρva; ð2:1Þ

in which ρ is the mass density of the matter distribution
(denoted ρ� in Gravity), and v is its velocity field. The
potentials are assumed to satisfy the harmonic gauge
condition

∂tU þ ∂aUa ¼ 0; ð2:2Þ

and the matter variables satisfy the continuity equation

∂tρþ ∂aðρvaÞ ¼ 0: ð2:3Þ

A complete description of post-Newtonian gravity also
involves an additional potential Ψ, which provides a
correction of order ðv=cÞ2 to the gravitoelectric potential.
This potential, however, is not required for our purposes in
this work.
We consider a rotating, self-gravitating body of massM,

radius R, and angular velocity Ω immersed in a tidal
environment created by remote objects. Our considerations
are limited to a spherical domain M described by
0 < r < rmax, where r is the distance to the body’s center
of mass, and rmax > R is a maximum distance from the
body. This domain includes the body, but it excludes the
remote objects that create the tidal environment.
A Newtonian description of the tidal environment is

provided in Sec. II.5 ofGravity. The gravitoelectric potential
is decomposed into a body pieceUbody and an external piece
Uext, and since the sources of the external potential are
outside M, it must satisfy Laplace’s equation ∇2Uext ¼ 0.
Assuming that the scale of variation of the external potential
is large compared with R, we express it as the Taylor
expansion UextðxaÞ ¼ Uextð0Þ þ gaxa − 1

2
Eabxaxb þ � � �,

where ga ≔ ∂aUextð0Þ and Eab ≔ −∂abUextð0Þ, with xa

denoting the position relative to the body’s center of mass.
The leading term is an irrelevant constant, the linear term is
responsible for the motion of the center of mass, and the
additional terms are responsible for the tides. To leading
order in the tidal interaction, we have that

Utidal ¼ −
1

2
Eabxaxb; ð2:4Þ

with the gravitoelectric tidal quadrupole moment EabðtÞ
providing a complete characterization of the tidal environ-
ment. The definition of Eab implies that this tensor is
symmetric, and the field equation ∇2Utidal ¼ 0 further
implies that it is trace-free: Eaa ¼ 0. The tidal moment is
therefore a symmetric trace-free (STF) tensor that possesses
five independent components.
We shall assume that the time scale of variation of Eab is

very long compared with the internal, hydrodynamical
time scale of the body, which is comparable to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R3=GM

p
.
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This will allow us to neglect the time derivatives of the tidal
gravitoelectric potential.
The gravitomagnetic potential Ua also contributes to the

tidal environment. We examine the external piece of this
potential, which is sourced by the remote objects; it
satisfies ∇2Uext

a ¼ 0 in addition to the gauge condition
∂aUext

a ¼ 0, in which we have neglected the term ∂tUext, as
motivated previously. A gauge transformation Uext

a →
Uext

a þ ∂af preserves the gauge condition, provided that
f satisfies Laplace’s equation.
We perform a Taylor expansion of the external grav-

itomagnetic potential, and discard the irrelevant constant
term and the linear term responsible for the center-of-mass
motion. The tidal potential therefore leads with Utidal

a ¼
Aabcxbxc, with AabcðtÞ defined to be symmetric in the last
two indices; this tensor contains 18 independent compo-
nents. The gauge condition gives rise to the three con-
straints Aaab ¼ 0, and the number of independent
components reduces to 15. An additional reduction is
made possible by a gauge transformation generated by
f ¼ Cabcxaxbxc, where Cabc is completely symmetric by
virtue of its definition, and satisfies Caab ¼ 0 by virtue of
the requirement that∇2f ¼ 0. There are seven independent
components in Cabc, and these can be chosen to eliminate
an equal number of components in Aabc; the count is
therefore reduced to eight independent components.
Finally, the field equations ∇2Utidal

a ¼ 0 introduce three
new constraints, and the number of independent compo-
nents has finally settled to five. These can be encoded in the
STF tensor BabðtÞ, and it can be verified that

Utidal
a ¼ −

1

6
ϵabcBc

dxbxd ð2:5Þ

satisfies the gauge condition (because Bab is symmetric)
and the field equations (because Bab is trace-free).
Equation (2.5), therefore, provides a correct description
of a gravitomagnetic tidal potential [33].
The gravitomagnetic tidal quadrupole moment Bab can

be expressed as Bab ¼ 2ϵcdða∂bÞcUext
d ð0Þ, in terms of

second derivatives of the external potential evaluated at
xa ¼ 0. For a tidal environment created by a single
companion of mass M0 moving with velocity v0 at a
position r0 from the body, Uext

a ¼ GM0v0a=r0, and

Bab ¼
6GM0

r03
ðn0 × v0Þðan0bÞ; ð2:6Þ

where n0 ≔ r0=r0. When the companion moves on a circular
orbit of radius r0 in the x − y plane of the coordinate
system, the nonvanishing components of Bab are

Bxz ¼
3GM0v0

r03
cosΦ; Byz ¼

3GM0v0

r03
sinΦ; ð2:7Þ

where Φ ≔ ω0t is the orbital phase, with

ω0 ≔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GðM þM0Þ

r03

r
ð2:8Þ

denoting the orbital angular velocity, related to the orbital
velocity by v0 ¼ r0ω0.

III. BODY’S RESPONSE TO A
GRAVITOMAGNETIC TIDAL FIELD

In this section, we derive the equations that govern the
response of a rotating body to the tidal gravitomagnetic
potential of Eq. (2.5). We ignore the influence of the
gravitoelectric tidal field, which gives rise to the well-
understood Newtonian tides (see, for example, Sec. 2.5 of
Gravity [32]). The body is modeled as a perfect fluid with a
zero-temperature equation of state of the form p ¼ pðρÞ,
with p denoting the pressure. Its response is determined by
the post-Newtonian version of Euler’s equation, displayed
in Eq. (8.119) of Gravity,

ρ
dva
dt

¼ −∂apþ ρ∂aU

þ 1

c2

��
1

2
v2 þ U þ Πþ p

ρ

�
∂ap − va∂tp

�

þ ρ

c2
½ðv2 − 4UÞ∂aU − vað3∂tU þ 4vb∂bUÞ

þ 4∂tUa þ 4vbð∂bUa − ∂aUbÞ þ ∂aΨ� þOðc−4Þ;
ð3:1Þ

where d=dt ≔ ∂t þ vb∂b is the convective time derivative,
Π is the fluid’s internal energy per unit mass, and Ψ is the
post-Newtonian potential mentioned previously.
We begin with a nonrotating body in an unperturbed

state, in the absence of a perturbing tidal field. In this
context the body is static and spherically symmetric, and
its structure is determined by the equations ∂ap ¼ ρ∂aU þ
Oðc−2Þ and ∇2U ¼ −4πGρ. We allow ourselves to neglect
all post-Newtonian corrections to the structure equations,
which take, in this approximation, the explicit form

dp
dr

¼ ρ
dU
dr

¼ −
Gmρ

r2
;

dm
dr

¼ 4πr2ρ; ð3:2Þ

with mðrÞ denoting the internal mass function.
We next switch on the gravitomagnetic tidal field, but

keep the body nonrotating. We assume that the tidal field is
small and creates a change in the fluid configuration that
can adequately be described by a first-order perturbative
treatment. We further assume that BabðtÞ changes on a
time scale that is long compared with the time scale of
internal hydrodynamical processes. And we assume that
Babðt → −∞Þ → 0, so that the body’s initial state is the
unperturbed state described previously. As we shall see
presently, the fluid acquires a velocity field va as a result of
the tidal interaction, and the total gravitomagnetic potential
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is Ua ¼ Ubody
a þ Utidal

a , with the body piece satisfying
∇2Ubody

a ¼ −4πGρva.
The gravitomagnetic tidal perturbation keeps all scalar

quantities (such as ρ, p, U, Π, and Ψ) unchanged to first
order in perturbation theory. The reason is tied to their
behavior under a parity transformation, in which xa → −xa.
Scalar quantities are not affected by the transformation,
while a vector such as Ua changes sign. Now, Eq. (2.5)
reveals that Bab → −Bab under the transformation (ϵabc is
unaffected), and the gravitomagnetic tidal moment there-
fore behaves as a pseudotensor. Because a perturbation in a
scalar quantity would have to be proportional to Babxaxb to
be a scalar, and because this does change sign under a parity
transformation (it is a pseudoscalar instead of a true scalar),
we must rule out such perturbations.
With δρ ¼ δp ¼ δU ¼ 0, the post-Newtonian Euler

equation implies that ρdva=dt ¼ Oðc−2Þ, so that the
velocity field must be of order c−2. This immediately
implies that Ubody

a ¼ Oðc−2Þ, so that

Ua ¼ Utidal
a þOðc−2Þ ¼ −

1

6
ϵabpB

p
c xbxc þOðc−2Þ: ð3:3Þ

These observations give rise to a huge simplification in
Eq. (3.1). A careful examination of the equation, neglecting
all terms that are beyond first order in the perturbation, and
all terms that are beyond the first post-Newtonian order,
reveals that it reduces to ∂tðva − 4Ua=c2Þ ¼ Oðc−4Þ.
Because the fluid is assumed to be unperturbed initially,
the time independence of va − 4Ua=c2 guarantees that

va ¼
4

c2
Ua þOðc−4Þ ð3:4Þ

at all times. The gravitomagnetic tidal interaction therefore
creates a velocity field within the fluid, which gradually
builds up as the tidal field is switched on. This velocity field
is required by the relativistic circulation theorem [34,35].
We now allow the body to rotate. For simplicity we take

the body to rotate rigidly with an angular velocity Ω.
Aligning the rotation axis with the z direction, we define
the vector Ωa ¼ ½0; 0;Ω�, and the rotational velocity field is

vrota ¼ ϵabcΩbxc: ð3:5Þ

We assume that Ω is sufficiently small that centrifugal
effects on the body’s structure can be neglected. This
amounts to demanding that Ω2 ≪ GmðrÞ=r3 throughout
the body, and the assumption allows us to work to first
order in vrota . The rotating body is perturbed by the
gravitomagnetic tidal field, and the coupling between
vrota and Utidal

a ensures that in addition to the fluid’s velocity
field, ρ, p, and U also acquire perturbations; parity
considerations no longer rule them out, because the
pseudovector vrota can combine with the pseudotensor

Bab and the vector xa to form scalar quantities. Because
the interaction with the gravitomagnetic tidal field is a post-
Newtonian effect, all perturbations will be post-Newtonian
quantities of order c−2.
We let ρ → ρþ δρ, p → pþ δp, U → U þ δU,

va → vrota þ δva, and Ua ¼ Utidal
a in the post-Newtonian

Euler equation, and expand the equation to first order in all
perturbations, taking into account the important fact that
these are all of order c−2. After simplification we arrive at

∂tδva þ vb∂bδva þ ð∂bvaÞδvb − Pa ¼
4

c2
Wa þOðc−4Þ;

ð3:6Þ

where

Pa ≔ −
1

ρ
∂aδpþ δρ

ρ
∂aU þ ∂aδU ð3:7Þ

and

Wa ≔ ∂tUa þ vbð∂bUa − ∂aUbÞ: ð3:8Þ

To simplify the notation we let va ≡ vrota andUa ≡Utidal
a , as

given by Eq. (2.5).
Equation (3.6) is the starting point of the perturbative

analysis. Because δva ¼ 4Ua=c2 when Ω ¼ 0, we write

δva ¼
4

c2
Ua þ wa ð3:9Þ

and consider wa to be a post-Newtonian quantity of order
Ω. Making the substitution in Eq. (3.6) and neglecting all
terms beyond first order in Ω, we arrive at the simpler
equation

∂twa − Pa ¼ −
4

c2
Aa þOðc−4Þ; ð3:10Þ

where

Aa ≔ ð∂bvaÞUb þ vb∂aUb: ð3:11Þ

The left-hand side of Eq. (3.10) features the familiar
linearization of the Newtonian Euler equation for the
perturbation of a nonrotating fluid, and the right-hand side
features a post-Newtonian driving force Aa that originates
from the coupling between the gravitomagnetic tidal field
Ua and the rotational velocity va. The equation is math-
ematically equivalent to one describing a nonrotating body
perturbed by a prescribed driving force.
Equation (3.10) must be supplemented by Poisson’s

equation

∇2δU ¼ −4πGδρ ð3:12Þ
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for the perturbation of the Newtonian potential, the con-
tinuity equation expressing mass conservation, and an
equation of state for the perturbed fluid. Throughout this
work, we shall assume that the perturbed fluid satisfies the
same equation of state as the unperturbed fluid.

IV. LAGRANGIAN DESCRIPTION OF THE
FLUID PERTURBATION

The perturbative treatment of the previous section was
couched in the language of Eulerian perturbations, with a
perturbation such as δρ comparing the perturbed and
unperturbed fluids at the same spatial position. We next
introduce a Lagrangian description, in which a perturbation
such as Δρ compares the perturbed and unperturbed fluids
at the same fluid element. The relation between the two
descriptions is provided by the Lagrangian displacement
vector ξa, which gives the position of a given fluid element
in the perturbed fluid relative to its position in the unper-
turbed fluid. The Eulerian and Lagrangian perturbations are
related by Δ ¼ δþ ξa∂a. In the Lagrangian description, the
perturbation in the velocity field is Δva ¼ dξa=dt, mass
conservation is embodied in Δρ ¼ −ρ∂aξ

a, and with the
assumption placed earlier on the equation of state,
Δp ¼ ðdp=dρÞΔρ. In terms of Eulerian variations, we have

δva ¼ ∂tξ
a þ vb∂bξ

a − ξb∂bva; δρ ¼ −∂aðρξaÞ;
ð4:1Þ

and δp ¼ ðdp=dρÞδρ.
We have seen that δva ¼ 4Ua=c2 when the body is

nonrotating (va ¼ 0). In this case δva ¼ ∂tξ
a, and to reflect

the change of variables of Eq. (3.9) to account for the
rotation, we write

ξaðt; xbÞ ¼ 4

c2

Z
t
Uaðt0; xbÞdt0 þ ζaðt; xbÞ; ð4:2Þ

where ζa is a post-Newtonian quantity of order Ω. Making
the substitution in Eq. (4.1) yields

waðt; xbÞ ¼ ∂tζaðt; xbÞ þ
4

c2

Z
t
Caðt0; xbÞdt0; ð4:3Þ

with

Ca ≔ vb∂bUa − Ub∂bva ð4:4Þ

and

δρ ¼ −∂aðρζaÞ: ð4:5Þ

There is no integral term in the last equation, because
∂aUa ¼ 0 and Ua∂aρ ¼ r−1ðdρ=drÞxaUa ¼ 0. The Euler
equation (3.10) becomes

∂ttζa − Pa ¼ −
4

c2
Ba þOðc−4Þ; ð4:6Þ

with

Ba ≔ vbð∂aUb þ ∂bUaÞ: ð4:7Þ

The equation is again supplemented by Eq. (3.12). The
continuity equation has already been incorporated in
Eq. (4.5), and as we have seen, the pressure perturbation
is given by δp ¼ ðdp=dρÞδρ.
The integral term in Eq. (4.3) suggests that wa might be

expected to grow in time, on a short time scale compared
with the scale of variation of the tidal potential. We shall see
this expectation confirmed when we construct the solution
to the perturbation equations.

V. MODE ANALYSIS

Equation (4.6) can be integrated by performing a mode
analysis. We examine the homogeneous equation, ∂ttζa −
Pa ¼ 0 with Pa given by Eq. (3.7), and recognize that by
virtue of Eqs. (3.12) and (4.5), Pa is a linear functional of
ζa. We express it as Pa ¼ −La

bζb, in which La
b is an

integrodifferential operator that is known to be self-adjoint
with respect to the measure ρd3x [36]. Writing

ζaðt; xbÞ ¼ faðxbÞe−iωt; ð5:1Þ

we find that the homogeneous equation turns into the
eigenvalue equation La

bfb ¼ ω2fa for the modes fa. With
La

b self-adjoint, the eigenvalues ω2 are guaranteed to be
real, and modes with different frequencies are guaranteed to
be orthogonal. Introducing the mode label λ, we denote the
eigenvalues ωλ and the corresponding mode functions faλ ,
and the orthogonality property is expressed by

Z
ρf λ · f λ0d3x ¼ Nλδλλ0 ; ð5:2Þ

with Nλ denoting the normalization of each mode. The
spectrum of La

b is also known to include an infinitely
degenerate set of zero-frequency modes that satisfy
La

bfb ¼ 0. These are necessarily orthogonal to those with
nonzero frequency, and they can be made mutually
orthogonal by implementing a Gram-Schmidt procedure.
We label the zero-frequency modes with the index I, and
express their orthogonality as

Z
ρf I · f I0d3x ¼ NIδII0 : ð5:3Þ

We take it for granted that the entire collection of modes faλ
and faI forms a complete set. Completeness under certain
assumptions was proved by Beyer and Schmidt [37].
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Returning to Eq. (4.6), we decompose ζa and Ba into
modes,

ζaðt; xbÞ ¼
X
I

zIðtÞfaI ðxbÞ þ
X
λ

zλðtÞfaλðxbÞ; ð5:4aÞ

Baðt; xbÞ ¼
X
I

BIðtÞfaI ðxbÞ þ
X
λ

BλðtÞfaλðxbÞ; ð5:4bÞ

with mode amplitudes given by

zI ¼
1

NI

Z
ρζ · f Id3x; BI ¼

1

NI

Z
ρB · f Id3x ð5:5Þ

and analogous equations for zλ and Bλ. We make the
substitutions, invoke the mode equation and the orthogon-
ality relations, and obtain

̈zI ¼ −
4

c2
BI; ̈zλ þ ω2

λzλ ¼ −
4

c2
Bλ; ð5:6Þ

with an overdot indicating differentiation with respect to t.
Each mode is seen to behave as a driven harmonic
oscillator, and with the assumption that the fluid begins
in an unperturbed state at t ¼ −∞, the solutions are

zIðtÞ ¼ −
4

c2

Z
t

−∞
ðt − t0ÞBIðt0Þdt0;

zλðtÞ ¼ −
4

ωλc2

Z
t

−∞
dt0Bλðt0Þ sin½ωλðt − t0Þ�: ð5:7Þ

While the modes faλ give rise to oscillating contributions to
ζa, the zero-frequency modes faI produce a growing
contribution that can be expressed as

ζgrowa ðt; xbÞ ¼ −
4

c2

Z
t

−∞
ðt − t0ÞBzf

a ðt0; xbÞdt0; ð5:8Þ

where Bzf
a ðt; xbÞ ≔

P
IBIðtÞfIaðxbÞ is the projection of Ba,

as defined by Eq. (4.7), onto the zero-frequency subspace.
This gives rise to a second growing contribution to the
velocity field, in addition to the one already displayed in
Eq. (4.3). The growing piece of the velocity field is then
given by

wgrow
a ðt; xbÞ ¼ 4

c2

Z
t½Caðt0; xbÞ − Bzf

a ðt0; xbÞ�dt0; ð5:9Þ

with Ca defined by Eq. (4.4). The zero-frequency modes faI
play a crucial role in the response of a fluid body to a
gravitomagnetic tidal field, giving rise to a velocity
perturbation that can be expected to grow in time. We
shall examine them in detail in Sec. VIII.

VI. SPHERICAL-HARMONIC DECOMPOSITION

The mode analysis carried out in Sec. V supplies us with
a powerful conceptual framework to analyze the perturba-
tion equation (4.6), and it provides us with an expectation
that thanks to the zero-frequency modes, the solution ζa
will contain growing terms. To make further progress, we
return to Eq. (4.6) and perform a decomposition in
spherical harmonics.
To prepare the way for this decomposition, we rely

on Sec. II of Ref. [38]—see also Sec. II of Ref. [39]—
and construct tidal potentials that form an irreducible
basis in which to decompose the driving force Ba
displayed in Eq. (4.7). We first introduce the spherical
coordinates ðr; θAÞ, with θA ¼ ðθ;ϕÞ, which are related
to the Cartesian coordinates by xa ¼ rna, with na ≔
½sin θ cosϕ; sin θ sinϕ; cos θ�. We also introduce the
spherical-harmonic functions YlmðθAÞ displayed in
Table I; these are defined to be real functions, they are
not normalized in the usual way, and the labelm describes
their dependence on ϕ. The association

Babnanb ¼
X
m

Bq
mY2;m ð6:1Þ

allows us to package the five independent components of
Bab into the five harmonic coefficients Bq

m. The super-
script q stands for “quadrupole,” and the explicit relations
between Bab and Bq

m are listed in Table II.
The pseudovector Ωa and pseudotensor Bab can be

combined to form the vector and symmetric trace-free
(STF) tensor

Ka ≔ BabΩb; Kabc ≔ BhabΩci; ð6:2Þ

TABLE I. Spherical-harmonic functions Ylm. The functions are
real, and they are listed for the relevant modes l ¼ 1 (dipole),
l ¼ 2 (quadrupole), and l ¼ 3 (octupole). The abstract index m
describes the dependence of these functions on the angle ϕ; for
example, Yl;2s is proportional to sin 2ϕ.

Y1;0 ¼ cos θ
Y1;1c ¼ sin θ cosϕ
Y1;1s ¼ sin θ sinϕ
Y2;0 ¼ 1�3cos2θ
Y2;1c ¼ 2 sin θ cos θ cosϕ
Y2;1s ¼ 2 sin θ cos θ sinϕ
Y2;2c ¼ sin2θ cos 2ϕ
Y2;2s ¼ sin2θ sin 2ϕ
Y3;0 ¼ cos θð3 − 5cos2θÞ
Y3;1c ¼ 3

2
sin θð1 − 5cos2θÞ cosϕ

Y3;1s ¼ 3
2
sin θð1 − 5cos2θÞ sinϕ

Y3;2c ¼ 3sin2θ cos θ cos 2ϕ
Y3;2s ¼ 3sin2θ cos θ sin 2ϕ
Y3;3c ¼ sin3θ cos 3ϕ
Y3;3s ¼ sin3θ sin 3ϕ
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in which the angular brackets instruct us to symmetrize all
indices and remove all traces. They can also be combined
into the STF pseudotensor

B̂ab ≔ 2ΩcϵcdðaBd
bÞ: ð6:3Þ

The associations

Kana ¼
X
m

Kd
mY1;m;

Kabcnanbnc ¼
X
m

Ko
mY3;m;

B̂abnanb ¼
X
m

B̂q
mY2;m ð6:4Þ

define the harmonic coefficients Kd
m, Ko

m, and B̂q
m, which

are given explicitly in Table II. We may note that

Kd
m ¼ λdmΩB

q
m; Ko

m ¼ λomΩB
q
m; ð6:5Þ

where the numbers λdm and λom can be extracted from the
table. The superscripts d and o stand for “dipole” and
“octupole,” respectively.
The tidal potentials are divided into scalar and vector

potentials. For our purposes here, a “scalar” is a quantity
that stays invariant under a transformation of the angular
coordinates θA, while a “vector” is a quantity that

transforms as a one-form under this transformation. The
scalar potentials can be decomposed into scalar harmonics
Ylm, but the vector potentials require the even-parity vector
harmonics

Ylm
A ≔ ∂AYlm ð6:6Þ

and the odd-parity vector harmonics

Xlm
A ≔ −ϵAB∂BYlm; ð6:7Þ

in which ϵA
B is the Levi-Cività tensor on the unit two-

sphere, with nonvanishing components ϵθ
ϕ ¼ 1= sin θ

and ϵθ
ϕ ¼ − sin θ.

We may now state the definition of the tidal potentials.
They are given by

Kd ≔
X
m

Kd
mY1;m; Kd

A ≔
X
m

Kd
mY

1;m
A ; ð6:8aÞ

Ko ≔
X
m

Ko
mY3;m; Ko

A ≔
1

3

X
m

Ko
mY

3;m
A ; ð6:8bÞ

B̂q
A ≔

1

2

X
m

B̂q
mX

2;m
A ¼ −

1

2
Ω
X
m

Bq
m∂ϕX

2;m
A ; ð6:8cÞ

and they can be used as a basis to decompose the driving
force Ba displayed in Eq. (4.7). Simple manipulations
reveal that

Br ≔ Bana ¼
1

10
r2Kd −

1

6
r2Ko; ð6:9aÞ

BA ≔ rBa∂Ana ¼
1

5
r3Kd

A −
1

6
r3Ko

A þ 1

9
r3B̂q

A: ð6:9bÞ

The vector Ca defined by Eq. (4.4) can also be decomposed
in this basis. Here we find that

Cr ≔ Cana ¼ 0; CA ≔ rCa∂Ana ¼
1

6
r3B̂q

A: ð6:10Þ

The fact that Br can be decomposed in spherical
harmonics with l ¼ 1 and l ¼ 3 implies that all scalar
perturbations can be decomposed in a similar way. And the
fact that BA can be decomposed in even-parity vector
harmonics with l ¼ ð1; 3Þ and in odd-parity harmonics
with l ¼ 2 ensures that all vector perturbations can be
decomposed in the same way. We therefore write

δp ¼ Ω
X
m

λdmpdðt; rÞY1;m þΩ
X
m

λompoðt; rÞY3;m;

ð6:11aÞ

δU ¼ Ω
X
m

λdmUdðt; rÞY1;m þΩ
X
m

λomUoðt; rÞY3;m;

ð6:11bÞ

TABLE II. Spherical-harmonic coefficients of tidal potentials.

Bq
0 ¼ 1

2
ðB11 þ B22Þ

Bq
1c ¼ B13

Bq
1s ¼ B23

Bq
2c ¼ 1

2
ðB11 − B22Þ

Bq
2s ¼ B12

Kd
0 ¼ K3 ¼ −2ΩBq

0

Kd
1c ¼ K1 ¼ ΩBq

1c

Kd
1s ¼ K2 ¼ ΩBq

1s

Ko
0 ¼ 1

2
ðK113 þK223Þ ¼ 3

5
ΩBq

0

Ko
1c ¼ 1

2
ðK111 þK122Þ ¼ − 4

15
ΩBq

1c

Ko
1s ¼ 1

2
ðK112 þK222Þ ¼ − 4

15
ΩBq

1s

Ko
2c ¼ 1

2
ðK113 −K223Þ ¼ 1

3
ΩBq

2c

Ko
2s ¼ K123 ¼ 1

3
ΩBq

2s

Ko
3c ¼ 1

4
ðK111 − 3K122Þ ¼ 0

Ko
2s ¼ 1

4
ð3K112 −K222Þ ¼ 0

B̂q
0 ¼ 1

2
ðB̂11 þ B̂22Þ ¼ 0

B̂q
1c ¼ B̂13 ¼ −ΩBq

1s

B̂q
1s ¼ B̂23 ¼ ΩBq

1c

B̂q
2c ¼ 1

2
ðB̂11 − B̂22Þ ¼ −2ΩBq

2s

B̂q
2s ¼ B̂12 ¼ 2ΩBq

2c
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ζr ¼ Ω
X
m

λdmζ
d
r ðt; rÞY1;m þΩ

X
m

λomζ
o
r ðt; rÞY3;m; ð6:11cÞ

wr ¼ Ω
X
m

λdmwd
r ðt; rÞY1;m þ Ω

X
m

λomwo
r ðt; rÞY3;m

ð6:11dÞ

as well as

ζA ¼ Ω
X
m

λdmζ
dðt; rÞY1;m

A þ 1

3
Ω
X
m

λomζ
oðt; rÞY3;m

A

−
1

2
Ω
X
m

ζ̂qðt; rÞ∂ϕX
2;m
A ; ð6:12aÞ

wA ¼ Ω
X
m

λdmwdðt; rÞY1;m
A þ 1

3
Ω
X
m

λomwoðt; rÞY3;m
A

−
1

2
Ω
X
m

ŵqðt; rÞ∂ϕX
2;m
A : ð6:12bÞ

A decomposition for δρ is not required, because the
equation of state provides a direct relation to δp. Factors
of λdm and λom are inserted within the sums over m to
simplify the resulting equations, and m labels on the
various coefficients pd;…; ŵq are omitted to keep the
notation uncluttered. As we shall see, the perturbation
equations satisfied by these quantities will all be indepen-
dent of m, except for the driving terms involving the
gravitomagnetic tidal moments Bq

m. The infrastructure put
in place here, elaborate though it may seem, produces a
substantial simplification of the resulting perturbation
equations.
We next transform Eqs. (4.3), (4.5), and (4.6) from the

Cartesian coordinates xa to the spherical coordinates
ðr; θAÞ, and substitute the decompositions in spherical
harmonics. This returns a large set of equations, with
subsets that decouple from one another. In the dipole sector
we have

0 ¼ ∂ttζ
d
r þ ∂rðpd=ρ − UdÞ þ 2

5c2
r2Bq

mðtÞ; ð6:13aÞ

0 ¼ ∂ttζ
d þ pd=ρ −Ud þ 4

5c2
r3Bq

mðtÞ; ð6:13bÞ

0 ¼ ρ∂rζ
d
r þ ðρ0 þ 2ρ=rÞζdr −

2ρ

r2
ζd −

ρ0r2

Gm
ðpd=ρÞ;

ð6:13cÞ

0 ¼ ∂rrUd þ 2

r
∂rUd −

2

r2
Ud −

4πr2ρ0

m
ðpd=ρÞ; ð6:13dÞ

wd
r ¼ ∂tζ

d
r ; wd ¼ ∂tζ

d; ð6:13eÞ

where ρ0 ≔ dρ=dr. In the octupole sector we have

0 ¼ ∂ttζ
o
r þ ∂rðpo=ρ − UoÞ − 2

3c2
r2Bq

mðtÞ; ð6:14aÞ

0 ¼ ∂ttζ
o þ 3ðpo=ρ −UoÞ − 2

3c2
r3Bq

mðtÞ; ð6:14bÞ

0 ¼ ρ∂rζ
o
r þ ðρ0 þ 2ρ=rÞζor −

4ρ

r2
ζo −

ρ0r2

Gm
ðpo=ρÞ;

ð6:14cÞ

0 ¼ ∂rrUo þ 2

r
∂rUo −

12

r2
Uo −

4πr2ρ0

m
ðpo=ρÞ; ð6:14dÞ

wo
r ¼ ∂tζ

o
r ; wo ¼ ∂tζ

o; ð6:14eÞ

and the quadrupole sector is limited to

0 ¼ ∂ttζ̂
q þ 4

9c2
r3Bq

mðtÞ; ð6:15aÞ

ŵq ¼ ∂tζ̂
q þ 2

3c2
r3
Z

t
Bq
mðt0Þdt0: ð6:15bÞ

VII. SOLUTION TO THE PERTURBATION
EQUATIONS

In this section, we integrate the perturbation equations
displayed in Eqs. (6.13), (6.14), and (6.15). For concrete-
ness and simplicity we choose a stellar model correspond-
ing to the polytropic equation of state p ¼ Kρ2, where K is
a constant. The structure equations for this model return

ρ ¼ M
4R2r

sinðπr=RÞ;

m ¼ M
π

�
sinðπr=RÞ − πr

R
cosðπr=RÞ

�
ð7:1Þ

for the density and mass functions, respectively, and

p ¼ GM2

8πR2r2
sin2ðπr=RÞ ð7:2Þ

for the pressure. The equations also returnK ¼ 2GR2=π for
the constant appearing in the equation of state.

A. Quadrupole sector

The solution to Eq. (6.15) is immediate, and actually
independent of the equation of state:

ζ̂q ¼ −
4

9c2
r3
Z

t

−∞
ðt − t0ÞBq

mðt0Þdt0: ð7:3Þ

Equation (6.15b) then gives
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ŵq ¼ 2

9c2
r3
Z

t

−∞
Bq
mðt0Þdt0; ð7:4Þ

and this represents a growing contribution to the velocity
field. Substituting this within Eq. (6.12b) and recalling
Eq. (6.8c), we find that the quadrupole term in the velocity
perturbation is given by

wl¼2
A ¼ 2

9c2
r3
Z

t

−∞
B̂q
Aðt0Þdt0; ð7:5Þ

the radial component of the velocity field vanishes.
The velocity perturbation becomes

wl¼2
a ¼ 2

9c2
ϵabcxbxd

Z
t

−∞
B̂c

dðt0Þdt0 ð7:6Þ

after conversion to Cartesian coordinates, with B̂ab defined
by Eq. (6.3). For the specific tidal environment described
by Eq. (2.7) and corresponding to a companion body of
mass M0 moving on a circular orbit of radius r0 in the
body’s equatorial plane, the quadrupole velocity field is

wl¼2
x ¼ −

GM0v0R2

3c2r03
Ω
ω0 ½ð3cos2θ − 1Þ sinΦ

þ sin2θ sinðΦ − 2ϕÞ�r2; ð7:7aÞ

wl¼2
y ¼ GM0v0R2

3c2r03
Ω
ω0 ½ð3cos2θ − 1Þ cosΦ

− sin2θ cosðΦ − 2ϕÞ�r2; ð7:7bÞ

wl¼2
z ¼ 2GM0v0R2

3c2r03
Ω
ω0 sin θ cos θ sinðΦ − ϕÞr2; ð7:7cÞ

where v0 ¼ r0ω0 is the orbital velocity, ω0 is the orbital
angular velocity of Eq. (2.8), Φ ≔ ω0t is the orbital phase,
ðθ;ϕÞ are the polar angles associated with the coordinates
xa, and r ≔ r=R. To arrive at these expressions it was
assumed that r0 varies over a radiation-reaction time scale
that is much longer than 1=ω0, and that r0 ¼ ∞ at t ¼ −∞;
this is consistent with our previous assumption that the
body begins in an unperturbed state.

B. Octupole sector

Combining Eqs. (6.14a) and (6.14b) yields ∂ttðζor−
1
3
∂rζ

oÞ ¼ 0, with the terms involving the driving force
canceling out. The vanishing initial conditions at
t ¼ −∞ imply that ζor − 1

3
∂rζ

o ¼ 0 at all times, and this
combination of perturbation quantities is therefore unable
to grow in time. While ζor and ζo could grow individually,
we assume that this does not occur. In view of Eq. (5.8),
this amounts to an assumption that the l ¼ 3 piece of
Bzf
a actually vanishes, which prevents the growth of the

octupole piece of the Lagrangian displacement vector.
This assumption will be justified in Sec. VIII.
To reflect this assumption, we make the ansatz

ζor ¼ yor ðrÞBq
mðtÞ; ζo ¼ yoðrÞBq

mðtÞ ð7:8Þ

for the Lagrangian displacement, with yor ¼ 1
3
dyo=dr, and

we write

po ¼ poðrÞBq
mðtÞ; Uo ¼ UoðrÞBq

mðtÞ ð7:9Þ

for the remaining perturbations. We neglect the time
derivatives when we make the substitutions into the
perturbation equations. Equation (6.14b) then produces

po=ρ ¼ Uo þ 2

9c2
r3; ð7:10Þ

and inserting this into Eq. (6.14d) yields

d2Uo

dr2
þ 2

r
dUo

dr
−
�
12

r2
þ 4πr2ρ0

m

�
Uo ¼ 2

9c2
4πr5ρ0

m
: ð7:11Þ

Equation (6.14c) gives rise to a second-order differential
equation for yo, which we shall not concern ourselves with,
since the physical aspects of the perturbation are com-
pletely captured by Eqs. (7.10) and (7.11).
Equation (7.11) can be solved analytically for the

polytropic model introduced previously. We require the
solution to be regular at r ¼ 0, and to match smoothly with
an external solution of the form Uo ∝ r−4 at r ¼ R. This
solution is given by

Uo ¼ −
2

9c2
r3
�
1þ 7R5

π3r7
ð2π2r2 − 5R2Þ sinðπr=RÞ

−
7R4

3π2r6
ðπ2r2 − 15R2Þ cosðπr=RÞ

�
: ð7:12Þ

The function within square brackets behaves as 1 − π4=
45þOðr2=R2Þ close to r ¼ 0, and as 5ð2π2 − 21Þ=
ð3π2Þ þOð1 − r=RÞ close to r ¼ R. Equation (7.10) then
gives

po=ρ ¼ −
2

9c2
r3
�
7R5

π3r7
ð2π2r2 − 5R2Þ sinðπr=RÞ

−
7R4

3π2r6
ðπ2r2 − 15R2Þ cosðπr=RÞ

�
: ð7:13Þ

In this expression, the function within square brackets
behaves as −π4=45þOðr2=R2Þ close to r ¼ 0, and as
7ðπ2 − 15Þ=ð3π2Þ þOð1 − r=RÞ close to r ¼ R.
It can be observed that po=ρ approaches a nonzero value

at r ¼ R; with ρðRÞ ¼ 0, this means that po itself vanishes
at the stellar surface. The correct surface condition can be
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inferred from Δρ ¼ 0 at r ¼ R, which implies
δρþ ρ0ζr ¼ 0. On the other hand, the equation of state
and the structure equations imply δp=ρ ¼ −ðGm=r2Þδρ=ρ0,
and combining these equations yields

δp
ρ

����
r¼R

¼ GM
R2

ζrðr ¼ RÞ: ð7:14Þ

Because ζr ≠ 0 at the surface, it follows that δp=ρ must be
nonvanishing as well.
Inserting Eqs. (7.12) and (7.13) into Eqs. (6.11b) and

(6.11a), respectively, and recalling Eqs. (6.4), (6.5), and
(6.8b), we find that the octupole pieces of the potential
and pressure perturbations are given by

δUl¼3 ¼ −
2

9c2
Kabcxaxbxc

×

�
1þ 7R5

π3r7
ð2π2r2 − 5R2Þ sinðπr=RÞ

−
7R4

3π2r6
ðπ2r2 − 15R2Þ cosðπr=RÞ

�
ð7:15Þ

and

δpl¼3=ρ ¼ −
2

9c2
Kabcxaxbxc

×

�
7R5

π3r7
ð2π2r2 − 5R2Þ sinðπr=RÞ

−
7R4

3π2r6
ðπ2r2 − 15R2Þ cosðπr=RÞ

�
; ð7:16Þ

where Kabc is defined by Eq. (6.2).
Our expression for δUl¼3 is used in Appendix A to

calculate the rotational-tidal Love number of the polytropic
stellar model.

C. Dipole sector

Combining Eqs. (6.13a) and (6.13b) gives

∂ttðζdr − ∂rζ
dÞ ¼ 2

c2
r2Bq

mðtÞ; ð7:17Þ

and in this case we see a nonzero driving force on the right-
hand side of the equation. This implies that ζdr − ∂rζ

d must
grow with time, and to proceed we assume that ζdr and ζd

grow individually. To reflect this, we make the ansatz

ζdr ¼ zdr ðrÞ
Z

t

−∞
ðt − t0ÞBq

mðt0Þdt0 þ ydr ðrÞBq
mðtÞ; ð7:18aÞ

ζr ¼ zdðrÞ
Z

t

−∞
ðt − t0ÞBq

mðt0Þdt0 þ ydðrÞBq
mðtÞ ð7:18bÞ

for the Lagrangian displacement vector, and

pd ¼ pdðrÞBq
mðtÞ; Ud ¼ UdðrÞBq

mðtÞ ð7:19Þ

for the remaining perturbations. The assumption leading to
Eq. (7.18) will be justified in Sec. VIII, where we show that
the dipole piece of Bzf

a does not vanish and therefore leads
to a growing displacement vector.
We insert the preceding equations into Eqs. (6.13),

neglect terms involving second derivatives of Bq
mðtÞ, and

obtain the system of equations

0 ¼ zdr −
dzd

dr
−

2

c2
r2; ð7:20aÞ

0 ¼ zd þ pd=ρ − Ud þ 4

5c2
r3; ð7:20bÞ

0 ¼ ρ
dzdr
dr

þ ðρ0 þ 2ρ=rÞzdr −
2ρ

r2
zd; ð7:20cÞ

0 ¼ d2Ud

dr2
þ 2

r
dUd

dr
−
2

r
Ud −

4πr2ρ0

m
ðpd=ρÞ ð7:20dÞ

for the radial functions zdr , zd, pd, and Ud. An equation can
also derived for yor and yo, but these variables are of no
concern to us.
Equation (7.20b) allows us to eliminate zd from the

system, and substitution into Eqs. (7.20a) and (7.20c)
produces

0 ¼ r
dzdr
dr

þ rρ0 þ 2ρ

ρ
zdr þ

2

r
ðpd=ρ − UdÞ þ 8

5c2
r2;

ð7:21aÞ

0 ¼ r
d
dr

ðpd=ρÞ þ rzdr − r
dUd

dr
þ 2

5c2
r3: ð7:21bÞ

These equations, together with Eq. (7.20d), form a closed
set of equations for zdr , pd, and Ud. These must be
integrated numerically.
To facilitate the numerical work, we introduce the new

variables e1;…; e4 defined by

zdr ¼
R2

c2
e1; pd=ρ ¼ R2

c2
re2;

Ud ¼ R2

c2
re3;

dUd

dr
¼ R2

c2
e4: ð7:22Þ

We further define the dimensionless radial variable
r ≔ r=R, density function ρ ≔ ðR3=MÞρ, and mass func-
tion m ≔ m=M. In terms of all this, we have that

zd ¼ R2

c2
re5; e5 ≔ −e2 þ e3 −

4

5
r2; ð7:23Þ

and the perturbation equations become
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re01 ¼ −
rρ0 þ 2ρ

ρ
e1 − 2e2 þ 2e3 −

8

5
r2; ð7:24aÞ

re02 ¼ −e1 − e2 þ e4 −
2

5
r2; ð7:24bÞ

re03 ¼ −e3 þ e4; ð7:24cÞ

re04 ¼
4πr4ρ0

m
e2 þ 2e3 − 2e4; ð7:24dÞ

in which a prime now indicates differentiation with respect
to r.
An examination of Eqs. (7.24) near r ¼ 0 indicates that

the functions en all tend to a nonvanishing constant at
r ¼ 0, and that they admit an expansion in powers of r2.
Furthermore, the local analysis reveals that e1ð0Þ and e3ð0Þ
are freely specifiable constants that determine all other
coefficients in the power expansions. On the other hand, an
examination of the equations near r ¼ 1 shows that except
for e1, all functions tend to a nonvanishing constant at
r ¼ 1; for e1 we must impose e1ð1Þ ¼ 0 to account for the
singular factor ρ−1 in Eq. (7.24). All functions admit an
expansion in powers of 1 − r. We also find that e01ð1Þ,
e3ð1Þ, and e4ð1Þ are freely specifiable and determine all
other coefficients in the power expansion.
A boundary condition at r ¼ 1 is required to make the

problem well posed. As we discuss in Appendix B, the
external solution for Ud must be linear in r, so that
eext3 ¼ constant. Equation (7.24c) further implies that
eext4 ¼ eext3 , and the required surface condition is therefore
that e4ð1Þ ¼ e3ð1Þ. With this, we have a total of four

boundary values that cannot be determined solely from a
local analysis near r ¼ 0 and r ¼ 1; these are e1ð0Þ, e3ð0Þ,
e01ð1Þ, and e3ð1Þ. A global integration is required to
determine all four constants, and a practical approach is
to shoot toward a middle point: We first integrate the
equations from r ¼ 0 up to a middle point r ¼ r1, then
integrate them again from r ¼ 1 down to r1, and search for
the boundary values that force the two sets of solutions to
agree with each other at r ¼ r1. A concrete implementation
of this method is described in Sec. 17.2 of Numerical
Recipes [40].
For the numerical work, we adopt the polytropic model

described by Eqs. (7.1) and (7.2). For this specific case we
have

rρ0 þ 2ρ

ρ
¼ sinðπrÞ þ ðπrÞ cosðπrÞ

sinðπrÞ ;
4πr4ρ0

m
¼ −ðπrÞ2:

ð7:25Þ
The numerical solutions for e1, e2, e3, and e5 are displayed
in Figs. 1 and 2; the solution for e4 is not shown, because it
can be obtained directly from e3 by exploiting Eq. (7.24c).
According to Eqs. (6.13e) and (7.18), we have that

wd
r ¼ zdr

Z
t

−∞
Bq
mðt0Þdt0; wd ¼ zd

Z
t

−∞
Bq
mðt0Þdt0;

ð7:26Þ
in which we neglect terms proportional to ∂tB

q
m.

Substituting this within Eqs. (6.11d) and (6.12b) and
recalling Eqs. (6.5) and (6.8a), we find that the dipole
piece of the velocity perturbation is given by

FIG. 1. Numerical solution for the functions e1 and e5 that substitute for the variables zdr and zd, respectively, plotted as functions of
r̄ ¼ r=R. The numerical error is well within the thickness of the curves.
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wl¼1
r ¼ zdr

Z
t

−∞
Kdðt0Þdt0; wl¼1

A ¼ zd
Z

t

−∞
Kd

Aðt0Þdt0:

ð7:27Þ

If we next express this in terms of the radial functions e1
and e5 by invoking Eqs. (7.22) and (7.23), and convert to
Cartesian coordinates, we get

wl¼1
a ¼ R2

c2
½e1nanb þ e5ðδab − nanbÞ�

Z
t

−∞
Kbðt0Þdt0;

ð7:28Þ
where Ka is defined by Eq. (6.2). For the specific tidal
environment provided by a companion body of mass M0
moving on a circular orbit of radius r0 in the body’s
equatorial plane, the quadrupole velocity field is

wl¼1
x ¼ 3GM0v0R2

2c2r03
Ω
ω0 fsin2θ½sinΦþ sinðΦ − 2ϕÞe1

þ ½ðcos2θ þ 1Þ sinΦ − sin2θ sinðΦ − 2ϕÞ�e5g;
ð7:29aÞ

wl¼1
y ¼ −

3GM0v0R2

2c2r03
Ω
ω0 fsin2θ½cosΦ − cosðΦ − 2ϕÞ�e1

þ ½ðcos2θ þ 1Þ cosΦþ sin2θ sinðΦ − 2ϕÞ�e5g;
ð7:29bÞ

wl¼1
z ¼ 3GM0v0R2

c2r03
Ω
ω0 sin θ cos θ sinðΦ − ϕÞðe1 − e5Þ;

ð7:29cÞ

where v0 ¼ r0ω0 is the orbital velocity, ω0 is the orbital
angular velocity of Eq. (2.8), Φ ≔ ω0t is the orbital phase,
and ðθ;ϕÞ are the polar angles associated with the coor-
dinates xa.
A calculation similar to the one leading to Eq. (7.28)

reveals that the dipole pieces of the pressure and potential
perturbations are given by

δpl¼1=ρ ¼ R2

c2
e2Kaxa; δUl¼1 ¼ R2

c2
e3Kaxa: ð7:30Þ

In Appendix C we construct the dipole piece of the
acceleration field, and verify that its mass-weighted
average gives a vanishing acceleration for the body’s center
of mass.

VIII. ZERO-FREQUENCY MODES

In this section, we examine the zero-frequency modes faI
introduced in Sec. V, and show that they are directly
responsible for the velocity fields displayed in Eqs. (7.6)
and (7.28). The completion of the mode analysis initiated in
Sec. V provides a complete justification of the assumptions
made in Sec. VII concerning the form of solution to the
perturbation equations in the dipole and octupole sectors.
As in the rest of the paper, we assume that the fluid is
barotropic, with the perturbed fluid possessing the same
equation of state as the unperturbed fluid. In this case, it is
known (see Ref. [41] for a clear presentation) that the zero-
frequency modes separate into even-parity g-modes and
odd-parity r-modes. (The g-modes do not exist when the
perturbed fluid possesses a distinct equation of state.)

FIG. 2. Numerical solution for the functions e2 and e3 that substitute for the variables pd and Ud, respectively, plotted as functions of
r̄ ¼ r=R. The numerical error is well within the thickness of the curves.
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A. Mode equation

Returning to the notation introduced in Sec. V, the zero-
frequency modes satisfyLa

bfb ≡ −Pa ¼ 0, which takes the
explicit form displayed in Eq. (3.7). Writing the equation in
spherical coordinates ðr; θ;ϕÞ, we see that the angular
components reduce to δp − ρδU ¼ 0, and that the radial
component, simplified with the structure equations (3.2),
merely reproduces δp ¼ ðdp=dρÞδρ. Inserting these rela-
tions into Eq (3.12) produces ∇2δU − ð4πr2ρ0=mÞδU ¼ 0,
and it is not difficult to show that the general solution to this
equation cannot be smoothly matched to an external solution
that is required to decay with increasing r. One way to
establish this is to perform a decomposition in spherical
harmonics; observe that each δUlmðrÞ satisfies a homo-
geneous equation, that the solution regular at r ¼ 0 comes
with a single integration constant (an overall multiplicative
factor), and that this single constant is insufficient to match
both δUlmðrÞ and its first derivative to the external solution
δUlm ∝ r−lþ1 at r ¼ R.
The conclusion is that the zero-frequency modes describe

a perturbation with δρ ¼ δp ¼ δU ¼ 0. Equation (4.5) then
implies that the mode functions are constrained by

∂aðρfaÞ ¼ 0: ð8:1Þ

A displacement vector ζa ¼ fa would describe an entirely
trivial perturbation with vanishing δρ, δp, δU, and δva.
But the displacement vector ζa ¼ fat also satisfies
∂ttζa − Pa ¼ 0, and it does give rise to a nontrivial velocity
field δva ¼ ∂tζa ¼ fa. A zero-frequency perturbation is
therefore a velocity field constrained by Eq. (8.1).

B. Basis of zero-frequency modes

We transform Eq. (8.1) to spherical coordinates ðr; θAÞ
and consider solutions of the factorized form

fr ¼ flmr Ylm; fA ¼ flmYlm
A ð8:2Þ

for the even-parity g-modes, and

fr ¼ 0; fA ¼ f̂lmXlm
A ð8:3Þ

for the odd-parity r-modes, where Ylm, Ylm
A , and Xlm

A are
the spherical harmonics introduced in Sec. VI; the func-
tions flmr , flm, and f̂lm depend on r only. Making the
substitutions in Eq. (8.1) reveals that the g-mode functions
are constrained by

lðlþ 1Þρflm ¼ d
dr

ðr2ρflmr Þ; ð8:4Þ

so that flm is determined once flmr is specified. The
exercise further reveals that the r-mode function is com-
pletely unconstrained. The zero-frequency modes are

therefore characterized by two freely specifiable functions,
flmr and f̂lm. We have two infinitely degenerate sets of
modes.
Two g-modes, a and b, which share the same values of l

and m, have a scalar product defined by

ha; bi ≔
Z

ρa · bd3x

¼ Nlm

�Z
R

0

ρalmr blmr r2drþ lðlþ 1Þ

×
Z

R

0

ρalmblmdr

�
; ð8:5Þ

where Nlm ≔
R ðYlmÞ2 sin θdθdϕ; modes with different

values of either l orm are orthogonal. Similarly, r-modes p
and q have the scalar product

hp; qi ¼ lðlþ 1ÞNlm

Z
ρp̂lmq̂lmdr ð8:6Þ

when they share the same values of l and m. All g-modes
are orthogonal to all r-modes.
We wish to construct a basis of orthogonal modes,

labeled by k ¼ 0; 1; 2;… in addition to the spherical-
harmonic labels lm; the complete mode label is therefore
I ≔ lmk. The procedure is simple, and we describe it in
detail in the case of g-modes. We begin with a set of seed
modes ak characterized by a freely specified almk

r and an
almk determined by Eq. (8.4). These modes are not
mutually orthogonal, but they can be turned into a set of
orthogonal modes by implementing a Gram-Schmidt pro-
cedure. We first set f 0 ¼ a0, and then set

flmk
r ¼ almk

r −
Xk−1
n¼0

hf n; aki
hf n; f ni a

lmn
r ð8:7Þ

for each successive k, with flmk determined at each stage
by Eq. (8.4).
The overlap integrals of Eq. (5.5) can now be evaluated.

Again we describe the procedure in detail in the case of g-
modes. The components of the external force B are
expanded in spherical harmonics according to

Br ¼
X
lm

Blm
r Ylm; BA ¼

X
lm

BlmYlm
A þ

X
lm

B̂lmXlm
A ;

ð8:8Þ

and Eq. (5.5) turns into the explicit form

Blmk ¼ Nlm

hf k; f ki
�Z

R

0

ρBlm
r flmk

r r2drþ lðlþ 1Þ

×
Z

R

0

ρBlmflmkdr

�
ð8:9Þ
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for the mode amplitudes BI . This can be simplified by
inserting Eq. (8.4) within the second integral and integrat-
ing by parts; we arrive at

Blmk ¼ Nlm

hf k; f ki
Z

R

0

ρ

�
Blm
r −

dBlm

dr

�
flmk
r r2dr: ð8:10Þ

With this, the components of Bzf defined below Eq. (5.9)
are given by

Bzf
r ¼

X
lmk

Blmkflmk
r Ylm; Bzf

A ¼
X
lmk

BlmkflmkYlm
A ;

ð8:11Þ

and these are then ready to be inserted within Eq. (5.9) to
obtain the growing piece of the velocity perturbation.

C. Quadrupole sector

According to Eq. (6.9), the quadrupole piece of the
driving force B has the nonvanishing components

Bl¼2
A ¼ 1

9
r3B̂q

A; ð8:12Þ

and these admit a decomposition in odd-parity harmonics
X2;m
A with coefficients B̂2;m. Because the r-modes are uncon-

strained, we have the freedom to assign f̂2;m;0 ¼ B̂2;m. And
because all other members of the basis of modes are
orthogonal to the zeroth member, we immediately find that

Bl¼2
zf ¼ Bl¼2: ð8:13Þ

The growing solution of Eq. (5.8) can then be seen to give
rise to the velocity field of Eq. (7.5). In this specific case the
mode analysis is entirely trivial and merely reproduces our
previous results.

D. Octupole sector

Returning to Eq. (6.9), we see that the octupole piece of
the driving force has the components

Bl¼3
r ¼ −

1

6
r2Ko; Bl¼3

A ¼ −
1

6
r3Ko

A; ð8:14Þ

which admit a decomposition in even-parity harmonics
Y3;m and Y3;m

A with coefficients B3;m
r ¼ − 1

6
r2Ko

m and
B3;m ¼ − 1

18
r3Ko

m, respectively. These are related by

B3;m
r −

dB3;m

dr
¼ 0; ð8:15Þ

and Eq. (8.10) implies that all mode amplitudes B3;m;k

necessarily vanish. In this case we have that

Bl¼3
zf ¼ 0; ð8:16Þ

and this justifies the assumption made at the beginning of
Sec. VII B, that the octupole piece of the velocity field does
not possess a growing term.

E. Dipole sector

Returning once more to Eq. (6.9), we see that the dipole
piece of the driving force has the components

Bl¼1
r ¼ 1

10
r2Kd; Bl¼1

A ¼ 1

5
r3Kd

A; ð8:17Þ

which admit a decomposition in even-parity harmonics
with coefficients B1;m

r ¼ 1
10
r2Kd

m and B1;m ¼ 1
5
r3Kd

m,
respectively. We choose the mode functions to be inde-
pendent of m, denote them fkr and fk to simplify the
notation (with the label l ¼ 1 omitted), and find that in this
case, the mode amplitudes are given by

B1;m;k ¼ −
1

2
Kd

mΓk; ð8:18Þ

where

Γk ≔
N1;m

hf k; f ki
Z

R

0

ρr4fkrdr; ð8:19Þ

these quantities are independent of m by virtue of the
definition of the scalar product in Eq. (8.5). With this, we
have that

Bzf
r ¼ −

1

2
Kd

X
k

Γkfkr; Bzf
A ¼ −

1

2
Kd

A

X
k

Γkfk; ð8:20Þ

and substitution into Eq. (5.9) produces the velocity field
of Eq. (7.27), with zdr ¼ ð2=c2ÞPkΓkfkr and zd ¼
ð2=c2ÞPkΓkfk. With the definitions of Eqs. (7.22) and
(7.23), this is

e1 ¼
2

R2

X
k

Γkfkr; re5 ¼
2

R2

X
k

Γkfk: ð8:21Þ

At this stage we have justified the assumption made at
the beginning of Sec. VII C, that the dipole piece of the
velocity field possesses a growing term. In addition, the
mode equation (8.4) implies that e1 and e5 are related by
2rρe5 ¼ ðr2ρe1Þ0, with a prime indicating differentiation
with respect to r. This relation can also be derived on the
basis of Eq. (7.24), and we see that the mode analysis is
entirely compatible with the developments of Sec. VII C.
We have yet to verify that the e1 constructed here is

precisely equal to the e1 obtained in Sec. VII C. For this, we
must introduce an actual set of modes f k, calculate the
overlap integrals Γk, and carry out the sum over modes.
To accomplish this, we adopt
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akr ¼ cos

�
1

2
ð2kþ 1Þπr=R

�
; k ¼ 0; 1; 2;… ð8:22Þ

as a convenient set of seed modes, with the corresponding
ak determined by Eq. (8.4). These mode functions are
chosen so that akr vanishes at r ¼ R, as required by the
mode equation in view of the fact that ρ vanishes at the
surface, that it tends to a nonvanishing constant at r ¼ 0, as
required of a dipolar vector field, and that its derivative with
respect to r vanishes at r ¼ 0, as expected of e1ðrÞ. We feed
the seed modes into the Gram-Schmidt machine, using the
density function of Eq. (7.1) to evaluate the integrals, and
obtain a set of orthogonal modes f k. These, finally, are
involved in the computation of Γk and the mode sum
of Eq. (8.21).
At the end of this computation, we find that indeed, the

e1 of Eq. (8.21) agrees with the e1 displayed in Fig. 1; the
comparison is shown in Fig. 3. The mode sum converges
rapidly when r=R≳ 0.2; in this range a handful of terms
suffice to produce a curve that is visually identical to the
one shown in Fig. 1. The sum converges much more slowly
when r is small; we find that at least 30 terms are required
to adequately reproduce the curve near the smallest values
of r displayed in Fig. 1.

F. Conclusion

We have shown that the zero-frequency modes are
directly responsible for the velocity fields displayed in
Eqs. (7.6) and (7.28). These modes, therefore, play a crucial
role in the gravitomagnetic tidal response of a rotating

body. Zero-frequency modes, however, are typically not
involved in the response of a Newtonian fluid driven by an
external force, and they are rarely given consideration.
The reason is that in the typical case, the external force Ba
is the gradient of a scalar potential, Ba ¼ ∂aψ , and this
guarantees that the corresponding mode amplitudes BI
vanish:

NIBI ¼
Z
V
ρf I · ∇ψd3x ¼

I
S
ρψf I · da

−
Z
V
ψ∇ · ðρf IÞd3x ¼ 0: ð8:23Þ

The integration domain V, bounded by the surface S, is
chosen to extend slightly beyond the body, which ensures
that ρ always vanishes on S; the second volume integral
vanishes by virtue of Eq. (8.1). The zero-frequency modes
are involved in the gravitomagnetic tidal response of a
rotating body because in this case, the driving force Ba is
not a gradient vector field.
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FIG. 3. Mode-sum representation of e1 compared with the result displayed in Fig. 1. The curve obtained by numerical intergation in
Sec. VII C is shown in solid red. A construction of e1 involving 10 terms in the mode sum is shown in short dashed blue. A construction
involving 30 terms is shown in long dashed green. The plot focuses on the interval 0 < r=R < 0.2; the curves are indistinguishable
beyond this interval.
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APPENDIX A: OCTUPOLE ROTATIONAL-TIDAL
LOVE NUMBER

The octupole rotational-tidal Love number Ko was
introduced in Secs. III and IV of Ref. [39]. As explained
there, the Love number provides a (partial) description of
the body’s gravitational response to the coupled rotational
and gravitomagnetic tidal perturbations. For our purposes
here, the Love number is defined by their Eq. (4.4), in
which the external metric of a slowly rotating, tidally
deformed body is presented in the Regge-Wheeler gauge.
The relevant term in gtt is

δgl¼3
tt ¼ −

8G
c6

�
2GM
c2r

�
4

KoShaBbcinanbnc; ðA1Þ

in which we have replaced χa with Sa=M2, where Sa is the
body’s spin angular momentum; restored factors of G and
c; and neglected all higher post-Newtonian corrections.
This result can be expressed as

δUl¼3
eff ¼ −

4G
c4

�
2GM
c2r

�
4

KoShaBbcinanbnc ðA2Þ

if we introduce an effective gravitational potential via
gtt ¼ −1þ 2Ueff=c2. In our post-Newtonian treatment,
the body’s spin Sa is related to its angular velocity Ωa

through the moment of inertia I, given by

I ¼ 8π

3

Z
ρr4dr: ðA3Þ

The relation is Sa ¼ IΩa, and making the substitution in
Eq. (A2) yields

δUl¼3
eff ¼ −

2

c2

�
2GM
c2

�
5 I
MR2

Ko R
2

r4
Kabcnanbnc; ðA4Þ

with Kabc defined by Eq. (6.2).
This external expression for the octupole gravitational

perturbation must be matched to the internal expression of
Eq. (7.15) at r ¼ R, and this provides the value ofKo for the
polytropic model considered in this work. In this case, the
moment of inertia evaluates to I=ðMR2Þ ¼ 2ðπ2 − 6Þ=ð3π2Þ,
and we arrive at

Ko ¼ −ko
�

c2R
2GM

�
5

;

ko ¼ 5

18

21 − 2π2

π2 − 6
≃ 9.0505 × 10−2: ðA5Þ

Making the substitution in Eq. (A2) gives

δUl¼3
eff ¼ 2ko

c2
R5

r4
ŜhaBbcinanbnc; ðA6Þ

where Ŝa ≔ Sa=M is the body’s spin per unit mass. The
expression reveals that the body’s response to a coupled
rotational and gravitomagnetic tidal perturbation is a post-
Newtonian effect that scales with R5.

APPENDIX B: EXTERNAL DIPOLE

In this appendix, we justify the boundary condition
e4ð1Þ ¼ e3ð1Þ imposed in Sec. VII C to integrate the
perturbation equations in the dipole sector. The condition
derives from the statement that in the body’s exterior,
Ud ∝ r: the dipole piece of δU grows linearly with the
distance to the body’s center of mass. We note first that the
external perturbation satisfies

r2
d2Ud

dr2
þ 2r

dUd

dr
− 2Ud ¼ 0; ðB1Þ

with the linearly independent solutions Ud ∝ r and
Ud ∝ 1=r2. Our boundary condition states that we must
keep the growing solution and reject the decaying solution.
The justification of this statement comes from an

examination of the external metric of a slowly rotating
body subjected to a gravitomagnetic tidal field. This metric
is presented to all post-Newtonian order in Ref. [39], and
the first post-Newtonian approximation of the relevant
component gtt is displayed in Eq. (8.17a) of Ref. [38].
We have

δgl¼1
tt ¼ 2

c4
BabŜ

bxa; ðB2Þ

where Ŝb ≔ Sb=M is the body’s spin angular momentum
per unit mass. (This expression was derived in Ref. [38] for
the specific case of a black hole, but at first post-Newtonian
order it applies equally well to any material body.) As
explained in detail in Ref. [38], this growing term is
intimately tied to the fact that the body does not follow
a geodesic in the external spacetime of the remote objects
responsible for the tidal field, but is in fact accelerated in
this spacetime; its acceleration vector—the acceleration of
the body’s local frame relative to the global, barycentric
frame—is given by −BabŜ

b=c2, a form of the well-known
Mathisson-Papapetrou spin force, which gives rise to the
spin-orbit and spin-spin acceleration of a rotating body (see
Sec. 9.5 of Gravity [32]).
Defining an effective gravitational potential as in

Appendix A, the preceding discussion implies that this
potential possesses a dipole perturbation

δUl¼1
eff ¼ 1

c2
BabŜ

bxa ðB3Þ

in the body’s exterior. As we have seen, this growing term
is tied to the failure of the body to move on a geodesic in the
external spacetime of the remote objects. On the other
hand, the absence of a decaying term is tied to the definition
of the body’s center of mass. In an analogous Newtonian
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discussion, a multipole expansion of the potential would
normally contain a decaying dipole term of the form
Gpaxa=r3, with pa ¼ R

ρxad3x representing the mass
dipole moment. But such a term is eliminated with a
judicious choice of center of mass, which enforces pa ¼ 0.
In the relativistic setting considered here, the choice of
center of mass is made implicitly by demanding the
absence of a decaying term in δUl¼1

eff .
InsertingSa ¼ IΩa into Eq. (B3)—refer toAppendixA—

and incorporating the definition of Eq. (6.2), we find that

δUl¼1
eff ¼ I

Mc2
Kaxa: ðB4Þ

Comparison with the expression of Eq. (7.30) implies that
e3 ¼ I=ðMR2Þ in the body’s exterior. We have therefore
arrived at the appropriate surface condition for the internal e3.
For the polytropic model adopted in the main text,

the moment of inertia evaluates to I=ðMR2Þ ¼ 2ðπ2 − 6Þ=
ð3π2Þ≃ 0.26138193210. The numerical search described
in Sec. VII C returned e3ð1Þ≃ 0.26138193211 for the
same quantity. The relative numerical error is of the order
of 10−10, in line with the expectations placed on the code.

APPENDIX C: ACCELERATION OF THE
CENTER OF MASS

The dipole velocity field of Eq. (7.28) gives rise to the
acceleration field

al¼1
a ≔ ∂twl¼1

a ¼ R2

c2
½e1nanb þ e5ðδab − nanbÞ�Kb: ðC1Þ

We aim to prove that this yields a vanishing acceleration for
the body’s center of mass,

aCMa ¼ 1

M

Z
ρal¼1

a d3x: ðC2Þ

We begin by making the substitution and carrying out
the angular integrals, using the identity ð4πÞ−1 R nanb

sin θdθdϕ ¼ 1
3
δa

b. This returns

aCMa ¼ 4π

3

R2

c2
Ka

Z
1

0

ρðe1 þ 2e5Þr2dr; ðC3Þ

in which ρ ≔ R3ρ=M and r ≔ r=R. The definition of e5 in
Eq. (7.23) and the differential equation (7.24a) imply that
the integrand is

ρðe1 þ 2e5Þr2 ¼ ðr3ρe1Þ0; ðC4Þ

in which a prime indicates differentiation with respect to r.
Integration is immediate, and the vanishing of ρ at r ¼ 1
guarantees that

aCMa ¼ 0: ðC5Þ
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