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Hear and attend and listen; for this befell and behappened and became and was, O my Best
Beloved, when the Tame animals were wild. The Dog was wild, and the Horse was wild, and

the Cow was wild, and the Sheep was wild, and the Pig was wild—as wild as wild could
be—and they walked in the Wet Wild Woods by their wild lones. But the wildest of all the wild

animals was the Cat. He walked by himself, and all places were alike to him.

R. Kipling.
The Cat that Walked by Himself
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Chapter 1

Introduction

Notre résultat principal est la construction d’un diagramme associé à toute connexion algébrique
sur un fibré vectoriel sur un ouvert de Zariski de la sphère de Riemann, ainsi que d’une preuve
que ce diagramme est invariant sous l’action du groupe des automorphismes symplectiques de
l’algèbre de Weyl, comprenant la transformation de Fourier-Laplace. En général, ceci change
le rang des fibrés et le nombre de pôles. En particulier, l’invariance du diagramme entraîne
l’égalité des dimensions des espaces de modules correspondants.

1.1 Contexte et motivations

1.1.1 Variétés de caractères (sauvages) et systèmes intégrables

La motivation principale pour développer une théorie des “diagrammes de Dynkin” associés à
des espaces de modules de connexions est la perpective d’une classification des espaces de Hodge
non-abéliens ([22] Defn. 7). Ce sont des variétés hyperkähleriennes (complètes) associées à
des surfaces de Riemann compactes, avec des données de singularité spécifiées à certains points
marqués. Leur construction générale [10] étend la construction [59, 47] dans le cas compact (sans
singularités), ainsi que [95, 66, 77] dans le cas modéré (avec des pôles simples). La théorie de
Hodge non-abélienne et la correspondence de Riemann-Hilbert entraînent le fait remarquable que
ces espaces de modules analytiques constituent des espaces de modules pour trois types d’objets
algébriques ou topologiques. Le premier côté est le côté des fibrés de Higgs (irréguliers), appelé
le côté de Dolbeault. Le second est le côté des connexions (irrégulières), connu comme celui
de de Rham. Enfin, le troisième côté, de nature topologique, est celui des représentations du
groupe fondamental, appelé le côté de Betti, ainsi que sa généralisation aux représentations de
Stokes.

La correspondence de Hodge non-abélienne [10, 90] (reposant sur les travaux de Hitchin,
Donaldson, Corlette et Simpson [59, 42, 33, 96] dans le cas compact, ainsi que Simpson, Bi-
quard, Konno, Nakajima [95, 9, 66, 77] dans le cas modéré) implique que les espaces de modules
de Dolbeault MDol et de de Rham MdR sont difféomorphes. Ils possèdent une structure hy-
perkählerienne, provenant du fait que ces espaces de modules sont isomorphes aux espaces de
modules M des solutions des équations de Yang-Mills autoduales en deux dimensions (souvent
appelées équations de Hitchin). Au sein de la sphère des structures complexes de la variété
hyperkählerienne M, il y a deux choix préférés qui correspondent aux espaces MDol et MdR

respectivement.
Par ailleurs, la correspondance de Riemann-Hilbert [38] et son extension au cas irrégulier

[69] entraînent que l’espace de modules de de RhamMdR et l’espace de modules de BettiMB

sont difféomorphes. Cela mène à la situation générale suivante:
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(Σ,a,Θ, C)
surface de Riemann sauvage
et classes de conjugaison

M
espace de Hodge non-abélien

MDol

MdR

MB

où les trois applications à droite sont des difféomorphismes. L’espace de Hodge non-abélien
M dépend du choix d’une courbe algébrique complexe lisse de base Σ, avec des points marqués
a et des données de singularité (Θ,C) qui encodent le type de singularités de la connexion.

Plus précisément, la classe irrégulière Θ encode le rang des fibrés vectoriels et les facteurs
exponentiels intervenant dans les sections horizontales de la connexion au voisinage de chaque
singularité, tandis que C est la collection des classes de conjugaison des monodromies formelles
aux points singuliers (voir §3.1 pour les détails). D’un point de vue de théorie des déformations,
il est naturel de voir le triplet Σ = (Σ,a,Θ) comme une généralisation d’une surface de Riemann
avec des points marqués; il s’agit d’une surface de Riemann sauvage au sens de [21, 25].

Le point de vue le plus simple est celui de Betti, et c’est celui que nous allons adopter dans
cette thèse. Les espaces de modules de Betti sont des variétés algébriques symplectiques de
dimension finie, et peuvent être décrites par une présentation explicite. Lorsque la courbe est
compacte, de telle sorte qu’il n’y a pas de singularités, les espaces de modules de Betti sont
les variétés de caractères habituelles, c’est-à-dire les espaces de modules de représentations du
groupe fondamental de la surface:

MB = Hom(π1(Σ), G)/G ∼= {A1, B1, . . . , Ag, Bg ∈ G, [A1, B1] · · · [Ag, Bg] = 1}/G,

où g est le genre de Σ, et G = GLn(C), n correspondant au rang de la connexion, et
[A,B] = ABA−1B−1 désigne le commutateur multiplicatif. Le cas où la courbe de base n’est
pas compacte, par exemple lorsque Σ = P1r{a1, . . . , am} est un ouvert de Zariski de la sphère de
Riemann, correspond à des connexions ayant des singularités. Lorsque toutes les singularités sont
régulières, il découle de la correspondance de Riemann-Hilbert qu’une connexion à singularités
régulières peut être reconstruite à partir de ses monodromies autour de ses points singuliers, de
telle sorte que l’espace de modules de Betti est donné par

MB
∼= {(M1, . . . ,Mr) ∈ C1 × · · · × Cr, Mr . . .M1 = 1}/G,

où C1, . . . , Cr ⊂ G sont des classes de conjugaison dans G.
Lorsque r = 3 et que les matrices sont de taille 2, la situation correspond à l’équation

hypergéométrique de Gauss, et l’espace de modules est réduit à un point. L’exemple le plus
simple où l’espace de modules est de dimension strictement positive, apparaît pour r = 4 et des
matrices de taille 2: l’espace de modules est de dimension complexe 2 et la situation correspond
à l’équation de Heun (déformée) apparaissant dans la représentation standard de l’équation de
Painlevé VI.

Cependant, lorsque les singularités sont irrégulières, la représentation de monodromie ne
suffit plus à reconstruire la connexion. À cause du phénomène de Stokes, il y a des données
topologiques supplémentaires à extraire: la raison principale est que les développements asymp-
totiques des sections horizontales des solutions de la connexion sont seulement valables dans
certains secteurs angulaires autour d’une singularité irrégulière, et peuvent sauter de façon dis-
continue lorsqu’on traverse certaines directions particulières.
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Une présentation explicite de l’espace de module de Betti peut néanmoins encore être donnée
[21, 25]. Elle fait intervenir des matrices de Stokes qui rendent compte du passage d’un secteur
au suivant. Si de nouveau la courbe de base est Σ = P1 r {a1, . . . , am}, cette présentation
explicite est de la forme

MB
∼= {(C, h,S) | (C−1

1 h1S
(1)
k1
. . . S

(1)
1 C1) . . . (C−1

m hmS
(m)
km

. . . S
(m)
1 Cm) = 1}/G×H,

où Ci ∈ G, h−1
i est dans la classe de conjugaison Ci de la monodromie formelle en ai, H =

H1×· · ·×Hm, avec Hj un sous-groupe réductif de G, et les matrices de Stokes S(j)
i appartiennent

à certains sous-groupes unipotents de G, les sous-groupes de Stokes (voir §3.2 pour les détails).
De telles présentations sont connues depuis les travaux de Birkhoff [11] au début du XXième
siècle. Ces espaces de modules de Betti irréguliers sont connus aujourd’hui sous le nom de
variétés de caractères sauvages (voir [21, 25] où elles sont construites comme variétés algébriques
symplectiques, parallèlement aux constructions analytiques précédentes [13, 10], et étendant les
premières constructions algébriques [101, 16, 18] à des cas plus généraux). On obtient de cette
manière une vaste famille d’espaces de modules associés à une surface de Riemann munie de
données de singularités.

Il s’avère que, quand Σ est une sphère de Riemann, il y a de nombreux exemples de surfaces
de Riemann sauvages différentes, correspondant à des connexions avec des rangs différents,
des nombres de singularités différents et des singularités d’ordre différents, donnant lieu à des
espaces de modules isomorphes. En particulier, un espace de modules provenant d’une connexion
à singularités régulières peut être isomorphe à un espace de modules provenant d’un espace de
modules à singularités irrégulières.

On peut dès lors voir les surfaces de Riemann sauvages donnant des espaces de modules
isomorphes comme des “réalisations” ou “représentations” différentes de la même variété al-
gébrique affine symplectiqueMB. Cela soulève naturellement la question suivante [23], qui est
la motivation principale de ce travail :

Question Peut-on décrire toutes les représentations d’une même variété de caractères sauvage
(abstraite)MB ? Étant données deux surfaces de Riemann sauvages, existe-t-il un moyen direct
de savoir si elles correspondent à des espaces de modules isomorphes ?

Une motivation supplémentaire pour s’intéresser à cette question provient du fait que les
variétés de caractères sauvages ont des liens étroits avec de nombreuses équations différentielles
non-linéaires, et systèmes intégrables. Du côté de Dolbeault, les espaces de modules de fibrés
de Higgs méromorphes sont des systèmes intégrables algébriques [27, 71], correspondant aux
systèmes de Hitchin dans le cas des surfaces de genre supérieur sans pôles, ainsi que de nombreux
systèmes intégrables classiques en genre zéro avec des pôles, le plus souvent irréguliers [1, 2, 8,
40, 51, 88], sont obtenus de cette façon.

Par ailleurs, la théorie des déformations isomonodromiques engendre des équations différen-
tielles non-linéaires à partir des espaces de de Rham. L’idée de base est que les surfaces de
Riemann sauvages viennent en famille: on peut faire varier le module de Σ et les positions des
singularités, mais aussi les paramètres définissant la classe irrégulière Θ.

Si Σ→ B est une famille de surfaces de Riemann sauvages sur une base B de déformations
admissibles, on obtient une famille M → B d’espaces de modules sur la base B, où la fibre
au dessus de b ∈ B est l’espace de modules MdR(Σb), où Σb désigne la surface de Riemann
sauvage au-dessus de b. Lorsque b varie dans B, faire varier les connexions dans MdR(Σb)
de telle sorte que les monodromies généralisées restent constantes fournit une connexion plate
d’Ehresmann (complète) sur M, la connexion d’isomonodromie [13]. Si on l’écrit de façon
explicite en coordonnées, la connexion d’isomonodromie correspond à un système d’équations
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différentielles non linéaires. Du point de vue de Betti, cela revient au fait que les variétés de
caractères sauvages forment un “système local de variétés” au-dessus de B [21].

De nombreuses équations différentielles non linéaires bien connues apparaissent de cette
façon, notamment les équations de Painlevé [93, 50, 62, 60], qui correspondent à des espaces de
modules de dimension 2, ainsi que bien d’autres équations différentielles étudiées par les physi-
ciens (par exemple [61]). Une représentation de MB correspond à un choix de représentation
de Lax (ou “linéarisation”) du système d’équations différentielles non-linéaires.

Dans l’étude des sytèmes intégrables, il arrive très souvent qu’un système donné possède
plusieurs représentations de Lax. Des transformations comme les transformations de Bäcklund
permettent de passer d’une représentation de Lax à une autre. Ainsi, on peut voir la question de
la classification des variétés de caractères sauvages comme recouvrant celle de la classification
des sytèmes intégrables provenant des sytèmes de Hitchin méromorphes et des déformations
isomonodromiques, la question de trouver toutes les réalisations d’un espace de modules donné
revenant à trouver toutes les représentations de Lax du système intégrable correspondant.

Les espaces de modules de fibrés de Higgs méromorphes apparaissent aussi dans divers con-
textes liés à la physique des hautes énergies: par exemple Seiberg-Witten [94] ont relié des
théories de super Yang-Mills N = 2 à des systèmes intégrables algébriques, et la majorité des
exemples sont reliés à des fibrés de Higgs méromorphes [41, 27, 71, 72, 4]. Des extension ré-
centes [48, 49, 79, 102] de cette histoire retrouvent de façon conjecturale des cas supplémentaires
des variétés hyperkähler complètes construites dans [10], comme leurs branches de Coulomb
compactifiées sur un cercle. D’autres exemples incluent les monopôles périodiques [32, 31] via
la transformation de Nahm, L’approche de Witten pour Langlands géométrique [100] et les
solutions de cordes complexes (“voidons”) des équations de Yang-Mills autoduales dans [29].

1.1.2 Liens avec les carquois, graphes et diagrammes

Il s’avère que, de façon remarquable, dans certains cas il semble y avoir une manière élégante
de paramétriser les données déterminant un espace de module de connexions en termes d’un
graphe (c’est-à-dire d’un carquois doublé), et ces liens fournissent un éclairage sur la question
de la classification.

Rappelons qu’un graphe fini, d’ensemble de sommets N (sans boucles) détermine une matrice
de Cartan (Kac-Moody) par

Cij = 2−Bij
où i, j ∈ N et Bij = Bji est le nombre d’arêtes entre les sommets i, j.

La question principale est de trouver une application des données de singularités vers de
telles données de Cartan :

Question Étant donnée une connexion méromorphe sur la sphère de Riemann, peut-on définir
de façon uniforme un graphe Γ et un vecteur dimension d ∈ NN tels que la variété de caractère
sauvageMB déterminée par (E,∇) a pour dimension

dim(MB) = 2− (d,d)

où ( , ) est la forme bilinéaire symétrique déterminée par la matrice de Cartan de Γ ?

Avant d’énoncer nos résultats principaux, commençons par rappeler brièvement les choses
déjà connues.

Les groupes de Weyl affines d’Okamoto Les exemples les plus simples d’espaces de Hodge
non-abéliens sont les surfaces H3 [23], c’est-à-dire ceux de dimension 2 (analogues non-compacts
des surfaces K3). Certaines de ces surfaces sont reliées aux équations de Painlevé : l’espace de
module de de Rham est isomorphe aux “espaces de conditions initiales” de l’équation de Painlevé
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numéro ordre des pôles groupe de Weyl affine nombre de paramètres
VI 1 + 1 + 1 + 1 D4 4
V 2 + 1 + 1 A3 3
IV 3 + 1 A2 2
III 2 + 2 B2 2
II 4 A1 1
I 4̃ - 0

Figure 1.1: Représentations standard et symétries des équations de Painlevé, cf. [86].

correspondante, construit explicitement par Okamoto [82, 84, 83, 85, 80]. Okamoto a montré que
chacune des six équations de Painlevé admet un groupe de Weyl affine de symétries. Par ailleurs,
chaque équation de Painlevé est un système d’isomonodromie pour une connexion linéaire sur
la sphère de Riemann, de plusieurs manières différentes. Des choix de telles connexions linéaires
ont été trouvés par R. Fuchs [46] et R. Garnier [50], puis réécrits sous forme matricielle par
Schlesinger [93] and Jimbo-Miwa [61].

Les données de singularité de ces représentations de Lax standard pour chaque équation de
Painlevé sont résumées dans le tableau 1.1 (elles correspondent toutes à des connexions sur le
fibré vectoriel trivial de rang 2 sur la sphère de Riemann).

Cela fournit une application de certains exemples de données de singularités vers des groupes
de Weyl affines. L’application cherchée entre données de singularité et données de Cartan devrait
étendre cette application (en notant que toute matrice de Cartan détermine un group de Weyl).

Observons que dim(MB) = 2 entraîne (d,d) = 0 c’est-à-dire que d est isotrope, comme c’est
le cas pour toute racine imaginaire d’une algèbre de Kac-Moody affine. Les vecteurs dimension
correspondant aux surfaces H3 vont en effet être des racines imaginaires minimales.

À noter qu’Okamoto définit aussi un diagramme de Dynkin affine différent pour chaque
équation de Painlevé, le “diagramme d’Okamoto” (ils sont listés dans [86]). Par exemple le
diagramme d’Okamoto de Painlevé II is Ê7 tandis que le groupe de Weyl affine de symétrie
est de type Â1. On ne sait pas s’il est possible de généraliser les diagrammes d’Okamoto à des
espaces de modules de dimension supérieure.

Modularité des variétés de carquois L’étape suivante consiste à identifier les variétés de
carquois de Nakajima de certains graphes à des espaces de modules de connexions. L’histoire
fait intervenir les espaces de de Rham additifs M∗ definis dans [13], qui sont les espaces de
modules de connexions méromorphes sur des fibrés holomorphes triviaux sur la sphère de Rie-
mann. L’application de Riemann-Hilbert-Birkhoff envoyant une connexion vers ses données de
monodromies généralisées induit un difféomorphisme symplectique (voir [13, §6])

M∗ ↪→MB.

entre l’espace de module additif et un ouvert dense de l’espace de Betti tout entier.
Les variétés de carquois de Nakajima [76] sont des objets importants en théorie des représen-

tations. Étant donné un graphe Γ (par graphe nous désignons un carquois doublé), d’ensemble
de sommets N , d ∈ ZN un vecteur dimension, et λ = (λi)i∈N ∈ CN , la variété de carquois de
Nakajima NΓ(d,λ) est une variété algébrique symplectique, de dimension 2− (d,d), où (·, ·) est
la forme bilinéaire symétrique sur ZN définie par la matrice de Cartan du graphe (voir chapitre
3 pour les détails).

Dans plusieurs cas, il est possible d’associer un graphe Γ ainsi qu’un vecteur dimension d et
des labels λ a une connexion (E,∇), tels que l’espace de module additifM∗ est isomorphe à la
variété de carquois NΓ(d,λ).
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Le premier ingrédient permettant de relier les connexions méromorphes aux carquois est une
construction qui associe à une classe de conjugaison C ⊂ GLn(C) un carquois linéaire [67, 76],
ainsi qu’un vecteur dimension et un vecteur de labels. La construction dépend du choix d’un
marquage de la classe de conjugaison (voir ch. 3). Dans le cas des connexions à singularités
régulières, les données formelles sont entièrement déterminées par les classes de conjugaison des
monodromies: les données de singularité consistent simplement en une liste C de m classes de
conjugaison dans G = GLn(C). des travaux de Crawley-Boevey et ses collaborateurs associent à
la connexion [34, 35, 36] un graphe étoilé, où les “jambes” de l’étoile sont les carquois encodant
les classes de conjugaison des monodromies. En rang 2 avec quatre pôles, cela donne le graphe
de type affine D4, qui coïncide avec le groupe de Weyl affine de symétries de Painlevé VI.

Il s’avère que dans ce cas l’espace de de Rham additifM∗(C) est isomorphe à la variété de
carquois de Nakajima NΓ(d,λ) définie par le graphe. Ce résultat a permis à Crawley-Boevey
de résoudre la version additive du problème de Deligne–Simpson, qui demande pour quelles
données formelles l’espace de module additif est non vide. Dans ce cadre, les réflexions de Weyl
simple associées au carquois sont liées à l’action de la convolution moyenne sur les connexions,
et la réponse au problème de Deligne-Simpson additif est formulée en termes du système de
racines défini par le carquois. Par ailleurs, l’espace de moduleMB entier peut être vu comme
une variété de carquois multiplicative [36].

Ce tableau peut être étendu au cas des connexions avec une singularité irrégulière, poten-
tiellement avec d’autres pôles simples. Cette généralisation a d’abord été entreprise par Boalch
[17, 20], en se restreignant au cas simplement lacé où la singularité irrégulière n’est pas ramifiée
et est un pôle d’ordre inférieur ou égal à 3. Dans ce cadre, il est encore possible de définir un
triplet (Γ,d,λ) associé à une connexion (E,∇). Les graphes qui apparaissent sont une général-
isation des graphes étoilés, les graphes supernova. Ils sont constitués d’un cœur, qui est un
graphe complet k-parti, auquel viennent se coller des jambes. Les sommets du cœur correspon-
dent aux facteurs exponentiels qi ∈ zC[z] de la connexion à la singularité irrégulière à l’infini,
qui sont essentiellement les valeurs propres de la partie singulière à l’infini de la connexion. Plus
précisément, la connexion peut être amenée à une forme normale

∇0 = d−
(
dQ+ Λ

z
dz

)
,

où Q est une matrice diagonale par blocs de la forme

Q = diag(q11n1 , . . . , qk1nk),

(et Λ est une matrice constante).
À ces sommets il faut coller des jambes encodant comme auparavant les classes de conjugaison

des composantes de la monodromie formelle associées à chaque facteur exponentiel, ainsi que
les classes de conjugaison des monodromies aux singularités régulières. Si q1, . . . , qk sont les
facteurs exponentiels à l’infini, le nombre d’arêtes dans le cœur du digramme entre qi et qj est
donné par

Bij := deg(qi − qj)− 1, (1.1.1)

où deg(qi−qj) est le degré de la différence qi−qj comme polynôme en z. La définition du graphe a
été généralisée dans [17, Appendix C] au cas des connexions avec une singularité irrégulière non-
ramifiée d’ordre quelconque. Dans ces cas, nous disposons encore d’un “théorème de modularité
des carquois”:

Theorem 1.1.1. Étant donnée une connexion méromorphe ∇ sur un fibré vectoriel trivial E sur
la sphère de Riemann P1 = C ∪∞, ayant seulement des pôles simples sur C et une singularité
(irrégulière) non-ramifiée à ∞, on peut définir de façon uniforme un graphe Γ et un vecteur
dimension d ∈ NN tels que l’espace de de Rham additifM∗ of (E,∇) est isomorphe à la variété
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de carquois de Nakajima NΓ(d,λ) pour un vecteur de labels λ. En particulier, la variété de
caractères sauvageMB déterminée par (E,∇) a pour dimension

dim(MB) = dim(M∗) = 2− (d,d)

où ( , ) est la forme bilinéaire symétrique déterminée par la matrice de Cartan C = 2−B de Γ.

Ce résultat a été conjecturé dans [17, appendix C], prouvé dans le cas “simplement lacé”
dans [17, 20], et en général dans [57]. Ce résultat permet de nouveau de donner une solution
au problème de Deligne-Simpson additif en termes du système de racines associé au carquois.
L’espace de modules entier peut encore être vu comme une sorte de variété de carquois généralisée
[22].

Diagrammes de Boalch-Yamakawa Cependant, cette stratégie ne fonctionne pas dans le
cas général, puisque tous les espaces de modules M∗ ne sont pas isomorphes à des variétés de
carquois. Par exemple, on sait que l’espace de modules M∗ n’est pas isomorphe à une variété
de carquois de Nakajima dans le cas de 2 pôles d’ordre 2 [17, p. 3].

Récemment, Boach et Yamakawa [26] ont compris comment voir la façon dont le graphe
apparaît depuis le point de vue de Betti, en termes des présentations explicites des variétés de
caractères sauvages. Ils ont observé que cette reformulation a encore un sens pour les connexions
avec un type arbitraire de singularité irrégulière à l’infini, ainsi que des pôles simples à distance
finie. En général, ce qu’on obtient n’est plus un graphe proprement dit, mais un objet plus
général qu’ils nomment un “diagramme”.

Definition 1.1.2. Un diagramme (au sens de [26]) est la donnée d’un ensemble N de sommets
ainsi que d’un entier Bij = Bji ∈ Z pour chaque i, j ∈ N , tels que Bii est pair pour tout i ∈ N .

Ainsi un graphe correspond à un cas particulier d’un diagramme pour lequel. Bij ≥ 0 et
Bii = 0. Le résultat principal de [26] est le suivant :

Theorem 1.1.3. Étant donnée une connexion algébrique (E,∇) sur un ouvert de Zariski de la
droite affine, avec uniquement des pôles simples sur C et un type de singularité quelconque à ∞,
on peut définir de manière uniforme un diagramme Γ ainsi qu’un vecteur dimension d ∈ NN
tels que la variété de caractères sauvageMB déterminée par (E,∇) est de dimension

dim(MB) = 2− (d,d)

où ( , ) est la forme bilinéaire symétrique déterminée par la matrice de Cartan C = 2−B of Γ.

Un exemple de base considéré dans [26] est constitué par la troisième équation de Painlevé,
en utilisant la représentation de Lax connue sous le nom de Painlevé V dégénérée. Le diagramme
et la matrice de Cartan sont :

C =

 2 −2 0
−2 4 −2
0 −2 2


où la ligne en tirets indique une boucle de multiplicité négative.

Le groupe de Weyl défini par cette matrice de Cartan est isomorphe au groupe de Weyl de
type affine B2 (le groupe de symétrie d’Okamoto de Painlevé III), puisque la matrice de Cartan
normalisée (non-symétrique) est la transposée de celle de type affine B2.
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Pour énoncer la définition du diagramme, commençons par rappeler brièvement la description
des données de singularité (Θ,C) (voir ch. 3 pour plus de détails) Chaque point a ∈ P1 détermine
une collection Ia de cercles 〈q〉. En bref, chaque cercle 〈q〉 est la surface de Riemann d’un germe
de fonction de la forme

q =
s∑
i=0

aiz
−αi/β
a , (1.1.2)

sur un secteur ouvert en a, où ai ∈ C, ai 6= 0 et αi, β ≥ 1 sont des entiers, dans une coordonnée
locale za au voisinage de la singularité a ∈ P1. À chaque cercle 〈q〉, q =

∑
aiz
−αi/β
a sont associés

plusieurs entiers comme suit :

• slope(q) est le plus grand rationnel αi/β présent dans q,

• L’ordre de ramification ram(q) est le plus petit entier possible β ≥ 1 dans q,

• L’irrégularité Irr(q) ∈ N est le produit ram(q)slope(q).

Par définition, une classe irrégulière Θ en a est un choix d’un nombre fini de cercles 〈qi〉 ⊂ Ia,
chacun ayant une multiplicité ni ≥ 1. Une classe irrégulière peut être écrite comme une somme
formelle :

Θ = n1〈q1〉+ · · ·+ nm〈qm〉.
Toute connexion algébrique sur un ouvert de Zariski de la droite affine détermine une classe
irrégulière : essentiellement les sections horizontales de la connexion au voisinage de a sont des
combinaisons linéaires de termes faisant intervenir les exponentielles eq(z). L’irrégularité d’une
classe irrégulière Θ =

∑
ni〈qi〉 est Irr(Θ) =

∑
niIrr(qi), et le rang d’une classe irrégulière est

donnée par
∑
ni ram(qi). Chaque paire de cercles 〈q1〉, 〈q2〉 en a détermine une classe irrégulière

Hom(〈q1〉, 〈q2〉) de rang égal au produit ram(q1) ram(q2).
Des données formelles (Θ,C) en a consistent en une classe irrégulière Θ =

∑
ni〈qi〉, ainsi

que des classes de conjugaison Ci ⊂ GLni(C), pour chaque cercle de Θ. Il s’agit des “données
de monodromie formelles” déterminées par la connexion (voir §3.1). Deux connexions sont
formellement isomorphes en a si et seulement si elles ont les mêmes données formelles en a.

La définition du diagramme dans [26] est la suivante : soit (E,∇) ne connexion sur la droite
affine, avec seulement un pôle en ∞. Soient (Θ,C) les données formelles de la connexion à
l’infini. Notons Nc l’ensemble des cercles présents dans Θ. Le diagramme est construit en
collant ensemble un cœur Γc et des jambes. Le cœur a pour ensemble de sommets Nc, et il y a
une jambe pour chaque sommet du cœur (déterminée comme avant par la classe de conjugaison
Ci). Les multiplicités des arêtes Bij du cœur sont définies comme suit :

Definition 1.1.4 ([26]). Notons Θ =
∑
ni〈qi〉. For any i, j ∈ Nc :

• Si i 6= j alors
Bij = Aij − βiβj , (1.1.3)

où Aij = Irr(Hom(〈qi〉, 〈qj〉) et βi = ram(qi),

• Si i = j alors
Bii = Aii − β2

i + 1. (1.1.4)

Cette définition peut aussi s’étendre [26, §2.1] au cas des connexions ayant aussi des pôles
simples sur C. Le but de cette thèse est d’étendre la définition au cas des connexions avec un
nombre quelconque de pôles de type quelconque. Ainsi, par exemple, la définition de [26]§2.1
s’applique au cas de Painlevé III en utilisant une représentation de Lax alternative (avec deux
pôles simples et un pôle à l’infini de classe irrégulière 〈z1/2〉) mais elle ne s’applique pas à la re-
sprésentation standard, qui a deux pôles d’ordre deux. Nous allons voir que le même diagramme
apparaît directement à partir de la représentation standard de Painlevé III en utilisant notre
définition générale.
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1.2 Résultats principaux
Notre premier résultat principal est la définition d’un diagramme dans le cas général des con-
nexions avec un nombre arbitraire de pôles de type quelconque sur la sphère de Riemann :

Theorem 1.2.1. Étant donnée une connexion algébrique quelconque (E,∇) sur un ouvert de
Zariski de la droite affine C = P1r∞, il est possible de définir de façon uniforme un diagramme
Γ et un vecteur dimension d ∈ NN tels que la variété de caractères sauvageMB déterminée par
(E,∇) soit de dimension

dim(MB) = 2− (d,d)

où ( , ) est la forme bilinéaire symétrique définie par la matrice de Cartan C = 2−B de Γ.

Le diagramme Γ(E,∇) = Γ(Θ,C) que nous associons à (E,∇) dépend seulement des données
formelles (Θ,C) à tous les points singuliers. Il a la structure suivante : il est constitué d’un cœur
Γc auquel on vient coller des jambes encodant certaines classes de conjugaison. Soit I =

⋃
a∈P1 Ia

l’union disjointe de tous les cercles à tous les points de la sphère de Riemann. Notons π : I → P1

l’application envoyant un cercle sur le point auquel il correspond. Comme précédemment, le
type formel d’une connexion définit un entier ni et une classe de conjugaison Ci ⊂ GLni(C) pour
chaque cercle i ⊂ I, de telle sorte que ni = 0 pour tous les cercles sauf un nombre fini en chaque
point singulier.

On modifie alors les données formelles de la façon suivante : si i est un cercle modéré à
distance finie (π(i) ∈ C et qi = 0) alors on remplace ni par l’entier

mi = rank(A− 1)

où A ∈ Ci. Ainsi, A = 1 + vu pour une application linéaire surjective u : Cni → Cmi et une
application linéaire injective v : Cmi → Cni . On remplace alors Ci par la classe de conjugaison
C̆i de (1 + uv) dans GLmi(C). Voir 4.1 pour plus de détails; cette classe est appelée le fils de Ci
dans [22, appendix] Si π(i) =∞ ou si i n’est pas modéré (qi 6= 0), on ne fait pas de modification:
mi = ni et C̆i = Ci. Cela définit des données formelles modifiées (Θ̆, C̆), où Θ̆ est la collection
des cercles actifs, c’est-à-dire les cercles de multiplicité mi ≥ 1. Les sommets du cœur Nc de
notre diagramme sont donnés par cette collection de cercles :

Nc = {circles i ⊂ I
∣∣ mi ≥ 1}.

On colle ensuite la jambe déterminée par la classe de conjugaison C̆i sur le noeud i ∈ Nc

comme précédemment. Il reste seulement à définir les entiers Bij = Bji pour i, j ∈ Nc :

Definition 1.2.2. Soient i, j ∈ Nc des cercles actifs, et notons ai = π(i), aj = π(j) ∈ C ∪ ∞,
de telle sorte que i = 〈qi〉, j = 〈qj〉 soient des cercles en ai, aj respectivement. Notons αi =
Irr(qi), βi = ram(qi) et de même pour j. Si ai = aj , désignons par B∞i,j le nombre déterminé par
les expressions (2.1.3) and (2.1.4), appliqué aux cercles i, j.

1. Si ai = aj =∞ alors Bij = B∞ij .

2. Si ai =∞ alors aj 6=∞ then Bij = Bji = βi(αj + βj).

3. Si ai 6=∞, aj 6=∞ et ai 6= aj alors Bij = Bji = 0.

4. Si ai = aj 6=∞ alors Bij = Bji = B∞ij − αiβj − αjβi.

Nous allons prouver de façon directe que ceci définit bien un diagramme dans 4.3, indépen-
demment de la preuve esquissée dans [26] dans le cas particulier d’une seule singularité irrégulière.
Nous allons prouver le thm. 1.2.1 donnant la dimension dans 5.

17



(a) Singularités régulières (b) cas simplement lacé (c) Cas général

Figure 1.2: Exemples de diagrammes associés à des connexions

L’idée de base menant à cette définition est la suivante : on cherche à se ramener à la situation
de [26] en appliquant la transformation de Fourier-Laplace. Celle-ci joue déjà un rôle essentiel
dans les constructions précédentes, par exemple elle joue un rôle dans les différentes lectures
du graphe dans [17, 20], et permet souvent de passer d’une représentation de Lax à une autre
pour les équations de Painlevé. Le transformation de Fourier-Laplace induit une transformation
de Fourier formelle au niveau des données formelles [12, 68]. Plus explicitement, la formule
de phase stationnaire [70, 44, 91] relie les données formelles globales d’une connexion à celle
de sa transformation de Fourier-Laplace. Une propriété remarquable est que la transformation
de Fourier-Laplace agit sur les données formelles de manière non locale. Nous utilisons cette
propriété pour envoyer tous les cercles actifs à l’infini et nous ramener au cadre de [26]. Le point
non trivial est de s’assurer que le diagram obtenu de cette manière ne dépend pas des choix
effectués en cours de route.

Esquissons les idées principales de façon un peu plus précise. Les connexions sur des ouverts
de Zariski de la droite affine sont étroitement reliées aux modules sur l’algèbre de Weyl A1 :=
C[z]〈∂z〉. Or, il existe une action naturelle de SL2(C) on sur l’algèbre de Weyl: une matrice

A =
(
a b
c d

)

de SL2(C) induit un automorphisme de l’algèbre de Weyl, par

(z, ∂z) 7→ (az + b∂z, cz + d∂z).

Parmi ces transformations, la transformation de Fourier-Laplace, correspondant à la matrice(
0 1
−1 0

)
.

a une importance particulière.
La formule de phase stationnaire [44, 91] entraîne que ces transformations symplectiques

induisent une action de SL2(C) sur les données de singularité modifiées (Θ̆, C̆) des connexions.
Le résultat principal de cette thèse, garantissant que le diagramme est indépendant des choix,
est le suivant :

Theorem 1.2.3. Le diagramme est invariant par les transformations symlectiques : si A ∈
SL2(C), alors on a

Γ(A · (Θ̆, C̆)) = Γ(Θ̆, C̆).

Le diagramme constitue donc un invariant sous l’action de SL2(C). Par conséquent, un
même diagramme va pouvoir être lu de différentes manières comme provenant de connexions
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avec différentes données formelles, reliées par une transformation symplectique.

Un ingrédient important dans la preuve du théorème est une formule explicite pour le nombre
d’arêtes et de boucles comme fonction des degrés des termes des facteurs exponentiels, qui a
aussi son intérêt propre :

Theorem 1.2.4. Soient 〈q〉, 〈q′〉 deux facteurs exponentiels distincts à l’infini, et notons

q =
p∑
j=0

bjz
−αj/β
∞ , q′ =

p′∑
j=0

b′jz
−α′j/β

′

∞

avec bj 6= 0, b′j 6= 0. Leurs ordres de ramification sont respectivement β, β′ et leurs pentes sont
α/β, α′/β′, avec α := α0, α′ := α′0. Soit r l’entier telle que les pentes de leurs parties différentes
(voir §4.3.2 pour la définition) sont αr/β et α′r/β′.

• Supposons que αr/β ≥ α′r/β′. Alors le nombre d’arêtes entre I = 〈q〉 et I ′ = 〈q′〉 est

BI,I′ =(β′ − (α′0, β′))α0 + ((α′0, β′)− (α′0, α′1, β′))α1 + · · ·+ ((α′0, . . . , α′r−2, β
′)− (α′0, . . . , α′r−1, β

′))αr−1

+ (α′0, . . . , α′r−1, β
′)αr − ββ′.

• En particulier, si q et q′ n’ont pas de partie commune et α/β ≥ α′/β′, alors

BI,I′ = β′(α− β).

Ici, la notation (·, . . . , ·) désigne le plus grapnd multiple commun d’un n-uplet d’entiers. On
a une formule similaire pour le nombre de boucles à un cercle 〈q〉 (voir §4.3.2).

Plusieurs autres propriétés des carquois dans les cas précédents restent vraies dans le cas plus
général. On a encore différentes représentations d’un même diagramme, correspondant à des
connexions de rangs différents et de nombres de singularités différents. Par ailleurs, les réflexions
de Weyl simples définies à partir de la matrice de Cartan du diagramme, pour certains sommets,
peuvent être interprétées comme provenant d’opérations sur les connexions. Il y a en effet
plusieurs opérations que l’on peut appliquer aux connexions : les transformations SL2(C), mais
aussi des transformations de Möbius, et l’opération consistant à prendre le produit tensoriel avec
une connexion de rang 1. Dans les cas particuliers étudiés dans [17, 20], les éléments du groupe
de Weyl associé au diagramme sont la contrepartie, du côté du diagramme, de l’action d’une
combinaison de telles opérations sur les connexions correspondantes. Ce phénomène s’étend
partiellement au cas général : il existe une classe de cercles (que nous appelons cercles simples)
tels que les réflexions de Weyl par rapport à ces sommets proviennent d’une combinaison de ces
opérations sur les connexions (voir §7.3).

Theorem 1.2.5. Soient (Θ̆, C̆) les données formelles modifiées d’une connexion (E,∇), et
(Γ,d,q) le triplet constitué du diagramme (complet), du vecteur dimension et du vecteur de
labels multiplicatifs associés. Soit I l’ensemble des sommets de Γ et i ∈ I. Supposons que i n’est
pas dans le cœur, ou correspond à un cercle simple. Il existe une combinaison de twists et de
transformations SL2(C) tels que le triplet associé à Φ · (Θ̆, C̆) soit

(Γ, si(d), ri(q)),

où si et ri sont les réflexions simples par rapport à i, agissant sur ZI et (C∗)I respectivement.
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Applications aux équations de Painlevé Notre construction des diagrammes nous per-
met d’obtenir un diagramme pour la troisième équation de Painlevé, dont la représentation de
Lax standard possède deux singularités irrégulières. Nous retrouvons de cette manière le dia-
gramme de [26], obtenu à partir d’une représentation de Lax alternative. Cette autre représen-
tation est maintenant interprétée comme une représentation différente du même diagramme.
Nous obtenons aussi des diagrammes pour les versions “dégénérées” de la troisième équation de
Painlevé, dont les singularités irrégulières sont ramifiées.

Il y a des analogues des équations de Painlevé en dimension supérieure, correspondant
à des variétés de caractères sauvages de dimension supérieure. En particulier, les systèmes
d’isomonodromie en dimension 4 ont été étudiés de façon approfondie par l’école japonaise
d’équations différentielles. L’article [65] donne ainsi une liste de représentations de systèmes
d’isomonodromie de dimension 4, qui sont obtenus par dégénération de connexions fuchsiennes.
Dans de nombreux cas, ces systèmes ont plusieurs représentations correspondant à des lectures
différentes du même graphe supernova. Nos diagrammes nous permettent de généraliser cette
observation aux cas restants qui n’entrent pas dans le cadre des graphes supernova, de telle sorte
que nous avons :

Theorem 1.2.6. Dans la liste de [81] de représentations des équations de Painlevé (en dimen-
sion 2), ainsi que dans la liste de [65] de systèmes d’isomonodromie en dimension 4, toutes
les représentations mentionnées pour un même système d’isomonodromie correspondent à des
représentations différentes d’un même diagramme.

Par ailleurs de la même manière que pour les autres équations de Painlevé dont les représen-
tations standard ont seulement une singularité irrégulière, les symétries d’Okamoto de Painlevé
III ont une interprétation modulaire en termes d’opérations sur les connexions.(voir §7.5).

Theorem 1.2.7. Les symétries d’Okamoto des paramètres de l’équation de Painlevé III admet-
tent une réalisation géométrique en termes d’opérations sur les connexions.

Une partie de ces opérations correspond aux réflexions de Weyl simples des diagrammes
associés à ces représentations de Lax. Une spécificité du cas de Painlevé III est qu’il est nécessaire
de passer d’un diagramme à un autre (et pas juste à des représentations différentes du même
diagramme) pour rendre compte de toutes les symétries.

Orbites sous les opérations sur les connexions Enfin, nous nous intéressons à quelques
questions reliées à l’action sur les connexions d’applications successives de transformations
SL2(C), de twists et de transformations de Möbius, que nous appelons opérations de base. Une
orbite sous l’action du groupe engendré par ces opérations va toujours contenir des connexions
de rang arbitrairement grand (voir par exemple [20, §11.3] pour un exemple explicite).

L’extension au case irrégulier, due à Arinkin [6], de l’algorithme de convolution moyenne
de Katz [64] montre que toute connexion rigide irréductible peut être amenée à la connexion
triviale de rang 1 par application répétée de telles opérations. Dans le cas non rigide, c’est donc
une question intéressante de savoir si toute connexion peut être amenée de façon similaire à une
connexion minimale, en un sens à préciser.

En utilisant notre formule explicite pour les nombres de boucles pour un diagramme à un
sommet, associé à un facteur exponentiel, nous sommes en mesure de formuler quelques résultats
préliminaires dans cette direction. Un cas simple à considérer est en effet celui des connexions
avec seulement une singularité à l’infini, et un seul cercle actif. Dans ce cas, il existe un al-
gorithme de simplification explicite, qui amène tout facteur exponentiel à un facteur minimal.
Pour de petits nombres de boucles, nous obtenons que le diagramme classifie les facteurs expo-
nentiels à applications successives de twists et de la transformation de Fourier-Laplace près : si
le nombre de boucles est 0, 1 ou 2, il y a seulement une classe de facteurs exponentiels.
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Theorem 1.2.8. Soit 〈q〉∞ un facteur exponentiel à l’infini et k le nombre de boucles du dia-
gramme associé à 〈q〉.

• k = 0 si et seulement si il existe une combinaison de twists et de transformation de Fourier,
fournie explicitement par l’algorithme, envoyant 〈q〉∞ sur le cercle modéré 〈0〉∞.

• k = 1 si et seulement si l’algorithme appliqué à 〈q〉∞ termine à un facteur exponentiel
avec les mêmes niveaux que 〈z5/3〉∞.

• k = 2 si et seulement si l’algorithme appliqué à 〈q〉∞ termine à un facteur exponentiel
avec les mêmes niveaux que 〈z7/5〉∞.
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Chapter 2

Introduction

Our main result is the construction of a diagram associated to any algebraic connection on
a vector bundle on a Zariski open subset of the Riemann sphere, together with a proof that
the diagram is invariant under the action of the group of symplectic automorphisms of the
Weyl algebra, including the Fourier–Laplace transform. In general this changes the rank of the
bundles and the number of poles. As an application, the invariance of the diagram implies the
dimensions of the corresponding moduli spaces are the same.

2.1 Context and motivations

2.1.1 (Wild) character varieties and integrable systems

The main motivation for developing a theory of “Dynkin diagrams” for moduli spaces of connec-
tions is the perspective of the classification of non-abelian Hodge spaces ([22] Defn. 7). These are
(complete) hyperkähler manifolds attached to compact Riemann surfaces with fixed singularity
data at some marked points. Their general construction [10] extends the construction [59, 47]
in the compact case (no singularities), and [95, 66, 77] in the tame case (simple poles).

Wild non-abelian Hodge theory and the Riemann–Hilbert–Birkhoff correspondence imply
the remarkable fact that these analytic moduli spaces are moduli spaces for three different kinds
of algebraic or topological objects. The first side is the side of (irregular) Higgs bundles, the
so-called Dolbeault side. The second one is the side of (irregular) connections, known as the de
Rham side. Finally, the third one is the topological side of representations of the fundamental
group, known as the Betti side, and its generalization to Stokes representations. The wild
non-abelian Hodge correspondence on curves [10, 90] (building on Hitchin, Donaldson, Corlette
and Simpson [59, 42, 33, 96] in the compact case, and Simpson, Biquard, Konno, Nakajima
[95, 9, 66, 77] in the tame case) implies that the Dolbeault moduli spaceMDol and the de Rham
moduli spacesMdR are diffeomorphic. They carry a hyperkähler structure, due to the fact that
these moduli spaces are isomorphic to moduli spaces M of solutions of the 2d self-dual Yang–
Mills equations (often called the Hitchin equations). Within the sphere of complex structures on
the hyperkähler manifold M there are two preferred choices, where M becomesMDol andMdR

respectively. On the other hand, the Riemann–Hilbert correspondence [38], and its extension to
the irregular case [69] imply that the de Rham moduli spaceMdR and the Betti moduli space
MB are diffeomorphic. This leads to the following general picture:
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(Σ,a,Θ, C)
wild Riemann surface
and conjugacy classes

M
non-abelian Hodge space

MDol

MdR

MB

where the three maps on the right are diffeomorphisms. The nonabelian Hodge space M depends
on the choice of the base smooth complex algebraic curve Σ, together with some marked points
a, and singularity data (Θ, C) at the marked points encoding the type of singularities of the con-
nection. The irregular class Θ encodes the rank of the vector bundles and the exponential factors
appearing in horizontal sections of the connection around each singularity, whereas C denotes
the conjugacy classes of the formal monodromies at the singular points (see §3.1 for details).
Deformation theory implies it is natural to view the triple Σ = (Σ,a,Θ) as a generalization of
a surface with marked points; it is a wild Riemann surface in the sense of [21, 25].

The simplest approach is from the Betti side, and we will focus on that in this thesis.
The Betti moduli spaces are affine finite-dimensional algebraic symplectic varieties, and can
be described using an explicit presentation. When the curve is compact so that there are no
singularities, the Betti moduli spaces are the usual character varieties i.e. moduli spaces of
representations of the fundamental group of the surface.

MB = Hom(π1(Σ), G)/G ∼= {A1, B1, . . . , Ag, Bg ∈ G, [A1, B1] · · · [Ag, Bg] = 1}/G,

where g is the genus of Σ, and G = GLn(C), n corresponding to the rank of the connection, and
[A,B] = ABA−1B−1 denotes the multiplicative commutator. The case when the base curve Σ
is non-compact e.g. if Σ = P1 r {a1, . . . , am} is a Zariski open subset of the Riemann sphere
corresponds to connections with singularities. When all singularities are regular, it follows from
the Riemann-Hilbert correspondence that a regular singular connection can be reconstructed
from its monodromies around the singular points, and the Betti moduli space is given by

MB
∼= {(M1, . . . ,Mr) ∈ C1 × · · · × Cr, Mr . . .M1 = 1}/G,

where C1, . . . , Cr ⊂ G are conjugacy classes in G. When r = 3 and the matrices have rank 2, this
situation corresponds to the well-known Gauss hypergeometric equation and the moduli space
is a point. The simplest example of positive dimension is when r = 4 and the matrices have
rank 2, the moduli space then has complex dimension 2 and this situation corresponds to the
(deformed) Heun equation appearing in the standard representation of the Painlevé VI equation.

When the singularities are irregular however, the monodromy representation is no longer
enough to reconstruct the connection. Because of the Stokes phenomenon there is more topolog-
ical data to be extracted: the basic reason is that the asymptotic expansions of the horizontal
sections of the connection are only valid in some sectors around an irregular singularity and
may jump when crossing some particular directions. An explicit presentation of the Betti mod-
uli space can still be given [21, 25], involving Stokes matrices accounting for passing from one
sector to the next. If again the base curve is Σ = P1 r {a1, . . . , am}, this explicit presentation is
of the form

MB
∼= {(C, h,S) | (C−1

1 h1S
(1)
k1
. . . S

(1)
1 C1) . . . (C−1

m hmS
(m)
km

. . . S
(m)
1 Cm) = 1}/G×H,
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where Ci ∈ G, h−1
i lies in the conjugacy class Ci of the formal monodromy at ai, H = H1×· · ·×

Hm, with Hj a reductive subgroup of G, and the Stokes matrices S(j)
i belong to some unipotent

subgroups of G, the Stokes subgroups (see §3.2 for details). Such kinds of presentations are
known since the work of Birkhoff [11] at the beginning of the 20th century. These Betti moduli
spaces in the irregular case are nowadays referred to as wild character varieties (see [21, 25]
where they were constructed as symplectic algebraic varieties, parallel to the earlier analytic
constructions [13, 10] and extending the first algebraic constructions [101, 16, 18] in more generic
settings). We obtain in this way a large family of moduli spaces associated to a Riemann surface
together with singularity data.

It turns out that, when Σ is a Riemann sphere, there are many examples of different wild
Riemann surfaces, corresponding to connections with different ranks, different numbers of sin-
gularities and order of singularities, giving rise to isomorphic moduli spaces. In particular, a
Betti moduli space coming from a connection with regular singularities may be isomorphic to
one associated to a connection with irregular singularities. We may view the wild Riemann
surfaces yielding isomorphic moduli spaces as determining different “realizations”, or “represen-
tations” of the same abstract affine symplectic varietyMB. This naturally leads to the following
far-reaching question [23], which is the core motivation for this work:

Question Can we describe all representations of a given (abstract) wild character variety
MB? Given two wild Riemann surfaces, is there a direct way to know whether they give rise to
isomorphic moduli spaces?

A further motivation for being interested in this question is that the wild character varieties
are closely related to many important nonlinear differential equations and integrable systems. On
the Dolbeault side, moduli spaces of meromorphic Higgs bundles are algebraic integrable systems
[27, 71], specializing to the Hitchin systems [58] in the higher genus case with no poles, and many
classical integrable systems in the genus zero case with poles, usually irregular [1, 2, 8, 40, 51, 88],
arise in this way. On the other hand, the theory of isomonodromic deformations generates non-
linear differential equations from the de Rham moduli spaces. The basic idea is that wild
Riemann surfaces come in families, e.g. we can vary the modulus of Σ and the positions of the
singularities, but also the parameters defining the irregular class Θ. If Σ → B is a family of
wild Riemann surfaces over a base space B of admissible deformations, we get a family M→ B
of moduli spaces over the base B where the fiber above b ∈ B is the moduli space MdR(Σb),
with Σb being the wild Riemann surface over b. When b varies in B varying the connections in
MdR(Σb) in such a way that the generalized monodromy remains constant yields a (complete)
flat Ehresmann connection on M, the isomonodromy connection [13]. When written explicitly
in coordinates, the isomonodromy connection corresponds to a system of nonlinear differential
equations. From the Betti viewpoint this corresponds to the fact that the wild character varieties
form a “local system of varieties” over B [21].

Many well-known non-linear differential equations arise in this way, most notably the Painlevé
equations [93, 50, 62, 60], which correspond to two dimensional moduli spaces, as well as many
other differential equations studied by physicists (e.g. [61]). A representation ofMB corresponds
to a choice of Lax representation (or “linearization”) of the system of nonlinear differential equa-
tions.

In the study of integrable systems, it is very often the case that a given system possesses
several Lax representations. Some transformations, such as the Bäcklund transformations, allow
to pass from one Lax representation to another. In this way, one may view the question of
the classification of wild character varieties as encompassing the problem of the classification
of integrable systems arising from meromorphic Hitchin systems and isomonodromy, with the
question of finding all possible realisations of one given moduli space amounting to finding the
Lax representations giving rise to the associated integrable system or isomonodromy system.
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Moduli of meromorphic Higgs bundles also appear in several contexts related to high energy
physics: e.g. Seiberg-Witten [94] related some four dimensional N = 2 super Yang-Mills theories
to algebraic completely integrable systems, and most examples turn out to be related to irregular
meromorphic Higgs bundles [41, 27, 71, 72, 4]. Recent extensions [48, 49, 79, 102] of this story
conjecturally recover more of the new complete hyperkahler manifolds constructed in [10], as
their “Coulomb branches compactified on a circle”. Other instances are the relation to periodic
monopoles [32, 31] via the Nahm transform, Witten’s approach to wild geometric Langlands
[100] and the complex string solutions (“voidons”) of the 2d self-dual Yang-Mills equations in
[29].

2.1.2 Link with quivers, graphs, diagrams

It turns out that, remarkably, in some cases there seems to be a nice way to parameterize the
data determining a moduli space of connections in terms of a graph (i.e. a doubled quiver), and
this link sheds light on the question of the classification.

Recall that a finite graph with nodes N (and no edge loops) determines a symmetric (Kac-
Moody) Cartan matrix C with

Cij = 2−Bij
where i, j ∈ N and Bij = Bji is the number of edges of the graph between the nodes i, j.

The basic question is to find a map from singularity data to Cartan data:

Question Given a meromorphic connection (E,∇) on the Riemann sphere, is there a uniform
way to define a graph Γ and a dimension vector d ∈ NN such that the wild character variety
MB determined by (E,∇) has dimension

dim(MB) = 2− (d,d)

where ( , ) is the symmetric bilinear form determined by the Cartan matrix of Γ?

Before stating our main result we will review what is already known.

Okamoto’s affine Weyl symmetry groups The simplest examples of nonabelian Hodge
spaces are the so-called H3 surfaces, i.e. those of complex dimension two (non-compact ana-
logues of the K3 surfaces). Some of these surfaces are related to Painlevé equations: the de
Rham moduli space is isomorphic to the “space of initial conditions” of the Painlevé equation,
constructed explicitly by Okamoto [82, 84, 83, 85, 80].

Okamoto showed that each of the six Painlevé equations admits affineWeyl symmetry groups.
On the other hand each Painlevé equation is the isomonodromy system of a linear connection on
the Riemann sphere, in many different ways. Choices of such linear connections were found by R.
Fuchs [46] and R. Garnier [50] and rewritten in matrix form by Schlesinger [93] and Jimbo-Miwa
[61]. The singularity data of these “standard Lax representations” of each Painlevé equation is
summarised in the table 1.1 (they all correspond to connections on the trivial rank two vector
bundle on the Riemann sphere).

This gives a map from some examples of singularity data to affine Weyl groups. The desired
map from singularity data to Cartan data, should specialize to give this map (noting that any
Cartan matrix determines a Weyl group). Observe that dim(MB) = 2 implies (d,d) = 0
i.e. that d is null, as is the case for any imaginary root of an affine Kac-Moody algebra: the
dimension vectors corresponding to H3 surfaces will indeed be minimal imaginary roots.

Beware that Okamoto also defined a different affine Dynkin diagram for each Painlevé equa-
tion, the “Okamoto diagram” (listed in [86]). For example the Okamoto diagram of Painlevé II
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equation number pole orders affine Weyl group symmetry number of parameters
VI 1 + 1 + 1 + 1 D4 4
V 2 + 1 + 1 A3 3
IV 3 + 1 A2 2
III 2 + 2 B2 2
II 4 A1 1
I 4̃ - 0

Figure 2.1: Standard representations and Okamoto symmetries of the Painlevé equations, from
[86].

is Ê7 whereas the affine Weyl symmetry group is of type Â1. It is not known how to generalize
the Okamoto diagrams to higher dimensional moduli spaces.

Modularity of quiver varieties The next step involves identifying the Nakajima quiver
varieties of certain graphs with moduli spaces of connections.

The story involves additive de Rham moduli spaces M∗ defined in [13], which are moduli
spaces of meromorphic connections on trivial holomorphic vector bundles on the Riemann sphere.
The Riemann-Hilbert-Birkhoff map sending a connection to its generalized monodromy data
induces a symplectic diffeomorphism (see [13, §6])

M∗ ↪→MB.

between the additive moduli space and a dense open part of the full Betti moduli space.
Nakajima quiver varieties [76] are important objects in representation theory. Given Γ a

graph (by graph we mean a doubled quiver) with set of vertices N , d ∈ ZN a dimension vector,
and λ = (λi)i∈N ∈ CN , the Nakajima quiver variety NΓ(d,λ) is an algebraic symplectic variety,
with dimension 2 − (d,d), where (·, ·) is the symmetric bilinear form on ZN defined from the
Cartan matrix of the graph (see chapter 3 for details).

In several cases, it is possible to associate a graph Γ together with a dimension vector d
and labels λ to an algebraic connection (E,∇), such that the additive moduli space M∗ is
isomorphic to the quiver variety NΓ(d,λ).

The first ingredient allowing to relate meromorphic connections to quivers is a construction
which associates to a conjugacy class C ⊂ GLn(C) a linear quiver [67, 76, 35], together with a
dimension vector and labels. The construction depends on a choice of marking of the conjugacy
class.

In the case of connections with regular singularities, the formal data are entirely determined
by the conjugacy classes of the monodromies: the singularity data is just a list C of m conjugacy
classes of G = GLn(C). Works of Crawley-Boevey and collaborators associate to the connection
[34, 35, 36] a star-shaped graph, with the “legs” of the star being the quivers encoding the
conjugacy classes of the monodromies. For rank two with four punctures this yields the affine
D4 graph, coinciding with the affine Weyl symmetry group of Painlevé VI.

It turns out that in this case the additive de Rham moduli spaceM∗(C) is isomorphic to the
Nakajima quiver variety NΓ(d,λ) defined by the graph. This result allowed Crawley-Boevey
to solve the additive version of the Deligne-Simpson problem, asking for which formal data the
addtive moduli space is non-empty. In this setup, simple Weyl reflections associated to the
quiver are related to the action of the middle convolution of connections, and the answer to
the additive Deligne-Simpson problem is formulated in terms of the root system defined by the
quiver. Furthermore, the full moduli space MB can be seen as a multiplicative quiver variety
[36].
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This picture can be extended to the case of irregular connections. This was first done by
Boalch in [17, 20], focussing on the simply laced case where the irregular singularity is unramified
and is a pole of order at most 3. In this setting, it is still possible to define a triple (Γ,d,λ)
associated to a connection (E,∇). The quivers that appear are a generalization of star-shaped
graphs, the supernova graphs. They consist of a core graph Γc(E,∇), which is a complete k-
partite graph. Its vertices correspond to the exponential factors qi ∈ zC[z] of the connection
at the irregular singularity at infinity, which are basically the eigenvalues of the singular part
at infinity of the connection. More precisely the connection can be brought to a formal normal
form

∇0 = d−
(
dQ+ Λ

z
dz

)
,

with Q a diagonal matrix of the form

Q = diag(q11n1 , . . . , qk1nk),

(and Λ is a constant matrix). To these vertices are glued legs encoding the conjugacy classes of
the pieces of formal monodromy associated to each exponential factor, as well as the conjugacy
classes of the monodromies at the regular singularities. If q1, . . . , qk are the exponential factors
at infinity, the number of edges in the core diagram between qi and qj is given by

Bij := deg(qi − qj)− 1, (2.1.1)

where deg(qi−qj) is the degree of the difference qi−qj as a polynomial in z. The definition of the
graph was generalized [17, Appendix C] to connections with an unramified irregular singularity
with arbitrary order. In these setting, we still have a “quiver modularity theorem”:

Theorem 2.1.1. Given a meromorphic connection ∇ on a trivial vector bundle E on the Rie-
mann sphere P1 = C ∪∞, with only tame poles on C and an unramified (irregular) singularity
at ∞, there is a uniform way to define a graph Γ and a dimension vector d ∈ NN such that the
additive de Rham space M∗ of (E,∇) is isomorphic to the Nakajima quiver variety NΓ(d,λ)
for some parameters λ. In particular the wild character variety MB determined by (E,∇) has
dimension

dim(MB) = dim(M∗) = 2− (d,d)

where ( , ) is the symmetric bilinear form determined by the Cartan matrix C = 2−B of Γ.

This was conjectured in [17, appendix C] and shown in the “simply laced” case where the
irregular singularity is a pole of order at most 3 in [17, 20], and in general in [57]. This result
allows again to give a solution of the additive Deligne-Simpson problem in terms of the root
system associated to the quiver. The full moduli space may still be considered as a kind of
generalized multiplicative quiver variety [22].

Diagrams of Boalch-Yamakawa However, this strategy does not work in general since not
all of the additive moduli spacesM∗ are isomorphic to quiver varieties. For example it is known
that the additive moduli spaceM∗ is not isomorphic to a Nakajima quiver variety in the case
of 2 poles of order 2 [17, p. 3].

Recently Boalch and Yamakawa [26] understood how to see how the graph in 2) appears from
the Betti point of view, in terms of the explicit presentations of the wild character varieties.
Moreover they observed that this reformulation works for connections with any type of irregular
singularity at ∞, together with any number of tame poles at finite distance. In general the
output is no longer a graph, but a generalized object that they called a “diagram”.

Definition 2.1.2. A diagram (in the sense of [26]) is a set N of nodes together with the choice
of an integer Bij = Bji ∈ Z for each i, j ∈ N , such that Bii is even for each i ∈ N .
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Thus a graph is the special case of a diagram when every Bij ≥ 0 and Bii = 0. The main
statement of [26] is that

Theorem 2.1.3. Given an algebraic connection (E,∇) on a Zariski open subset of the affine
line, with only tame poles on C and any type of singularity at∞, there a uniform way to define a
diagram Γ and a dimension vector d ∈ NN such that the wild character varietyMB determined
by (E,∇) has dimension

dim(MB) = 2− (d,d)

where ( , ) is the symmetric bilinear form determined by the Cartan matrix C = 2−B of Γ.

A basic example considered in [26] is for the third Painlevé equation, using the Lax repre-
sentation known as degenerate Painlevé V. The diagram and the Cartan matrix are:

C =

 2 −2 0
−2 4 −2
0 −2 2


where the dashed line indicates a loop of negative multiplicity. The Weyl group of this Cartan
matrix is isomorphic to affine B2 (the Okamoto symmetry group of Painlevé III), since the
normalized (non-symmetric) Cartan matrix is the transpose of affine B2.

To recall the definition of the diagram, we first review briefly the singularity data (Θ,C) (see
chapter 3 for more details). Each point a ∈ P1 determines a collection Ia of circles 〈q〉. In brief
each circle 〈q〉 is the Riemann surface of a germ of a function of the form

q =
s∑
i=0

aiz
−αi/β
a , (2.1.2)

on an open sector at a, where ai ∈ C, ai 6= 0 and αi, β ≥ 1 are integers, in some local coordinate
za at the singularity a ∈ P1. Some numbers attached to each circle 〈q〉, q =

∑
aiz
−αi/β
a are as

follows:

• slope(q) is the largest rational number αi/β present in q,

• The ramification degree ram(q) is the lowest possible integer β ≥ 1 in q,

• The irregularity Irr(q) ∈ N is the product ram(q)slope(q).

By definition an irregular class Θ at a is the choice of a finite number of circles 〈qi〉 ⊂ Ia,
each with an integer multiplicity ni ≥ 1. An irregular class can be written as a formal sum:

Θ = n1〈q1〉+ · · ·+ nm〈qm〉.

Any algebraic connection on a Zariski open subset of the affine line determines an irregular class
at each singularity; in brief the horizontal sections of the connection in the vicinity of a are linear
combinations of terms featuring the exponentials eq(z). The irregularity of any irregular class
Θ =

∑
ni〈qi〉 is Irr(Θ) =

∑
niIrr(qi), and the rank of an irregular class is

∑
ni ram(qi). Any

circles 〈q1〉, 〈q2〉 at a determine an irregular class Hom(〈q1〉, 〈q2〉) of rank equal to the product
ram(q1) ram(q2).

The singularity data (Θ,C) at a consists of an irregular class Θ =
∑
ni〈qi〉 together with

conjugacy classes Ci ⊂ GLni(C), for each circle in Θ. They are the “formal monodromy classes”
determined by the connection (see §3.1). Two connections are formally isomorphic at a if and
only if they have the same singularity data at a.
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The definition of the diagram in [26] is as follows: Suppose we have a connection (E,∇)
on the Riemann sphere with just one pole, at ∞. Let (Θ,C) be the singularity data of the
connection at ∞. Let Nc be the set of circles present in Θ. The diagram is built by gluing
together a core diagram Γc and legs. The core diagram has nodes Nc and there is one leg for
each node of the core diagram (determined by the conjugacy class Ci, as above). The edge
multiplicities Bij for the core diagram are as follows:

Definition 2.1.4 ([26]). Write Θ =
∑
ni〈qi〉. For any i, j ∈ Nc:

• If i 6= j then
Bij = Aij − βiβj , (2.1.3)

where Aij = Irr(Hom(〈qi〉, 〈qj〉) and βi = ram(qi),

• If i = j then
Bii = Aii − β2

i + 1. (2.1.4)

This definition was extended in [26] §2.1 to the case of connections with further tame poles
on C. The aim of this thesis is to extend the definition to the case of connections with any
number of poles of any type. For example the definition of [26] §2.1 covered the case of Painlevé
III using an alternative Lax representation (with two tame poles and a pole at ∞ with irregular
class 〈z1/2〉) but it did not cover the standard representation, with two poles of order two. We
will see how the same diagram appears directly from the standard representation of Painlevé III
using our general definition.

2.2 Main results
Our first main result is to define a diagram in the general case of connections with any number
of poles of any type on the Riemann sphere:

Theorem 2.2.1. Given any algebraic connection (E,∇) on a Zariski open subset of the affine
line C = P1 r∞, there is a uniform way to define a diagram Γ and a dimension vector d ∈ NN
such that the wild character varietyMB determined by (E,∇) has dimension

dim(MB) = 2− (d,d)

where ( , ) is the symmetric bilinear form determined by the Cartan matrix C = 2−B of Γ.

The diagram Γ(E,∇) = Γ(Θ,C) that we associate to the connection (E,∇) only depends
the singularity data (Θ,C) at all of the singular points. It has the following structure: it consists
of a core diagram Γc to which are then glued legs encoding certain conjugacy classes.

Let I =
⋃
a∈P1 Ia be the disjoint union of all the circles at all the points of the Riemann

sphere. There is a map π : I → P1 taking a circle to the point it lies over. As before the formal
type of the connection determines an integer ni and a conjugacy class Ci ⊂ GLni(C) for each
circle i ⊂ I, so that ni = 0 for all but a finite number of circles at each singular point.

We then modify this formal data as follows: if i is a tame circle at finite distance (π(i) ∈ C
and qi = 0) then replace ni by the integer

mi = rank(A− 1)

where A ∈ Ci. Thus A = 1 + vu for a surjective map u : Cni → Cmi and an injective map
v : Cmi → Cni . Then replace Ci by the conjugacy class C̆i of (1 + uv) in GLmi(C). See section
4.1 for more details; this class is called the child of Ci in [22, appendix] If π(i) =∞ or if i is not
tame (qi 6= 0) then we do no modification: mi = ni and C̆i = Ci. This defines modified formal
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(a) Regular singular case (b) simply laced case (c) General case

Figure 2.2: Examples of diagrams associated to connections

data (Θ̆, C̆), where Θ̆ is the collection of circles with multiplicities mi ≥ 1. The core nodes Nc

of our diagram are given by this collection of circles:

Nc = {circles i ⊂ I
∣∣ mi ≥ 1}.

We glue the leg determined by the conjugacy class C̆i onto the node i ∈ Nc as before. The
remaining step to define the diagram is to define the integers Bij = Bji for i, j ∈ Nc:

Definition 2.2.2. Suppose i, j ∈ Nc are active circles and write ai = π(i), aj = π(j) ∈ C ∪∞,
so that i = 〈qi〉, j = 〈qj〉 are circles at ai, aj respectively. Let αi = Irr(qi), βi = ram(qi) and
similarly for j. If ai = aj let us denote by B∞i,j the number determined by the expressions (2.1.3)
and (2.1.4), applied to the circles i, j.

1. If ai = aj =∞ then Bij = B∞ij .

2. If ai =∞ and aj 6=∞ then Bij = Bji = βi(αj + βj).

3. If ai 6=∞, aj 6=∞ and ai 6= aj then Bij = Bji = 0.

4. If ai = aj 6=∞ then Bij = Bji = B∞ij − αiβj − αjβi.

We will prove directly that this does indeed define a diagram in §4.3, independently of the
proof suggested in [26] for the special case of one irregular singularity. We will prove Thm. 2.2.1
computing the dimension in chapter 5.

The basic idea leading to this definition goes as follows: we want to reduce to the situation of
[26] by applying the Fourier-Laplace transform. The Fourier-Laplace transform already plays an
important role in previous constructions, e.g. it is underlying the different readings of the quiver
in [17, 20], and often allows to pass from one Lax representation to another for the Painlevé
equations. The Fourier-Laplace transform induces a formal Fourier transform at the level of the
formal data [12, 68]. More explicity, the stationary phase formula [70, 44, 91] relates the global
formal data of a connection to those of its Fourier-Laplace transform. A remarkable fact is that
the Fourier-Laplace transform acts on the formal data in a non-local way. We use this property
to send all active circles to infinity and recover the setting of [26]. The non-trivial point is to
ensure that the diagram we obtain is independent of the choices made along the way.

Let us sketch the main ideas a little more precisely. Connections on Zariski open subsets of
the affine line are closely related to modules over the Weyl algebra A1 := C[z]〈∂z〉. There is a
natural action of the group SL2(C) on the Weyl algebra: a matrix

A =
(
a b
c d

)
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in SL2(C) induces an automorphism of the Weyl algebra by

(z, ∂z) 7→ (az + b∂z, cz + d∂z).

Of particular significance among those transformations is the Fourier-Laplace transform, corre-
sponding to the matrix (

0 1
−1 0

)
.

The stationary phase formula [44, 91] implies that those symplectic transformations induce
an action of SL2(C) on modified singularity data (Θ̆, C̆) of connections. The main result of
this work, ensuring the diagram is independent of the choices, leading to our definition, is the
following:

Theorem 2.2.3. The diagram is invariant under symplectic transformations: if A ∈ SL2(C),
then

Γ(A · (Θ̆, C̆)) = Γ(Θ̆, C̆).

The diagram is thus an invariant under the action on SL2(C). As a consequence, a given
diagram can be read in different ways, as coming from connections with different formal data
related by a symplectic transformation.

An important ingredient in the proof of this theorem is an explicit formula for the number
of edges or loops as a function of the degrees of the terms of the exponential factors, which is of
independent interest:

Theorem 2.2.4. Let 〈q〉, 〈q′〉 two distinct exponential factors at infinity, and write:

q =
p∑
j=0

bjz
−αj/β
∞ , q′ =

p′∑
j=0

b′jz
−α′j/β

′

∞

with bj 6= 0, b′j 6= 0. Their ramification orders are respectively β, β′ and their slopes are α/β,
α′/β′, with α := α0, α′ := α′0. Let r the integer such that the slopes of their different parts (see
§4.3.2 for the definition) are αr/β and α′r/β′.

• Assume that and αr/β ≥ α′r/β
′. Then the number of edges between I = 〈q〉 and I ′ = 〈q′〉

is

BI,I′ =(β′ − (α′0, β′))α0 + ((α′0, β′)− (α′0, α′1, β′))α1 + · · ·+ ((α′0, . . . , α′r−2, β
′)− (α′0, . . . , α′r−1, β

′))αr−1

+ (α′0, . . . , α′r−1, β
′)αr − ββ′.

• In particular, if q and q′ have no common parts and α/β ≥ α′/β′, then

BI,I′ = β′(α− β).

Here, the notation (·, . . . , ·) refers to the greatest common divisor of a tuple of integers.
There is a similar formula for the number of loops at a circle 〈q〉 (see §4.3.2).

Several other properties of the quivers in the previous known cases remain true in the more
general setting. There are still several representations of the same diagram, generalizing the
different readings of the simply laced case, corresponding to different formal data associated to
connections with different ranks and different numbers of singularities.

Furthermore, the simple Weyl reflections defined from the Cartan matrix of the diagram with
respect to some vertices can be interpreted as coming from operations on connections. There are
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indeed several operations that one can apply to connections: SL2(C) transformations, Möbius
transformations, and the operation of tensoring with a rank one connection. In the particular
cases considered in [17, 20], elements of the Weyl group associated to the diagram are the
counterpart on the diagram side of the action of some combination of such operations. This
picture partially extends to the general case: there is a class of vertices (corresponding to
what we call simple circles) such that simple Weyl reflections at those vertices come from some
combination of these operations on connections (see §7.3).

Theorem 2.2.5. Let (Θ̆, C̆) be modified formal data of a connection (E,∇), and (Γ,d,q) the
triple consisting of the associated (full) diagram, dimension vector, and vector of multiplicative
labels. Let I the set of vertices of Γ and i ∈ I. Assume that i is not in the core, or corresponds
to a simple circle. There is a combination of twists and SL2(C) transformations such that the
triple associated to Φ · (Θ̆, C̆) is

(Γ, si(d), ri(q)),

where si and ri are the i-th simple Weyl reflections acting on ZI and (C∗)I respectively.

Applications to Painlevé equations Our construction of diagrams allows us to obtain
a diagram for the third Painlevé equation, whose standard Lax representation features two
irregular singularities. We recover in this way the diagram given in [26], which was obtained
there from one alternative Lax representation having one ramified irregular singularity along with
two simple poles. This alternative Lax representation is simply interpreted in our framework as
a different representation of the same diagram. We also obtain diagrams for the “degenerate”
versions of the third Painlevé equation, for which the irregular singularities are ramified.

There are higher dimensional analogues of Painlevé equations, corresponding to higher di-
mensional wild character varieties. In particular, 4-dimensional isomonodromy systems have
been extensively studied by the Japanese school of differential equations. The article [65] gives
a list of representations of 4-dimensional isomonodromy systems, where they are obtained as
degenerations of Fuchsian connections. In many cases, they have several Lax representations
corresponding to several representations of the same supernova graph. Our diagrams allow us
to generalize this fact to the remaining cases which do not fit in the supernova framework, so
that we have:

Theorem 2.2.6. In the list of [81] of representations of (two-dimensional) Painlevé equations,
and in the list of [65] 4-dimensional isomonodromy systems, all different representations men-
tioned there for a given isomonodromy system correspond to different representations of the
corresponding diagram.

As for the other Painlevé equations involving only one irregular singularity, the Okamoto
symmetries of Painlevé III have a modular interpretation in terms of operations on connections
(see §7.5).

Theorem 2.2.7. The Okamoto symmetries of the Painlevé III equation admit a geometrical
realization in terms of operations on connections.

Part of these operations correspond to simple Weyl reflections of the diagrams associated
to its Lax representations. The novelty of the Painlevé III case is that we need to pass from
one diagram to another (and not just between different representations of the same diagram) to
make sense of all the symmetries.

Orbits under operations of connections We finally investigate a few questions related to
the action on connections of SL2(C) transformations, twists, and Möbius transformations. An
orbit under the action of the group generated by these operations will always contain connections
with arbitrarily large ranks. (see e.g. [20, §11.3] for an explicit example). Arinkin’s extension
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[6] of Katz’ middle convolution algorithm [64] shows that any irreducible rigid connection can
be brought to the trivial rank one connection by repeated application of such operations. In the
non-rigid case, it is thus an interesting question to ask whether any connection can be brought
in a similar way to a connection which is “minimal” in some sense.

Using our explicit formula for the number of edges/loops in the diagram with one vertex
associated to one exponential factor, we are able to obtain a couple of preliminary results in
this direction. A simple case to consider is the case of connections with just one singularity at
infinity, with only one active circle. There is an explicit simplification algorithm bringing any
exponential factor to a “minimal” one. For small number of loops, we obtain that the diagram
classifies the exponential factors up to twists and Fourier transform: when then number of loops
is equal to 0,1 or 2, there is only one class of minimal exponential factors.

Theorem 2.2.8. Let 〈q〉∞ an exponential factor at infinity and k the number of loops in the
diagram associated to 〈q〉.

• k = 0 if and only if there exists a combination of twists and applications of the Fourier
transform, explicitly provided by the algorithm, sending 〈q〉∞ to the tame circle 〈0〉∞.

• k = 1 if and only if the algorithm applied to 〈q〉∞ terminates at an exponential factor with
the same levels as 〈z5/3〉∞.

• k = 2 if and only if the algorithm applied to 〈q〉∞ terminates at an exponential factor with
the same levels as 〈z7/5〉∞.

33



Chapter 3

Irregular connections, wild character
varieties and quivers

In this chapter, we review the main facts about the formal classification of irregular connections,
the Stokes phenomenon and the quasi-Hamiltonian description of the wild character varieties.
We also recall the known results relating wild character varieties to quivers, part of which we
wish to generalize.

3.1 Formal classification of irregular connections

3.1.1 Formal normal form

Let us recall the definition of an algebraic connection (in the one-dimensional case):

Definition 3.1.1. Let Σ a smooth complex algebraic curve. An algebraic connection on Σ is a
pair (E,∇) such that

1. E is an algebraic vector bundle on Σ (i.e. a locally free OΣ-module).

2. ∇ : E → E ⊗ Ω1 satisfying the Leibniz rule: ∇(fs) = f∇s + dfs, for f ∈ OΣ and s a
section of E.

We have the analogous definitions in the smooth and analytic categories, using the appro-
priate sheaves of functions and one-forms. In this work, we will be interested in algebraic
connections on a Zariski open subsets of the affine line.

In a local trivialization of E above an open subset U ⊂ Σ, a connection takes an explicit
form

∇ = d−A,

where A is a matrix-valued one form. A change of local trivialization is determined by a local
gauge transformation, that is a map g : U → GLn(C). Under this gauge transformation, the
matrix A is transformed into

g ·A = gAg−1 + dgg−1.

The problem of formal classification of connections deals with connections on the formal
punctured disk.

Definition 3.1.2. Let K := C((z)) the field of formal Laurent series in the variable z. A
connection on the formal punctured disk is a pair (E,∇) where E is a K-vector space and
∇ : E → Edz a C-linear map satisfying the Leibniz rule.
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It turns out that, using formal gauge transformations and possibly passing to a finite cover,
i.e. passing to a variable t such that z = tr for some integer r, it is always possible to transform
a connection on the formal punctured disk to a block diagonal normal form. This is the content
of the classical Fabry-Hukuhara-Turritin-Levelt theorem:

Theorem 3.1.3 (see e.g. [43, 99, 70, 91]). Let (E,∇) a connection on the formal punctured
disk given by ∇ = d − Adz with A ∈ Mn(C((z))). There exists an integer r, a formal gauge
transformation g ∈ GLn(C((t))) with tr = z sending ∇ to a connection of the form

∇0 = d−
(
dQ+ Λ

z
dz

)
,

with Q a diagonal matrix of the form

Q = diag(q11n1 , . . . , qk1nk),

where qi ∈ t−1C[t−1] for i = 1, . . . , k are distinct polynomials in t−1 and Λ a block diagonal
matrix

Λ = diag(Λ1, . . . ,Λk),

with Λi ∈Mni(C) a constant matrix.

∇0 is a formal normal form of the connection. The polynomials q1, . . . , qk are the exponential
factors of the connection, and Λ is its exponent of formal monodromy. Indeed, a fundamental
solution of ∇0 is given by

eQzΛ,

so its coefficients are linear combinations of terms involving the exponentials eqi , and when going
around the singularity at z = 0 the fundamental solution gets multiplied by e2iπΛ. This is the
monodromy of ∇0, and is often called the “formal monodromy” of ∇.

Definition 3.1.4. (E,∇) is regular singular if Q = 0, that is if it has no exponential factors.
Otherwise, (E,∇) is irregular.

3.1.2 The exponential local system I

In this work, it will be more convenient for us to use a different formulation of the formal
classification in terms of local systems, that we review now. This is Deligne’s approach to the
formal classification, which was given an intrinsic formulation in [24] (see also [25]).

The idea is to see the exponential factors as sections of a local system on the circle of
directions around the singularity. Let Σ a Riemann surface and a ∈ Σ. Let π : Σ̂→ Σ the real
oriented blow-up at a of Σ. The preimage ∂ := π−1(a) is a circle whose points correspond to
the directions around a. An open subset of ∂ corresponds to a germ of sector at a.

Let z be a local coordinate at a. The exponential local system I is a local system of sets
(that is a covering space) on ∂ whose sections are germs of holomorphic functions on sectors of
the form ∑

i

aiz
−ki ,

where ki ∈ Q>0, and ai ∈ C. The connected component of such a local section is a finite
order cover of the circle ∂. More precisely, let r the smallest integer such that the expression
q =

∑
i aiz

−ki is a polynomial in z−1/r. The corresponding holomorphic function is multivalued,
and becomes single-valued when passing to a finite cover tr = z. Therefore, the corresponding
connected component, which we denote by 〈q〉, is a r-sheeted cover of ∂. As a topological space,
it is homeomorphic to a circle, and I is thus a disjoint union of (an infinite number of) circles.
The exponential local system can also be defined in an intrinsic way without using an explicit
local coordinate (see e.g. [25] Rmk. 2).
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Notice that there are several polynomials in z−1/r giving rise to the same connected compo-
nent I = 〈q〉. They correspond to the Galois orbit of q, under the Galois group of I → ∂ which
is isomorphic to Z/rZ. Explicitly, if we write q =

∑s
j=1 ajz

−j/r, the polynomials p such that
〈q〉 = 〈p〉 are the

qi =
s∑
i=1

ajω
jz−j/r, i ∈ Z/rZ,

where ω = e−
2iπ
r . We call r the ramification order of the circle I = 〈q〉, and denote it by ram(q).

T. The degree of q as a polynomial in z−1/r is its irregularity, which we denote by Irr(q). he
slope of q is the quotient s

r . If r = 1 we say that the circle 〈q〉 is unramified. We call 〈0〉 the
tame circle.

If d ∈ ∂, we denote by Id the fibre of I over the direction d. Taking d as a basis point of ∂,
the monodromy of I is the automorphism

ρ : Id → Id

of the fibre Id obtained when going around ∂.

3.1.3 Local systems on I

Definition 3.1.5. An I-graded local system on ∂ is a local system V 0 → ∂ of finite dimensional
vector spaces, together with a locally constant grading of each fibre Id, with d ∈ ∂ by the set
Id, where Id is the fibre of I → ∂ above d. This means that for each d ∈ ∂ there is a direct sum
decomposition

V 0
d =

⊕
i∈Id

V 0
d (i).

Let us set ni := dimV 0
d (i) for i ∈ Id. Since V 0 is finite dimensional, there is only a finite

number of elements i ∈ Id for which ni is nonzero. Furthermore, since the grading is locally
constant, ni only depends on the connected component I of I containing i, and we set nI := ni.

Definition 3.1.6. An irregular class is a function Θ : π0(I)→ N with compact support.

The dimensions ni of the graded pieces thus define an irregular class Θ(V 0) associated to
V 0. We define the active circles to be the connected components I ∈ π0(I) such that nI 6= 0.

Let us again fix a basis direction d ∈ ∂ and denote also by ρ ∈ Aut(Vd) the monodromy of
V :

ρ : V 0
d → V 0

d .

Since the grading is locally constant, the monodromy of V has to be compatible with the
monodromy of I, that is

ρ(V 0
d (i)) = V 0

d (ρi),

for any i ∈ Id.
More explicitly, let I = 〈q〉 be a circle in I with ramification r. Fix d ∈ ∂ and set Id =:

{i0, . . . , ir−1} such that ρ(ik) = ik+1 for i = 0, . . . , r − 1 (with ir := i0). The monodromy of the
piece V 0

I,d :=
⊕r−1
k=0 V

0
d (ik) has the form

ρI =


0 . . . 0 ρr−1,0

ρ0,1
. . . . . . 0

... . . . . . . ...
0 . . . ρr−2,r−1 0

 ∈ Aut(V 0
I ) (3.1.1)

with ρik,ik+1 : V 0
d (ik)→ V 0

d (ik+1).
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The group GrAut(V 0) of graded automorphisms of V 0 is isomorphic to

GrAut(V 0) =
∏
i∈Id

GL(V 0
d (i)).

An I-graded local system is entirely determined by the data of its irregular class and the iso-
morphism class of its monodromy under graded automorphisms.

This language enables us to give a more geometric formulation of the formal classification,
due to Deligne.

Theorem 3.1.7 (see [69]). The category of connections on the formal punctured disk is equiv-
alent to the category of I-graded local systems.

In this description the active circles of the local system V 0 → I correspond to the exponen-
tial factors of the connection, and the monodromy of V 0 is related to the exponent of formal
monodromy. In particular, a connection is regular if and only if its only active circle is the tame
circle 〈0〉.

It is possible to view an I-graded local system V 0 → ∂ as a local system on I, such that the
following diagram commutes:

V 0 I

∂

π

If i ∈ I, the fibre of V 0 over i is V 0
i := V 0

d (i), where d = π(i) ∈ ∂. If I is a circle of ramification
r, when going once around I we go r times around ∂. As a consequence, the monodromy ρ̂I of
the piece V 0

I , now seen as a local system over I, is related to the monodromy of V 0
I seen as a

I-graded local system by

ρ̂I = ρ0,r−1 ◦ ρr−1,r−2 ◦ · · · ◦ ρ1,0 : V 0(i)→ V 0(i),

keeping the previous notations, with i0 = i.

Theorem 3.1.8. The category of connections on the formal punctured disk is equivalent to the
category of local systems on I with compact support.

3.1.4 Global formal data

We now return to the global situation. Let Σ be a Riemann surface. If a ∈ Σ, we define as
before an exponential local system Ia → ∂a, where ∂a is the circles of directions at a. Let
a = {a1, . . . , am} ⊂ Σ and (E,∇) be an algebraic connection on Σ◦ = Σ \ a. Let π : Σ̂ → Σ
the real oriented blowup of Σ at a. We have π−1(a) = (∂a1 , . . . , ∂am). The formal classification
associates to (E,∇) at each singularity ai a local system V 0

ai → Iai . If a ∈ Σ is not a singularity,
we may define V 0

a → Ia to be the trivial local system with all pieces having zero rank. This
yields a local system V 0 → I on the union of the exponential local systems

I := ta∈ΣIa.

(In the previous paragraph, we had dropped the subscript in Ia to simplify the notations, from
now on I refers to the global exponential local system).

Definition 3.1.9. V 0 → I is the formal local system associated to the connection (E,∇).

The formal local system V 0 → I defines a global irregular class Θ : π0(I) → N. We denote
by I the set Θ−1(N>0) of active circles.
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3.2 The Stokes phenomenon
The Stokes phenomenon was discovered by Stokes while studying asymptotic expansions for
solutions of the Airy equation. The basic idea is the following. The Hukuhara-Turritin-Level
theorem answers the question of the formal classification of connections on the punctured disk,
but this does not answer the question of the analytic classification. If (E,∇) a connection on the
punctured disk. It can be brought to its formal normal form using a formal gauge transformation.
When the connection is regular, it turns out that the formal gauge transformation is actually
convergent, and defines an analytic gauge transformation. In this case, the formal and analytic
classifications coincide. However, when the connection is irregular, this is not the case any more.
One can find an analytic gauge transformation which is asymptotic to the formal one, but this
only works in limited sectors around the singularity. To characterize the analytic isomorphism
class of the connection, one needs further data, the so-called Stokes data, to encode how to pass
from one sector to another.

The basic reason for which formal gauge transformations can only be resummed on sectors
around the singularity is that the asymptotic behaviour of the exponential factors eq strongly
depend on the direction along which one goes towards the singularity. As a consequence, the
relative order of dominance of the different exponential factors changes as one goes around the
singularity. In this paragraph, we review the description of Stokes data, focussing, among the
several approaches, on the description in terms of Stokes local systems, which is the one leading
to explicit presentations of the wild character varieties. We refer the reader to [24] for a detailed
discussion of the different points of views on Stokes data.

3.2.1 Singular directions, Stokes arrows and Stokes groups

Let (E,∇) a connection on the punctured disk and V 0 → I0 the corresponding formal local
system, with irregular class Θ. Let I ⊂ I0 the finite subcover of ∂ consisting of the active circles
of V 0.

Definition 3.2.1. Let d ∈ ∂. We define a partial order ≺d on the Id on the following way. Let
i, j ∈ Id, and let qi, qj be the corresponding germs of holomorphic functions. We say that i ≺d j
if and only if the exponential eqi−qj decays the fastest on the direction d when z tends to 0. This
happens if the leading term of the difference (qi − qj)(z) is in R<0 when z is in the direction d.

In this case, we will say there is a Stokes arrow from j to i.

Definition 3.2.2. Let d ∈ ∂. If there exists i, j ∈ Id such that i ≺d j, then d is a singular
direction, or anti-Stokes direction for (E,∇). We denote by A ⊂ ∂ the set of singular directions.

We can give an alternative description of singular directions, using the notion of Hom(〈q〉, 〈q′〉)
already mentioned in the introduction.

Definition 3.2.3. Let 〈q〉, 〈q′〉 ∈ π0(I) two circles (not necessarily distinct). We define Hom(〈q〉, 〈q′〉)
to be the subcover of I whose local sections on a small sector U are of the form

qU − q′U ,

with qU a local section of 〈q〉, and q′U a local section of q′U .

Because of ramification, the cover Hom(〈q〉, 〈q′〉) can in general have several connected
components, possibly with different slopes and ramification orders. For example we have
Hom(〈z1/2〉, 〈z1/2〉) = 〈0〉 ∪ 〈2z1/2〉.

Definition 3.2.4. Let 〈q〉 ∈ π0(I) a circle. A point of maximal decay of 〈q〉 is a point q of 〈q〉
such that eq has the fastest decay in the direction π(q) ∈ ∂.
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(a) One active circle 〈z5/2〉 (b) Two active circles: 〈z2〉 and 〈−z2〉

Figure 3.1: Stokes diagrams for two examples of irregular classes. The diagram represents the
growth rate of the exponential factors as a function of the direction around the singularity. The
dotted circle separates when the exponential factor is growing or decreasing. The Stokes arrows
are also represented.

All circles except the tame circle 〈0〉 have points of maximal decay: the number of points of
maximal decay of a circle 〈q〉 is equal to the irregularity Irr(q).

If 〈q1〉, . . . , 〈qs〉 are the active circles of the irregular class Θ, the Stokes arrows correspond to
the points of maximal decay of the covers Hom(〈qi〉, 〈qj〉), i, j = 1, . . . , s. The singular directions
are the images by π of these points of maximal decay.

Definition 3.2.5. Let d ∈ ∂. We say that d is a Stokes direction for (E,∇) is there exists
i, j ∈ Id such that the leading term of the difference (qi − qj)(z) is in iR when z tends to 0 in
the direction d. The Stokes directions are the directions where the dominance ordering of the
exponential factors change.

When the exponential factors have just one level, that is consist of only one monomial, the
relative dominance order of the exponential factors can be visualized on the Stokes diagram of
the connection, which is obtained by plotting |eq| as a function of d ∈ ∂ for each active circle
〈q〉. The Stokes directions are the directions where some of the strands of the diagram cross.

Definition 3.2.6. Let d ∈ A a singular direction. The Stokes group associated to d is the
unipotent subgroup Stod ⊂ GL(V 0

d ) whose Lie algebra is given by

stod :=
⊕
i≺dj

Hom(V 0
d (j), V 0

d (i))

3.2.2 Stokes local systems

The way to pass from one sector to the next can be axiomatized by the notion of Stokes local
systems [25, 24], that we now describe. The idea is to define a new Riemann surface by adding
a tangential puncture at each singular direction. A Stokes local system is then a local system
on this new surface, such that the monodromies around the tangential punctures have to belong
to the corresponding Stokes groups.

More precisely, we define the new Riemann surface Σ̃(Θ) as follows. We define the halos
H ⊂ Σ̂ as a tubular neighbourhood of ∂. H is a union H = H1 ∪ · · · ∪ Hm of annuli at each
singularity. One of the boundary of each annulus Hi is the circle ∂i. Let ∂′i be the other boundary
of Hi, and ∂′ = ∂′1 ∪ . . . ∂′m. Let e : ∂ → ∂′ an homeomorphism preserving the order.

Let Θ be a global irregular class corresponding to Σ◦. It defines a set A ⊂ ∂ of (global)
singular directions. We define the new Riemann surface as

Σ̃(Θ) := Σ̂ \ e(A),
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Figure 3.2: Local picture: the halo and the tangential punctures at a singulartity.

Figure 3.3: Global picture of a Stokes local system: at each singularity there is a halo with
tangential punctures.

that is for each singular direction d ∈ A we remove from Σ̂ the corresponding tangential puncture
e(d). Let us denote by γd the small positive loop in Σ̃ starting from d, going around the tangential
puncture e(d) and going back to d.

Definition 3.2.7. A Stokes local system is a pair (V,Θ) where Θ is a global irregular class and
V is a local system of vector spaces on Σ̃(Θ) equipped with an I-grading over the halo H (of
dimension Θ), such that the monodromy Sd := ρ(γd) is in Stod ⊂ GL(Vd) for each d ∈ A.

The Stokes local system yield a topological description of the category of algebraic connec-
tions on Σ◦.

Theorem 3.2.8. The category of algebraic connections on Σ◦ is equivalent to the category of
Stokes local systems (V,Θ) with singularities on a.

3.3 Wild character varieties
The topological description of meromorphic connections in terms of Stokes local systems gives an
explicit presentation of the Betti moduli spaces, the wild character varieties. In this paragraph,
we review these presentations as well has their symplectic structures.

3.3.1 Quasi-Hamiltonian geometry

The wild character varieties are obtained as reductions of some quasi-Hamiltonian spaces. We
thus recall here the basic facts about complex quasi-Hamiltonian geometry needed to describe
their quasi-Hamiltonian structure, following mostly [21, 25]. The basic idea [3] is that quasi-
Hamiltonian geometry is a multiplicative version of usual Hamiltonian geometry. Whereas for
a Hamiltonian G-space the moment map takes its values in the (dual of the) Lie algebra of the
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Lie algebra of the group G, for a quasi-Hamiltonian G-space it takes its values in the group G
itself. This idea first appeared for the circle group [73] then for general compact Lie groups [3],
before being translated to the complex algebraic setting in [16] to construct the generic wild
character varieties, and then extended in [21] to the general case.

Let G a connected complex reductive group, and g its Lie algebra (we will only need here the
case G = GLn(C)). We fix an invariant symmetric nondegenerate bilinear form (·, ·) : g×g→ C.
Let θ, θ̄ ∈ Ω1(M, g be the Maurer-Cartan forms on G. In the case we G = GLn(C) we are
interested in, G is a matrix group and we have θ = g−1dg, θ̄ = dgg−1. IfA,B, C ∈ Ω1(M, g) are g-
valued one-forms, define (ABC) := (A, [B, C])/2 ∈ Ω3(M) (this is invariant under permutation of
A,B, C). The canonical bi-invariant three-form on M is 1

6(θ3). We denote by gXg−1 := Adg(X)
the adjoint action of G on g, with g ∈ G and X ∈ g. If X ∈ g, the fundamental vector field vX
associated to X is defined by (vX)m := − d

dt(e
tX ·m)|t=0.

Definition 3.3.1. A quasi-Hamiltonian G-space is a complex manifold M together with an
action of G on M , an equivariant map µ : M → G (where the action of G on itself is the
conjugation), and a holomorphic 2-form ω ∈ Ω2(M), such that

1. dω = µ∗(θ3)/6, with θ3/6 the canonical three-form on G.

2. For any X in g, ω(vX , ·) = 1
2µ
∗(θ + θ̄, X) ∈ Ω1(M).

3. For each point m ∈M , Kerωm ∩Ker dµ = {0}.

Example 3.3.2. Let G = GLn(C) and C ⊂ G be a conjugacy class. Then C has a structure of
quasi-Hamiltonian G-space, with the action of G by conjugation, the moment map simply given
by the inclusion C ⊂ G, and the two-form ω such that

ωg(vX , vY ) = 1
2((X, gY g−1)− (Y, gXg−1))

In particular, if G is abelian or trivial, M is a symplectic manifold.

Example 3.3.3 (The double). The space G×G is a quasi-Hamiltonian G×G-space, with the
action of G×G given by (g, k) · (C, h) = (kCg−1, khk−1), with moment map

µ(C, h) = (C−1hC, h−1) ∈ G×G.

The two form is given by
2ω = (γ̄,Adh γ̄) + (γ̄, η̄ + η),

where γ̄ = C∗(θ), η = h∗(θ), and η̄ = h∗(θ̄), where the notation C∗(θ) denotes the pullback
under the map (C, h) 7→ C from G×G to G of the form θ, and similarly for the other forms.

The quasi-Hamiltonian version of Hamiltonian reduction can be stated as follows.

Theorem 3.3.4. Let M a quasi-Hamiltonian G×H-space, with moment map (µG, µH) : M →
G × H. Assume that the quotient of µ−1

G (1G) by G of the inverse image of the identity in G
under the first component of the moment map is a nonsingular manifold. Then the restriction
of the two-form to µ−1

G (1) induces a symplectic form on the quotient

M // G := µ−1(1)/G

that makes it a quasi-Hamiltonian H-space.

In particular, if H is abelian or trivial, the quasi-Hamiltonian quotient is a symplectic man-
ifold.

An important construction with quasi-Hamiltonian spaces is the fusion product, which we
now define.
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Theorem 3.3.5. Let M be a quasi-Hamiltonian G × G × H-space with moment map µ =
(µ1, µ2, µ3) : M 7→ G × G × H. Let us consider the action of G × H on M defined via the
diagonal embedding (g, h) 7→ (g, g, h). This makes M a quasi-Hamiltonian G × H space, with
two-form

ω̃ = ω − 1
2(µ∗1θ, µ∗2θ̄),

and with moment map
µ̃ = (µ1 · µ2) : M → G×H.

Definition 3.3.6. Let M1 a G×H1-space and M2 a G×H2-space. Their fusion product

M1 ~M2

is the quasi-HamiltonianG×H1×H2-space obtained from the quasi-HamiltonianG×G×H1×H2-
space M1 ×M2 by applying the previous theorem to the two factors of G.

In particular, this operation can be used to define the quasi-Hamiltonian reduction of a G×H
space taken at a conjugacy class C ∈ G rather that at the value 1, by setting

M //C G = µ−1
G (C)/G ∼= (M ~ C′) // G,

where C′ denotes the inverse conjugacy class and we take the reduction of the fusion product at
the value 1G.
Example 3.3.7. The internally fused double D is obtained by taking the fusion of the two
copies of G in the double D = G × G. It is a quasi-Hamilonian G-space, with G acting as
g · (a, b) = (gag−1, gbg−1). The moment map is given by the commutator

µ(a, b) = aba−1b−1,

and the two-form by

2ω = −(a∗θ, b∗θ̄)− (a∗θ̄, b∗θ)− ((ab)∗θ, (a−1b−1)∗θ̄).

As we shall see, D will be a building block in the quasi-Hamiltonian description of wild character
varieties for surfaces with nonzero genus.

3.3.2 Twisted quasi-Hamiltonian spaces

Because of the presence of ramification in the exponential factors, we need to consider a further
extension: twisted quasi-Hamiltonian spaces [25].

As before, let G be a connected complex reductive group. The ingredient we add to the
untwisted case is that we consider φ ∈ Aut(G) an automorphism of G, that we call the twist.
We fix a symmetric nondegenerate complex bilinear form (·, ·) on the Lie algebra g of G, which
is invariant under the adjoint action of G as well as under φ. Let Γ ⊂ Aut(G) be the subgroup
generated by φ, and G̃(φ) := Gn Γ ⊂ Gn Aut(G). We define

G(φ) := {(g, φ)| g ∈ G} ⊂ Γ̃(φ).

The natural left and right actions of G on G(φ) are free and transitive: this implies that G(φ)
is a G-bitorsor. Indeed, if (g1, g2) ∈ G×G, we have g1 · (g, φ) · g2 = (g1gφ(g2), φ). In particular,
we have now the φ-conjugation action.
Definition 3.3.8. A twisted quasi-Hamiltonian G-space is a complex manifold M equipped
with an action of G, with an invariant holomorphic two-form ω, and a G-equivariant moment
map µ : M → G(φ) to a twist of G, where G acts on G(φ) by the twisted conjugation action.

A twisted quasi-Hamiltonian G-space is thus close to a quasi-Hamiltonian G̃-space, the
difference being that we restrict to the action of the identity component of G̃.

The fusion operation carries over to the twisted case. IfM1,M2 are twisted quasi-Hamiltonian
G-spaces, with moment maps µ1 : M1 → G(φ1), µ2 : M2 → G(φ2), their fusion M1 ~M2 is a
twisted quasi-Hamiltonian G-space with moment map µ : M1 ~M2 → G(φ1φ2).

42



3.3.3 Quasi-Hamiltonian construction of wild character varieties

In the same way as moduli spaces of local systems are character varieties, moduli spaces of
Stokes local systems give rise to the wild character varieties.

Keeping previous notations, let (V,Θ) a Stokes local system with singularities on a ⊂ Σ.
Let us choose a base point bi ∈ ∂ai on the circle of directions around each ai. Let us also fix a
framing of V at di, that is an isomorphism of vector spaces

Fi ∼= Vbi ,

where
Fi = CΘai :=

⊕
j∈(Iai )bi

CΘ(j).

is graded by (Iai)bi , such that each piece F(j) has dimension Θ(j).
Let Π := Π1(Σ̃,b), where b := {b1, . . . , bm} the fundamental groupoid of Σ̃ with base points

bi.
Let Hom(Π, G) be the set of isomorphism classes of representations of this groupoid into

G. A framed local system determines via its monodromy an element in Hom(Π, G). Actually,
because of the conditions in the definition of a Stokes local system. The representation associated
to a framed Stokes local system lives in a subset HomS(Π, G) of Stokes representations, that we
will now describe.

Let us view each boundary circle ∂i as a loop based in bi. Let V 0
i → ∂ai be the Iai graded

local system on ∂ai with irregular class Θai associated to V. Let us denote by I1, . . . , Ik the
active circles corresponding to Θai . In the direct sum decomposition (V 0)bi =

⊕k
l=1(V 0

Il
)bi , with

(V 0
Il

)
bi

=
⊕
j∈(Il)bi

V 0(j), its monodromy (taking bi as basis point) is of the form

ρ(∂ai) =

ρI1 . . . 0
... . . . ...
0 . . . ρIk

 ⊂ GL(V 0
bi) ∼= GL(Fi),

with each ρIl of the form (3.1.1). The set of such matrices (seen as elements in GL(Fi) is a twist
of the group

Hi := GrAut(Fi) =
∏

j∈(Iai )bi

GLΘ(j)(C),

that we denote by H(∂ai).
If d ∈ Ai is a singular direction at ai, let λd ⊂ ∂i an arc from bi to d. By parallel translation

along λd we may identify the Stokes group Stod ⊂ GL(Vd) to a subgroup of GL(Fi) = GLn(C).
Let us also define

γ̂d := λ−1
d ◦ γd ◦ λd ∈ Π

to be the simple loop around the tangential puncture e(d) based on bi where γd designates as
before the simple loop around e(d) based on d. From the definition of a Stokes local system we
immediately get that the monodromy ρ(γ̂d) of V around γ̂d belongs to Stod. In summary:

Lemma 3.3.9. Let ρ ∈ Hom(Π, G) the representation associated to a Stokes local system (V,Θ).
Then ρ satisfies the following conditions:

1. ρ(∂ai) ∈ H(∂ai) for each boundary circle ∂i.

2. ρ(γ̂d) ∈ Stod for any singular direction d ∈ A.

Definition 3.3.10. A representation ρ ∈ Hom(Π, G) is a Stokes representations if it satisfies
these two conditions.
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Figure 3.4: The paths for expressing the monodromies of a Stokes local system.

The set M̃B(Σ,Θ) of isomorphism classes framed local systems with irregular class Θ is in
bijection with the space HomS(Π, G) of Stokes representations. There is a natural action of the
group H := H1 × · · · ×Hm on HomS(Π, G), which amounts to changing the framings.

By choosing a basis of paths in Π, we get an explicit presentation of HomS(Π, G), which we
now describe. HomS(Π, G) is obtained as the fusion of building blocks A(V 0

ai) associated to each
singularity, which are quasi-Hamiltonian spaces.

Assuming for a while that there is only one singularity a ∈ Σ to simplify notations and drop
the subscripts i, we define

A(V 0) := G×H(∂)× Sto,

where Sto =
∏
d∈A Stod ⊂ GLn(C) is the product of Stokes groups. Elements of A(V 0) will be

denoted by (C, h,S), with S = (S1, . . . , Ss), d1, . . . , dk being the successive singular directions
at a (going in the positive direction from b). There is a natural action of G×H on A(V 0), given
by

(g, k) · (C, h,S) = (kCg−1, khk−1, kSk−1). (3.3.1)

We define an algebraic two-form on A(V 0) by the formula

2ω = (γ̄,Adb(γ̄)) + (γ̄, β̄) + (γ̄s, η̄)−
s∑
j=1

(γj , γj−1), (3.3.2)

where γj := c∗j (θ), γ̄j := c∗j (θ̄), η := h∗(θH), β := b∗(θ̄), with θ, θ̄ the Maurer-Cartan one-
forms on G̃, θH , θ̄H the Maurer-Cartan forms on H̃, cj : A(V 0) → G the application given by
cj = Sj . . . S1 for j = 1, . . . , s and c0 := C, and b : A(V 0) → G defined by b = hSs . . . S1. Let
us denote by ∂̄ the inverse of ∂ in Π that is going around the circle ∂ in the negative direction,
and let H(∂̄) denote the corresponding twist of H.

Theorem 3.3.11. A(V 0
ai) is a twisted quasi-Hamiltonian space, with moment map

µi(C, h,S) = (C−1hSs . . . S1, h
−1) ∈ G×H(∂̄). (3.3.3)

Going back to the general case with several singularities, the space of Stokes representations
is now obtained as the quasi-Hamiltonian fusion of all A(V 0

ai), together with g copies of the
double, where g is the genus of Σ.
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Theorem 3.3.12 ([25]). The space HomS(Π, G) is a smooth affine complex algebraic variety,
and is a quasi-Hamiltonian H-space, with moment map given by

µ : HomS(Π, G)→ H(∂̄)
ρ 7→ {ρ(∂̄ai)},

where H(∂̄) :=
∏m
i=1H(∂̄ai), with ∂̄ai referring as above to the loop around ∂ai in the negative

sense.

Explicitly, given a choice of framing, we have

HomS(Π, G) ∼=
(
D~g ~A(V 0

a1)~ · · ·~A(V 0
am)

)
// G. (3.3.4)

with A(V 0
ai) := G×H(∂ai)×Stoi, where Stoi =

∏
d∈Ai Stod and the quasi-Hamiltonian structure

described above.
Let us denote by (Aj , Bj , Ci, hi,Si, j = 1, . . . , g, i = 1, . . . ,m) an element of the fusion

product D~g ~A(V 0
a1)~ · · ·~A(V 0

am). The G-component of the moment map is given by

µG =
g∏
j=1

[Aj , Bj ]
m∏
i=1

(C−1
i hiS

i
si . . . S

i
1Ci), (3.3.5)

where [A,B] := ABA−1B−1 is the multiplicative commutator. This generalizes the presentations
of usual character varieties.

Finally, the wild character varieties are obtained by taking the quasi-Hamiltonian reduction
of HomS(Π, G) by H. We define a twisted conjugacy class Ci ∈ Hi(∂ai) to be an orbit of Hi(∂ai)
under the twisted conjugation action of Hi. A global twisted conjugacy class is an element
C :=

∏m
i=1 Ci ∈ H(∂). LetMB(Σ,Θ,C) the affine variety associated to the ring of H-invariant

functions on HomS(Π, G).

Theorem 3.3.13 ([25]). The wild character varietyMB(Σ,Θ) is an algebraic Poisson variety.
Its symplectic leaves, the symplectic twisted wild character character varieties are the multiplica-
tive symplectic quotients

MB(Σ,Θ, C) = HomS(Π, G) //H = µ−1(C)/H.

If (E,∇) is an algebraic connection on Σ◦ ⊂ Σ, it determines an irregular class Θ : π0(I)→ N
and a formal local system V 0 → I with irregular class Θ. At each singularity ai, the isomorphism
class of the inverse of the monodromy of V 0

ai → ∂ai is a twisted conjugacy class Ci ⊂ Hi(∂̄i). Let
C :=

∏m
i=1 Ci ∈ H(∂̄). The connection (E,∇) therefore determines a symplectic wild character

varietyMB(E,∇) =MB(Σ,Θ, C).
From the explicit presentation, it is straightforward to obtain a formula for the dimension

of the wild character variety when it is nonempty. One has

dimMB(Σ,Θ, C) =
m∑
i=1

(
dimA(V 0

ai) + dim Ci − 2 dimH(∂ai)
)

+ 2 dimZ(G),

with
dimA(V 0

ai) = dimG+ dimH(∂ai) + dim
∏
d∈Aai

Stod .

Example 3.3.14. Let us give a simple explicit example. We consider a rank 2 connection with
just one singularity at infinity, with one active circle 〈z5/2〉 with multiplicity 1. There are 5
singular directions. The twist H(∂) ⊂ GL2(C) is the set of invertible matrices of the form

h =
(

0 ∗
∗ 0

)
,
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and the Stokes matrices are of the form

S1 =
(

1 s1
0 1

)
, S2 =

(
1 0
s2 1

)
, S3 =

(
1 s3
0 1

)
, S4 =

(
1 0
s4 1

)
, S5 =

(
1 s5
0 1

)
.

We have
HomS(Π, G) = {h, S1, S2, S3, S4, S5 | hS5S4S3S2S1 = 1}.

3.4 Relation to quivers
In this paragraph, we review some constructions and results relating moduli spaces of meromor-
phic connections on the affine line to quivers, to sketch the picture we would like to extend to
more general irregular classes.

Until know we have been focussing on the description of the Betti moduli spaces as wild
character varieties. However, the link with quiver appears more directly on the De Rham side,
for moduli spaces of meromorphic connections1 on trivial bundles on A1. When restricting to
trivial bundles, we get an open part

M∗ ⊂MdR

of the full moduli space. In some cases, the spaceM∗ turns out to be isomorphic to a Nakajima
quiver variety. In turn, the full Betti moduli space may be seen as a multiplicative quiver variety.

3.4.1 Quiver varieties

Let us recall very briefly what is a quiver variety. A quiver Q is an oriented graph, with set of
nodes I, and set of edges that we also denote by Q. For each oriented edge e ∈ Q, let h(e) and
t(e) denote the head and tail of e. A representation of Q is the data an I-graded vector space
V =

⊕
i∈I Vi, together with the data of a linear map φe : Vh(e) → Vt(e) for each edge e ∈ Q. The

vector space of representations of a quiver Q on V is

Rep(Q, V ) =
⊕
e∈Q

Hom(Vh(e), Vt(e)).

Now, let Γ be an unoriented graph with set of nodes I. Let Γ̄ be the oriented quiver whose set
of edges is the set of oriented edges of Γ, an oriented edge being an edge of Γ together with one
choice of orientation among the two possible. Given an I-graded vector space V we define

Rep(Γ, V ) :=
⊕
e∈Γ̄

Hom(Vh(e), Vt(e)).

This space has a natural symplectic structure. Indeed, let Γ̂ an oriented graph obtained from Γ
by choosing an orientation for each edge of Γ among the two possible ones. We have Γ̄ = Γ̂∪ Γ̂∗,
where Γ̂∗ denotes the oriented graph obtained from Γ̂ by inverting the orientation of all edges.
This means that

Rep(Γ, V ) :=
⊕
e∈Γ̂

Hom(Vh(e), Vt(e))⊕Hom(Vt(e), Vh(e)),

which yields a natural identification Rep(Γ, V ) = T ∗(Rep(Γ̂, V )) of Rep(Γ, V ) with the cotangent
space of Rep(Γ̂, V )). This endows Rep(Γ, V ) with a symplectic structure.

1There is a notion of meromorphic connections on a compact algebraic curve with poles on a effective divisor
D, slightly different from the notion of algebraic connections on the corresponding open curve, see the review in
[19] and the discussion of "good/very good meromorphic connections" in [23].
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There is on the space Rep(Γ, V ) a natural action of the group

G :=
∏
i∈I

GL(Vi),

such that g = (gi)i∈I ∈ G sends a linear map φ : Vi → Vj to gjφg−1
i . This action is actually

Hamiltonian, with moment map

µ(φ) =
∑
e∈Γ̂

φe ◦ φe∗ − φe∗ ◦ φe. (3.4.1)

Taking the sum of the traces of the components of µ yields zero, and the subspace of∏
i ∈ I End(Vi) on which this sum of traces is zero can be naturally identified with the (dual of

the) Lie algebra of G, and so µ is indeed a moment map for G. The Nakajima quiver variety
associated to the quiver Γ is obtained by taking the Hamiltonian reduction of Rep(Γ, V ) by G
at some central value λ = (λi IdVi)i∈I ∈ Rep(Γ, V ):

NΓ(V, λ) := Rep(Γ, V ) //λ G = µ−1(λ)/G.

A notion of multiplicative quiver variety Nm
Γ (d, λ) has been introduced [103], following work

[36] on the multiplicative preprojective algebra. This amounts to replace the (additive) moment
map by the following “multiplicative” group-valued moment map

µ̃(φ) =
∏
e∈Γ̂

(1 + φe ◦ φe∗)(1 + φe∗ ◦ φe)−1,

(where we fix an order for taking the products), and taking the quasi-Hamiltonian reduction at
a central value q = (qi IdVi)i∈I .

3.4.2 Regular connections, conjugacy classes and legs

Let us first consider connections on A1 with regular singularities. The formal local system V 0 →
I of a connection with regular singularities on a = (a1, . . . , am) is determined by the collection
C of conjugacy classes C1, . . . , Cm ⊂ GLn(C) of the formal monodromies. The corresponding
character variety is the quasi-Hamiltonian reduction.

MB(V 0) = (C1 ~ · · ·~ Cm) // G.

The additive analogue on the de Rham side corresponds to the moduli space of Fuchsian
systems of the form

∇ = d−
(

A1
z − a1

− · · · − Am
z − am

)
dz,

on the affine line, which is equivalent to a connection on a trivial bundle V → A1, meromorphic
on a with regular singularities. The moduli space has the structure of a usual symplectic quotient

M∗ = (O1 × · · · × Om) // G.

To relate those moduli spaces to quivers, the main ingredient is a construction which asso-
ciates to a coadjoint orbit or a conjugacy class in GLn(C) a leg-shaped quiver. Since we are most
interested in the Betti moduli spaces, we state the multiplicative version involving conjugacy
classes.

Definition 3.4.1. Let C ⊂ GLn(C) a conjugacy class. A marking of C is a finite ordered set
(ξ1, . . . , ξw) of nonzero complex number such that

∏w
i=1(M − ξi) = 0 for any M ∈ C.
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. . .

aw−1

bw−1

Figure 3.5: The leg-shaped quiver associated to a conjugacy class with a choice of marking.

In other words, this amounts to choose a monic annihilating polynomial P ∈ C[x] of C, i.e.
such that P (M) = 0 for any M ∈ C, and an ordering of its roots. We say that a marking is
minimal if w is minimal, that is if P is the minimal polynomial of any M ∈ C. A marking will
be called special if the first eigenvalue is ξ1 = 1.

Given a marking (ξ1, . . . , ξw) of C, we define

qi := ξi
ξi−1

∈ C∗,

for i = 2, . . . , w, and q1 := ξ1, as well as integers

di := rank(M − ξ1) . . . (M − ξi−1) ∈ N,

and d1 := n.
The numbers qi and the dimensions di are enough to determine the class q. This can be

formulated in terms of a quiver. Let us consider the Dynkin quiver Q of type Aw with w vertices,
with dimension vector d = (d1, . . . , dw).

We have the following result relating the multiplicative quiver variety associated to Q to the
conjugacy class C.

Theorem 3.4.2. Let {(ai, bi)} a representation of this leg-shaped quiver (see figure) such that ai
is injective and bi is surjective for i = 1, . . . , w−1, and such that we have the following equalities

M = q1(1+a1b1), (1+a1b1) = q2(1+a2b2), . . . , 1+aw−2bw−2 = qw−1(1+aw−1bw−1), 1+aw−1bw−1 = qw.

Then the matrix M belongs to the conjugacy class C.

The relations in the statement of the theorem correspond to having the moment map of the
multiplicative quiver variety equal to q = (q1, . . . , qw) (the difference with the multiplicative
quiver variety is that we do not perform the reduction with respect to the first node of the leg).

This discussion has an additive analogue for coadjoint orbits, with the multiplicative labels
qi replaced by additive ones λi = ξi−ξi−1, and the multiplicative moment map relations replaced
by the additive ones.

Now we define the quiver Γ(C) associated to the formal data C by gluing all the legs together:
we fuse the first node of each leg associated to C1, . . . , Cm into a single node, with dimension n.
We obtain a star shaped quiver Γ(C), with a dimension vector d.

Theorem 3.4.3 (see [35]). If the coadjoint orbits O1, . . . ,Om are closed, then the additive moduli
spaceM∗ is isomorphic to the Nakajima quiver variety NΓ(C)(d, λ).

We have the similar result for the multiplicative case.

Theorem 3.4.4 (see [36]). If the conjugacy classes C1, . . . , Cm are closed, then Betti moduli
spaceMB(Θ,C) is isomorphic to the multiplicative quiver variety Nm

Γ(C)(d,q).
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Figure 3.6: Star-shaped quiver associated to a connection with regular singularities.

3.4.3 The case of one irregular singularity

We now turn to the case where there is one irregular singularity, possibly together with simple
poles. We assume that the irregular singularity is at the point at infinity∞ ∈ P1. We also assume
that the active circles at infinity all have ramification order equal to 1. Let (E,∇) an algebraic
connection on the affine line (i.e. only having a singularity at infinity), V 0 → I∞ its formal local
system at infinity, conditions, and (Θ∞,C) its isomorphism class. Let us denote by 〈q1〉, . . . , 〈qk〉
the active circles at infinity, and n1, . . . , nk their multiplicities. We have n1 + · · ·+nk = n, where
n is the rank of the connection.

The structure of the diagram Γ(Θ,C) associated to the formal data (Θ,C) has the following
structure: there is a core diagram Γc(Θ∞), only depending on the irregular class Θ∞ at infinity,
whose vertices correspond to the active circles at infinity. To this core diagram are glued legs
corresponding to the conjugacy classes C of the monodromies of the active circles at infinity,
as well as “splayed” legs associated to the monodromies at the regular singularities at finite
distance.

Definition 3.4.5 ([17]). The core diagram Γc(Θ∞) is the graph with set of vertices I∞ =
{〈q1〉, . . . , 〈qk〉}, such that the number of (unoriented) edges between 〈qi〉 and 〈qj〉 is given by

Bi,j = deg(qi − qj)− 1. (3.4.2)

Theorem 3.4.6. If all the orbits are closed, then the moduli space M∗ is isomorphic to the
Nakajima quiver variety NΓ(d, λ)

Then, the leg Li associated to the conjugacy class Ci ⊂ GLni(C) of the monodromy of
V 0
〈qi〉 → 〈qi〉 is glued to the vertex 〈qi〉, by fusing this vertex with the first vertex of the leg.
Let us denote by a1, . . . , am the regular singularities at finite distance. For j = 1, . . . ,m, let

Cj ⊂ Gln(C) the conjugacy class of the monodromy of V 0
aj → 〈0〉aj , and Lj the corresponding

leg. We glue the leg Lj to the core diagram in the following way: we splay the first node of
Lj (having dimension n) into k nodes with respective dimensions n1, . . . , nk, that we fuse with
the core vertices 〈q1〉, . . . , 〈qk〉 respectively. Finally, we obtain a full diagram Γ(Θ∞,C) with set
of vertices I together with a dimension vector d ∈ ZI and a vector of labels q ∈ (C∗)I in the
multiplicative version, or λ ∈ CI in the additive version.

Once again, the moduli spaces are related to quiver varieties associated to Γ(Θ∞,C). On
the additive side, we consider the moduli spaceM∗ of meromorphic connections on the trivial
rank n vector bundle on the affine line with formal local system V 0, of the form

∇ = d−
(

s∑
i=0

Biz
i + A1

z − a1
+ · · ·+ Am

z − am

)
dz,

with
∑s
i=0Biz

i = diag(q1 Idn1 , . . . , qk Idnk).
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Figure 3.7: Splaying a leg corresponding to the conjugacy class of a regular singularity at finite
distance, to glue it to the core diagram with vertices 〈q1〉, . . . , 〈qk〉.

M∗ can be expressed as a symplectic quotient

M∗ = (OB ×O1 × · · · × Om) // H,

with OB an “extended orbit” (it plays the same role as A(V 0
∞) // G on the Betti side).

Theorem 3.4.7. The stable part M∗s of M∗ is isomorphic to the Nakajima quiver variety
NΓ(V 0)(d, λ).

This was proven in [17] in the case where the pole at infinity is of order at most 3, i.e. the
qi have slope less than 2, and in the general case in [57].

In the multiplicative case, in the setting of [17, 20] where the pole at infinity is of order at
most 3, it is possible to define a notion of generalized multiplicative quiver varieties [22] such
that the full Betti moduli space becomes a multiplicative quiver variety.

3.4.4 Different readings

One of the main properties of this relation between moduli spaces of connections and quivers
is that several connections, with different formal data, can give rise to the same quiver. There
are thus different ways to “read” a given quiver. When the moduli space is isomorphic to the
quiver variety, these different readings yield isomorphisms between the moduli spaces.

The most interesting setting for which this happens is in the case studied in [17, 20, 22]
where there is one irregular singularity at infinity of order less than 3 with unramified formal
data, together with simple poles at finite distance. Let us look a the structure of the diagram
in this situation.

Let (Θ̆, C̆) be the modified formal data of a connection satisfying these conditions. The
exponential factors at infinity are of the following form

q = λx2 + µx, (3.4.3)

with λ, µ ∈ C.
Let I∞ ⊂ π0(I∞) be the subset of active exponents at infinity, i.e. the support of V 0

∞. I∞ is
the set of vertices of the core diagram. We can partition I∞ according to the coefficients of x2

and x in the exponential factors. For λ ∈ C, let Iλ ⊂ I be the set of exponential factors of the
form (3.4.3) for some µ ∈ C. There is a finite number of coefficients λ ∈ C such that Iλ, is non
empty, which we denote λ1, . . . , λk. We set Ii := Iλi for i = 1, . . . , r. The sets Ii constitute a
partition of I∞.

Now let 〈q〉 and 〈q′〉 two distinct active circles at infinity. If 〈q〉 and 〈q′〉 belong to the same
subset Ii, then from the definition of the core diagram, there is exactly one edge between 〈q〉
and 〈q′〉, since deg(q− q′) = 2. Otherwise, deg(q− q′) = 1 and there is no edge between 〈q〉 and
〈q′〉. The core diagram is thus a k-partite graph: each vertex in one of the k subsets Ii is related
by exactly one edge to each vertex of the k − 1 other subsets Ij , for j 6= i.
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I1

I2

I3

Figure 3.8: The k-partite core diagram (here with k = 3). Each blue oval corresponds to one of
the k subsets Ii.

(a) One singularity at infinity with 3 active cir-
cles. The core diagram is in solid line, the legs
are dotted.

(b) A singularity at infinity with 2 active circles,
and a regular singularity at finite distance. In
dashed lines, the splayed leg corresponding to
the conjugacy class of the monodromy at the
regular singularity at finite distance.

Figure 3.9: Two different readings of the same supernova quiver.

If there is no singularity at finite distance, the full diagram consists of this k-partite core
diagram with legs attached, in the language of [17] this is a supernova quiver.

Now let us look at what happens if there are singularities a1, . . . , am at finite distance. In
this situation, there are legs of length ≥ 2 L1, . . . ,Lm which are splayed and glued to the core
diagram. Let I 6=∞ ⊂ I the set whose elements are the second vertices of the Lj (i.e. the next
vertices after those which are glued to the core). We notice that each vertex in I6=∞ is linked by
exactly one edge to each vertex of Ij for j = 1, . . . , k. This means that the subgraph of Γ with
set of vertices I ∪ I6=∞ is a k + 1-partite graph.

This implies that any supernova quiver, with a k-partite core corresponding to the partition
Ic = I1 t · · · t Ik of the set Ic of core vertices can be interpreted in k + 1 different ways as
coming from a formal local system V 0 → I. In the generic reading, all core vertices correspond
to active circles at infinity, and the subsets Ii correspond to the different coefficients λi. For each
i = 1, . . . , k, there is a nongeneric reading, where the subset I6=i := Ic r Ii is the set of active
circles at infinity, whereas the subset Ii corresponds to the second vertices of legs associated to
regular singularities at finite distance. In other words, each subset of the k-partite core may be
seen as the set of legs associated to regular poles at finite distance.

Since in this case (if the connection is stable) the additive moduli space M∗ is ismorphic
to the quiver variety of the graph, these different readings give us isomorphism between moduli
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spaces of connections. This is also true in the multiplicative setting for the full Betti moduli
spaces [22].

3.4.5 Weyl groups

One other property of the quivers associated to connections is that they carry Weyl group actions.
Basically, the action of the Weyl group amounts to exchanging the order of the eigenvalues in
the markings associated to the conjugacy classes.

Let Γ be an (unoriented) graph with set of vertices I, and B ∈MI×I(C) its adjacency matrix.
The Cartan matrix of the quiver is defined as

C = 2 Id−B.

The Cartan matrix defines a bilinear form (·, ·) on the root lattice ZI =
⊕

i∈I Zεi, given by

(εi, εj) = Ci,j .

To each vertex i ∈ I is associated a simple reflection si defined by

si(β) = β − (β, εi)εi.

The simple reflections satisfy the relations

s2
i = 1, sisj = sjsi if Bi,j = 0, sisjsi = sjsisj if Bi,j = 1.

The Weyl group of the graph is defined to be the group generated by those simple reflections.
They are also dual simple Weyl reflections acting on the space CI of additive labels, defined by

ri(λ) = λ− λiαi,

for λ =
∑
i∈I λiεi ∈ CI , and αi :=

∑
j(εi, εj)εj ∈ CI . The dual reflection is such that si(β) ·

ri(λ) = β · λ, where · denotes the pairing such that εi · εj = δi,j .
For the multiplicative case, we have multiplicative dual reflections on (C∗)I , obtained from

the additive ones by taking the exponential, that we still denote by ri. If q = (qi)i∈I ∈ (C∗)I ,
one has

(ri(q))j = q
−(εi,εj)
i qj .

The analogue of si(β) · ri(λ) = β · λ is then qβ = ri(q)si(β).
It is known that the Weyl reflections induce isomorphisms of Nakajima quiver varieties.

Theorem 3.4.8 ([76, 78]). Let Γ be a quiver. If λi 6= 0, there is a natural isomorphism between
the Nakajima quiver variety with dimension vector β and labels λ = (λi)i ∈ I and the one with
dimension vector si(β) and labels ri(λ):

NΓ(β, λ) ∼= NΓ(si(β), ri(λ)).

These isomorphisms have a nice interpretation for the quivers associated to meromorphic
connections: they correspond to acting on connections by twists, (i.e. tensoring by a rank one
vector bundle with connection) that shift the eigenvalues of the formal monodromies.

In the multiplicative case, this can be used to show [22] that the Weyl reflections induce
isomorphisms for multiplicative quiver varieties.
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3.4.6 Deligne-Simpson problems

The (irregular) Deligne-Simpson problem asks whether, given some formal data, the correspond-
ing moduli space of (stable) connections is nonempty. It has an additive version for connections
on trivial bundles, as well as a multiplicative version involving the full moduli spaces. Remark-
ably, in several cases, a solution to this problem can be formulated in terms of the root system
of the Kac-Moody algebra of the quiver associated to the connection.

Keeping the previous notations, the Kac-Moody root system associated to the graph Γ is a
subset of the root lattice ZI =

⊕
i∈I Zεi defined as follows: the simple roots are the εi, for i ∈ I.

The set of real roots is the Weyl group orbit of the simple roots. Next, define the fundamental
region to be the set of non-zero elements β ∈ ZI , with support on a connected subgraph of Γ,
such that (β, εi) ≥ 0 for each i ∈ I. We define the set of imaginary roots to be the union of the
Weyl group orbit of the fundamental region, and minus this orbit. The set of roots is the union
of the sets of real and imaginary roots. A root is said to be positive if its coefficients (in the
basis of the εi’s) are all nonnegative.

The answer to the additive (irregular) Deligne-Simpson problem is formulated as follows:

Theorem 3.4.9. Let (P1, {∞},Θ) a wild Riemann surface, consisting of at most one unramified
irregular singularity at infinity, possibly together with regular singularities at finite distance. Let
C a collection of conjugacy classes for the irregular class Θ. Let Γ = Γ(Θ,C) the corresponding
quiver, with set of vertices I, d ∈ ZI its dimension vector, and λ ∈ CI its vector of (additive)
labels. The moduli space M∗(Θ,C) of stable connections on trivial bundles with these formal
data is non-empty if and only if

1. d is a positive root.

2. λ · d = 0, and

3. If d decomposes in a non-trivial way as a sum d = d1 + · · ·+ ds = 0, with λ · d1 = · · · =
λ · ds = 0, then ∆(d) > ∆(d1) + · · ·+ ∆(ds), where ∆(d) := 2− (d,d).

This result is due to Crawley-Boevey [35] for regular singular connections, Boalch [17, 20] in
the simply laced case and Hiroe and Yamakawa [57] in the more general case. There is also a
conjectural multiplicative analogue for the full moduli spaces [36, 22].

3.4.7 Allowing for ramification

These links between connections and quivers work under some hypotheses on the formal data of
the connection: in all cases mentioned until now, there must be at most one irregular singularity,
and the exponential factors are not allowed to have ramification. It is thus a natural question to
ask whether it would be possible to extend part of this story for more general formal data. One
direction is to allow for several irregular singularities, another one is to allow for ramification.

Whereas the first direction has been pursued by Hiroe, in the second direction the authors
of [26] have recently proposed a definition of a diagram for connections with only one irregular
singularity at infinity allowing for ramification.

Let V 0 → I∞ a formal local system at infinity and (Θ,C) its formal data. We denote by
〈q1〉, . . . , 〈qr〉 the active circles, and βi := ram(qi). In [26], the core diagram associated to the
irregular class Θ is defined in the following way:

Definition 3.4.10. The core diagram Γc(Θ) has a set of nodes labelled by the active circles
〈q1〉, . . . , 〈qr〉, and for i, j = 1, . . . , r, the number of arrows Bij between 〈qi〉 and 〈qj〉 is given by

• If i 6= j then
Bij = Aij − βiβj , (3.4.4)

where Aij = Irr(Hom(〈qi〉, 〈qj〉).
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• If i = j, the number of oriented loops at 〈qi〉 is given by

Bii = Aii − β2
i + 1. (3.4.5)

The numbers of arrows may be negative. One has Bij = Bji and Bii is always an even
number, so we can group the arrows two by two to get an unoriented diagram. The motivation
for this definition comes from counting the number of appearances of blocks between graded
parts of V 0 associated to the different active circles in the explicit presentation of the wild
character variety. Recall that for a connection with only one singularity at infinity we have

MB(Θ,C) := HomS(V ) //C H.

where HomS(V 0) := A(V 0) // G is the quasi-hamiltonian reduction with respect to G of the
twisted quasi-hamiltonian G×H-space

A(V 0) := H(∂)×G×
∏
d∈A

Stod(V ).

The positive terms in Bij correspond to the matrix blocks in A(V 0), and the negative terms
in the Bij correspond to the relations given by the quasi-hamiltonian reduction.
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Chapter 4

Diagrams for irregular connections
on the Riemann sphere

In this chapter, we build up the ideas leading to our definition of a diagram associated to any
algebraic connection on a Zariski open subset of the affine line. The main ingredient is the formal
Fourier-Laplace transform, which allows to reduce to the setting of [26] where there is only one
irregular singularity at infinity. The crucial point allowing this is that the diagram of [26] is
invariant under the action of automorphisms of the Weyl algebra (including the Fourier-Laplace
transform). Along the way, we establish explicit formulas for the number of edges and loops of
the diagram, as well as for the images of exponential factors under formal Fourier transform,
which are of independent interest.

4.1 Modified formal data
To arrive at our definition of the diagrams, we will need to use the Fourier-Laplace transform.
However, the category which the Fourier-Laplace transform acts on is not the category of con-
nections, but the category of modules on the Weyl algebra A1 = C[z]〈∂z〉. This is the source
of an important subtlety, pertaining to the fact that more formal data are needed to describe a
D-module than a connection. We review this in this paragraph, relying on [70, 89, 5, 87].

Let (E,∇) an algebraic connection on a Zariski open subset U = A1ra of the affine line (or,
equivalently, a local system on U). One can associate [5, §5.5] to (E,∇) its minimal extension
M , which is a DA1-module. This is equivalent to the data of a module on the Weyl algebra. We
want to describe the formal data of M .

The issue is local at the singularities. Let us thus recall a few results about the structure of
holonomic D-modules on the formal disk. Let D̂ := C[[z]]〈∂z〉 and M be a holonomic D̂-module.
Then M decomposes [70, IV.3 p.59] in a unique way as a direct sum M = Mirr ⊕Mreg of an
irregular part Mirr and a regular part Mreg. Furthermore, the irregular part Mreg is isomorphic
to its localization, i.e. Mirr

∼= Mirr[z−1], which implies that Mirr is a meromorphic connection
on the formal punctured disk. There is thus no difference between D̂-modules and meromorphic
connections as far as the irregular part is concerned.

However, this is not the case for regular D̂-modules. Indeed, we have the following de-
scriptions of regular D̂-modules and regular meromorphic connections on the formal punctured
disk.

Let M be a regular holonomic D̂-module. One associates [70, II.3] to M its local system of
solutions V → ∂ and its local system of microsolutions W → ∂, where ∂ := ∂0 is the circle of
directions at z = 0. Furthermore, we have two natural morphisms between them, the canonical
morphism can : V → W and the variation var : W → V . The monodromies of V and W are
related to var and can by TV = 1 + var ◦ can, TW = 1 + can ◦ var. The data of V,W, can and
var is sufficient to reconstruct M up to isomorphism. This can be represented by the diagram
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V W
can

var

Choosing a base point p ∈ ∂, and setting E := Vp, F := Wp, u := varp : E → F and
v := varp leads to the following description: a regular holonomic D̂-module M is determined by
the data of a quadruplet (E,F, u, v), where E and F are finite dimensional vector spaces, and
u : E → F, v : F → E are linear applications, such that 1 + uv : F → F (and 1 + vu : E → E)
are invertible. This data is represented by the diagram:

E F
u

v

The category of regular holonomic D-modules on the formal disk is in this way equivalent to
the category whose objects are such quadruplets (E,F, u, v).

On the other hand, a regular meromorphic connection on the formal punctured disk is
determined by its local system of solutions V → ∂, and in turn, choosing a base point p ∈ ∂ and
setting E := Vp, by a pair (E, T ) where E is a finite dimensional vector space, and T ∈ GL(E)
is the monodromy operator.

In this picture, the minimal extension corresponds to the following data:

Lemma 4.1.1 ([6] (3.5)). Let (E,∇) a regular connection on the formal punctured disk, and
(V, T ) the corresponding vector space with automorphism. Its minimal extension M is a regular
holonomic D̂-module corresponding to the pair of vector spaces with maps

V Im(T − 1)
T − 1

ι

where T = 1 + vu ∈ GL(V ), and ι : Im(T − 1)→ V is the inclusion.

Notice that we recover (E,∇) from the data of (W,TW ), where W := Im(T − 1) and TW =
T|W , and of the rank of (E,∇).

We can fit this description into the framework of I0-graded local systems. Let (E,∇) be a
connection on the punctured formal disk, and V 0 → ∂ the associated I0-graded local system.
The local system of solutions of its regular part corresponds to the graded piece V 0

〈0〉 → ∂

associated to the tame circle 〈0〉. Let us denote by T its monodromy. Now let M be the
minimal extension of (E,∇), and W := Im(T − 1) ⊂ V 0

〈0〉 the local system of microsolutions of
its regular part.

We will see later that W , and not V 0
〈0〉 belong to the data exchanged by the formal Fourier-

Laplace transform. For this reason, we define a modified formal local system V̆ 0 → I0 by
setting

V̆ 0
〈0〉 := W, V̆〈q〉 := V 0

〈q〉 if 〈q〉 6= 〈0〉.

V̆ 0 is an I0-graded local system, that we call the modified formal local system associated to the
connection (E,∇). What we have done is to replace the tame part V〈0〉 of the local system by
the local system of microsolutions W → ∂, viewing it as a graded piece in the modified formal
local system. As for V 0, we can also view V̆ 0 system as a local system on the topological space
I0. Its irregular class is the modified irregular class associated to the connection (E,∇).

Passing to the modified local system can be visualized in terms of the corresponding leg-
shaped quivers encoding the conjugacy class of the monodromy. Let C〈0〉 the conjugacy class
of the monodromy T of V 0

〈0〉, and C̆〈0〉 the conjugacy class of the monodromy T|V〈0〉 of V〈0〉.
Let us choose a special marking (ξ0

1 , . . . , ξ
0
w) of C〈0〉, i.e. a marking such that ξ1 = 1. Then

(ξ0
2 , . . . , ξ

0
w) =: (ξ1, . . . , ξw−1) yields a marking of C̆〈0〉. Let L〈0〉 and L̆〈0〉 the legs respectively
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d2 d3 dwn
. . .

Figure 4.1: Passing to the modified formal local system amount to cut the first edge (dashed)
of the leg L〈0〉 associated to the tame circle 〈0〉, when using a special marking, to obtain the
shorter leg L̆〈0〉.

associated to C〈0〉 and C̆〈0〉 with these choices of markings. The leg L̆〈0〉 is simply obtained from
L〈0〉 by deleting the first vertex and the first edge, as shown on figure 4.1.

We now return to the global situation. In the rest of the paper, we consider a genus zero
Riemann surface Σ ∼= P1. We fix a choice of isomorphism Σ ∼= P1. This defines the point at
infinity ∞ ∈ Σ and allows us to identify Σ r {∞} to the affine line A1.

Let (E,∇) an algebraic connection on a Zariski open subset U = A1 r {a1, . . . am} of the
affine line. It determines a modified formal local system in the following way. Let M be the
minimal extension of (E,∇) to A1 (but notice we do not take the extension at infinity). M is
a module on the Weyl algebra. For each singularity ai at finite distance, let V̆ai → Iai be the
modified formal local system encoding the formal type of M at a as we just described. Then,
let V∞ → I∞ be the formal local system of (E,∇) at ∞ (since we don’t take the minimal
extension at infinity). This gives us a global modified formal local system V̆ :=

⊕
a6=∞ V̆a⊕V∞.

Its isomorphism class is given by the couple (Θ̆, C̆) where Θ̆ is its irregular class and C̆ is the
collection of conjugacy classes of its monodromies.

Definition 4.1.2. V̆ → I is the (global) modified formal system associated to (E,∇) or to M .
Its irregular class Θ̆ : π0(I)→ N is the (global) modified irregular class of (E,∇).

Notice that it satisfies the compatibility condition

rank(V̆a) ≤ rank V̆∞,

since for each a 6= ∞ replacing V 0
〈0〉 by V̆

0
〈0〉 lowers the rank of the corresponding graded piece.

The rank of the connection (E,∇) is given by

rank(E,∇) =
∑

〈q〉∈π0(I∞)
n〈q〉 ram(q).

If V̆ → I is a formal local system, with isomorphism class C̆, we say that V , or C̆ is compatible
if it satisfies this condition. If there exists a connection (E,∇) on a Zariski open subset of the
affine line such that C̆ is its modified formal data, we say that C̆ is effective. C̆ cannot be effective
if it is not compatible.

Notice also that specifying compatible formal data (Θ̆, C̆) associated to (E,∇) is equivalent
to specifying the corresponding non-modified formal data (Θ,C). Indeed, from Θ∞ one knows
the rank of the connection, so the pieces V̆ 0

〈0〉a → 〈0〉a determine the tame pieces V 0
a → 〈0〉a.

Summary of data In the rest of the thesis, we fix an algebraic connection (E,∇) on A1 r a,
with modified irregular class Θ̆ : π0(I) → N, and modified conjugacy classes C̆. We fix the
following notations.

• We denote by a1, . . . , am be the singularities at finite distance, so that a = {a1, . . . , am}

• For k = 1, . . . ,m let 〈q(k)
1 〉ak , . . . 〈q

(k)
rk 〉ak ∈ π0(Iak) denote the irregular active circles at ak,

n
(k)
i ∈ N their respective multiplicities, and β(k)

j their respective ramification orders, and
α

(k)
j their irregularities, in an order such that the slopes satisfy
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α
(k)
1

β
(k)
1
≥ · · · ≥ α

(k)
rk

β
(k)
rk

.

• For k = 1, . . . ,m let mk be the multiplicity of the tame circle 〈0〉ak at ak in the modified
formal local system.

• At infinity, let 〈q(∞)
1 〉∞, . . . 〈q(∞)

r∞ 〉∞ ∈ π0(Iak) denote the active circles (the tame circle is
included), their β(∞)

j respective ramification orders, and α
(∞)
j their irregularities, in an

order such that the slopes satisfy

α
(∞)
1

β
(∞)
1
≥ · · · ≥ α

(∞)
r∞

β
(∞)
r∞

.

The rank of any connection having these (modified) formal data is
∑r∞
j=1 n

(∞)
i β

(∞)
j .

4.2 Action of SL2(C)
We now discuss the action of the Fourier-Laplace transform on modules on the Weyl algebra,
and the stationary phase formula relating the formal data of an A1-module and its Fourier
transform.

4.2.1 The stationary phase formula

The Fourier transform is the automorphism of the Weyl algebra A1 = C[z]〈∂z〉 defined by
z 7→ −∂z, ∂z 7→ z. It induces a transformation on modules on the Weyl algebra: the Fourier-
Laplace transform F ·M of a C[z]〈∂z〉-module M is the C[ξ]〈∂ξ〉-module obtained by setting:
z 7→ −∂ξ, ∂z 7→ ξ (we use a dual variable ξ for the image in this paragraph). In particular, if
M = Dz/Dzp with p ∈ C[z]〈∂z〉, one has F ·M = Dξ/Dξ.p′, where p′ is obtained from p by
replacing z by −∂ξ and ∂z by ξ.

If (E,∇) is an algebraic connection on a Zariski open subset Σ◦ ⊂ C, let M its minimal
extension, and M ′ = F ·M . There exists [6] a meromorphic connection (E′,∇′) on a Zariski
open subset Σ◦′ ⊂ C such thatM ′ is the minimal extension of (E,∇). It is the Fourier transform
of (E,∇) and we denote it by F · (E,∇).

The stationary phase formula [44, 91] states that the formal data of the Fourier transform
(E′,∇′) are determined by the formal data of (E,∇).

Theorem 4.2.1. There exists a bijection, that we also denote by F , from the set of effective
formal data to itself, such that if (E,∇) is a connection of a Zariski open subset of C, (Θ̆, C̆)
its modified formal data, (E′,∇′) is the Fourier transform of (E,∇) and (Θ̆′, C̆′) its modified
formal data, the following diagram commutes:

(E,∇) (E′,∇′)

(Θ̆, C̆) (Θ̆′, C̆′)

F

F

This map F is the formal Fourier transform. More precisely, the active exponents of Θ̆′ are
related to the active exponents of Θ̆′ by a Legendre transform.
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Idea The stationary phase formula is basically a consequence of the Laplace method for de-
termining the asymptotic behaviour of oscillatory integrals. It basically says the following: if f
is a function with a unique critical point at x0, then one has∫

g(x)eλf(x) ≈
λ→∞

√
2π

λ|f ′′(x0)|e
λf(x0)g(x0),

i.e. the asymptotic behaviour of the integral λ→∞ is determined by what happens in the
vicinity of the stationary phase x0. In the situation we are interested in, if the connection ∇ has
a pole at 0, any solution in a small sector around zero of the corresponding differential equation
will be a linear combination of functions of the form

f(z) = eq(z)g(z),

where q is one of the active exponents of ∇. Its Fourier transform is thus an integral of the form

f̂(ξ) =
∫
γ
eq(z)−ξzg(z),

over some contour γ. When ξ →∞, the behaviour of the integral is determined by the critical
point z0 of the exponential factor q(z)− ξz, i.e. such that

∂q

∂z
(z0) = ξ.

Notice that z0 is dependent on ξ. The Laplace method then gives for ξ →∞ the expression:

f̂(ξ) ≈
√

2π
|q′′(z0)|e

q(z0)−ξz0 .

A new exponential factor appears in this expression:

q̃(ξ) = q(z0(ξ))− ξz0(ξ).

This exponent is nothing but the Legendre transform of q with respect to the conjugated variable
ξ. This observation suggests that the exponential factors of the Fourier transform of M are
obtained from the ones of M by a Legendre transform. The stationary phase formula of [91, 44]
states that this is indeed the case.

The same reasoning can be carried out for any pole at finite distance a ∈ C. Setting za = z−a,
a component of a local solution at a has the form

f(za) = eq(za)g(za).

Its Fourier-Laplace transform is thus

f̂(ξ) =
∫
eq(za)−ξzg(za) = e−aξ

∫
eq(za)−ξzag(za)

The exponential factor of f̂ will thus be −aξ+ q̃, where q̃ is given as previously by the Legendre
transform.

Let us describe the formal Fourier transform and express it in our framework of local systems
on I. To this end, we formulate the Legendre transform as a homeomorphism sending collection
of circles I to the dual collection I ′, obtained by replacing the variable z by the variable ξ.
The Legendre transform takes different forms depending on the circles in π0(I). It is therefore
necessary to distinguish several types of circles as follows:
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Definition 4.2.2. Any circle in I belongs to one of the following five families:

1. The pure circles at infinity, of the form 〈αz〉∞, with α ∈ C. There are of slope 1 if α 6= 0,
and 0 otherwise.

2. Other circles of slope ≤ 1 at infinity, of the form 〈αz + q〉∞, with α ∈ C, and q 6= 0 of
slope < 1,

3. Circles 〈q〉∞ of slope > 1 at infinity,

4. Irregular circles at finite distance 〈q〉a, with q 6= 0, a ∈ C = P1 r {∞}.

5. The tame circles 〈0〉a, a ∈ C.

We will denote by I1, . . . , I5 ⊂ I the corresponding collections of circles. In a similar
way, we denote by I ′1, . . . , I ′5 ⊂ I ′ the dual collections. The Legendre transform L yields
homeomorphisms

L : I1 → I ′5,
L : I2 → I ′4
L : I3 → I ′3,
L : I4 → I ′2,
L : I5 → I ′1,

that we will all denote by L with a slight abuse of notation.
Let us first describe the Legendre transform in some detail for circles of type 4 at z = 0,

that is irregular circles at 0. The other cases are easily deduced from this one by changes of
variable. In this paragraph, we set ∂ := ∂0 the circle of directions at 0 ∈ P1

z, I := I0 the
corresponding exponential local system, ∂′ the circle of directions at ξ =∞ in P1

ξ , and I ′ → ∂′

the corresponding exponential local system.

Definition 4.2.3. Let U ⊂ ∂ be a germ of sector, and qU ∈ I(U) that is non-zero. For z ∈ U ,
we set

φ(z) := dq

dz
(z).

Choosing U small enough, φ induces a biholomorphism between U and a sector U ′ ⊂ ∂′. For
ξ ∈ U ′, we set

q̃U ′(ξ) := qU (φ−1(ξ))− ξφ−1(ξ).
This yields a section q̃U ′ ∈ I ′(U ′), called the Legendre transform of qU .

This definition of the Legendre transform is intrinsic. However, it will be useful to also
have an algebraic way of computing the Legendre transform in local coordinates using explicit
expressions for the exponential factors. Let us do this to find the slope and irregularity of the
Legendre transform of an exponential factor.

Lemma 4.2.4. Let q ∈ z−1/rC[z−1/r] be a nonzero exponential factor at 0, with ramification
order r and irregularity s. Consider the algebraic system of equations

ξ = ∂q

∂z
, (4.2.1)

q̃ = q − zξ. (4.2.2)

corresponding to the Legendre transform. Using the first equation to express z as a function of ξ,
as an element in the field of Puiseux series in the variable ξ, one gets z ∈ C((ξ1/(r+s))). Using
now the second equation to express q̃ as a function of ξ, one gets q̃ ∈ C((ξ−1/(r+s))). Keeping
only the polar part of this expression, one on obtains q̃ ∈ ξ1/(r+s)C[ξ1/(r+s)], with ramification
order r + s and degree s.
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Proof. Equation (4.2.1) implies

ξ =
s∑
i=1

−iai
r

z−
i
r
−1 = −sas

r
z−

r+s
r + . . .

Introducing a variable t such that tr = z, and ζ such that ζr+s = ξ∞ = 1/ξ this becomes

ζ−(r+s) =
s∑
i=1

αit
−(r+i) = αst

−(r+s) + . . . , (4.2.3)

where we have set αi := −aii
r . This equation has a solution t = P (ζ) where P =

∑
i≥0 λit

i ∈
C[[t]], which is unique as soon as we fix a choice λ0 of a r + s-Th root of α−1

s . Equation (4.2.2)
then yields q̃ as an element of C((ζ)) of the form∑

i≤s
biζ
−i.

The polar part of this expression is q̃ =
∑s
i=1 biζ

−i.

It follows from this computation that the image of an irregular circle S = 〈q〉 by the Legendre
transform is the circle S′ = 〈q̃〉. The circle 〈q̃〉 has ramification order r + s and slope s/r + s.
If we parametrize 〈q〉 by the argument arg t ∈ R/2πZ, and 〈q̃〉 by arg ζ, the relation t = P (ζ)
yields for the homeomorphism between 〈q〉 and 〈q̃〉 the expression

arg t = arg λ0 + arg ζ.

Remark 1. Notice that, though the parametrization of 〈q̃〉 that we obtain depends on the choice
of the r+ s-th root λ0, so does the polynomial q̃ inside the Galois orbit of q, in such a way that
we have a bijection independent of the choices for the sections qU on small sectors of ∂ and ∂′,
in agreement with the intrinsic definition.

The general case of circles of type 2,3,4 is similar to the case of a circle of type 4 at z = 0.
Let us summarize the properties of the Legendre transform for the different types of circles.

• Type 4: if a ∈ P1 \ {∞} is a point at finite distance, the Legendre transform L yields an
homeomorphism between a circle of type 4 of the form 〈q〉a with slope α/β 6= 0 at a and
the circle of type 2 〈−aξ + q̃〉∞ with q̃ of slope α/(α + β) < 1, once again determined by
the same system of equations as before. The circle 〈−aξ + q̃〉∞ thus has slope 1 if a 6= 0,
and slope < 1 if a = 0.

〈q〉0 〈q̃〉∞

∂0 ∂′∞

L
1:1

πβ:1 πα+β:1

This is obtained in a straightforward way from the special case a = 0 that we just detailed,
by using the relation za = z− a between the local coordinate za at a and the coordinate z
on P1. The factor q̃ is given by the same system of equations as previously, with z replaced
by za.

• Type 2: conversely, if 〈−ax+ q〉∞, with a ∈ C and q1 of slope α/β < 1 is a circle of type
2, the Legendre transform induces an homeomorphism between 〈q〉∞ and a circle of type
4 〈q̃〉a at the point a ∈ P1 \ {∞} = C, with slope α/(β − α). We thus have

〈q〉∞ 〈q̃〉α

∂0 ∂′∞

L
1:1

πβ:1 πβ−α:1
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• Type 3: If 〈q〉 is a circle at infinity of type type 3, of slope α/β > 1, L induces a home-
omorphism of 〈q〉 on the circle 〈q̃〉 of slope α/α − β > 1, of type 3. The situation is the
following:

〈q〉∞ 〈q̃〉∞

∂0 ∂′∞

L
1:1

πβ:1 πα−β:1

We now deal with circles of type 1 and 5. Let a ∈ P1 \ {∞}, and consider the circles 〈0〉a
and 〈−aξ〉∞. We define an homeomorphism φ between the circles of directions ∂a and ∂∞ as
follows, for any argument θ ∈ ∂a, we draw the half-line lθ starting from a with direction θ, and
let φ(θ) ∈ ∂∞ be the direction at which lθ approaches z =∞. Notice that this inverses the sense
of rotation, in agreement with Malgrange [70, e.g. p. 98]. Replacing z by the dual coordinate ξ
to identify ∂∞ to ∂′∞, we get an homeomorphism φ′ : ∂a → ∂′∞ which lifts to an homeomorphism
L : 〈0〉a → 〈−aξ〉∞, as pictured on the diagram

〈0〉a 〈−aξ〉∞

∂0 ∂′∞

L
∼=

π π

φ′

The Legendre transform induces a transformation of the local systems on I: if V → I is a
local system, we define Ṽ := L∗(V ) such that the following diagram commutes:

V Ṽ

I I ′

L∗

L

The previous construction accounts for what happens to the exponential factors in the
Laplace method, but the square root term in the Gaussian integral remains to be taken into
account. A way to do this is to define for any circle 〈q〉 of type 2,3,4 a local systemW〈q̃〉 → 〈q̃〉 of
one-dimensional vector spaces. In the case where 〈q〉 is a circle of type 2 at zero, the definition
can formulated as follows.

Definition 4.2.5. Let 〈q〉0 be an irregular circle at z = 0, 〈q̃〉∞ its image by the Legendre
transform. Let r = ram(q) and s = Irr(q). Let ζ a variable such that ζr+s = 1/ξ so that the
Legendre transform q̃ is a polynomial in ζ−1, and the circle 〈q̃〉 can be parametrized by the
directions in the disk Dζ . We define W〈q̃〉 → 〈q̃〉 to be the rank one local system with étalé
space W〈q̃〉 is 〈q̃〉 ×C, and a flat section of which given by any determination of the germ of the
function ζ 7→ (∂2q/∂z2)−1/2(ζ) on the disk Dζ .

Lemma 4.2.6. If q has slope α/β, with β = ram(q), then the monodromy of W〈q̃〉 is (−1)α.

Proof. One has q(z) ∼ z−α/β, hence ∂2q/∂z2 ∼ z−(α+2β)/β. In terms of the coordinate ζ,
the Legendre transform implies ζ ∼ zβ, hence ∂2q/∂z2 ∼ ζα+2β, hence (∂2q/∂z2)−1/2 ∼
ζ−(α+2β)/2. Therefore, when going around ζ = 0 in Dζ , (∂2q/∂z2)−1/2 gets multiplied by
exp

(
−2iπ × α+2β

2

)
= (−1)α. Notice this does not depend on the choice of determination of

the square root (∂2q/∂z2), so that W〈q̃〉 is well defined up to isomorphism.

The definition of W〈q〉 in the general case is similar, and the lemma remains true.
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Definition 4.2.7. Let V̆ be a compatible local system on I, with isomorphism class (Θ̆, C̆). We
set F · V̆ := L∗(V̆ )⊗W , provided it is compatible. It is a local system on I ′. Let (Θ̆′, C̆′) be its
isomorphism class. We define F · (Θ̆, C̆) := (Θ̆′, C̆′).

The operation F on modified formal local systems on I is the counterpart at the level of
formal data of the Fourier-Laplace transform of A1-modules, that is it is such that the theorem
4.2.1 is true.

Proof. It seems that this result was first understood by Malgrange. The case of irregular circles
has been independently proven by Fang [44] and Sabbah [91]. An alternative proof was also
given later by Graham-Squire [52]. To see that our formulation is indeed equivalent to the one
in [91], it suffices to take the monodromy of the local systems. The case of regular circles can be
extracted from Malgrange [70, see p129]: the Fourier transform exchanges the local system of
regular microsolutions at finite distance and the local system of regular solutions at infinity.

Remark 2. The definition of the formal Fourier transform F · (Θ̆′, C̆′) might still make sense if
it is not compatible. We will rather consider that it is undefined in this case. If F · (Θ̆′, C̆′) is
effective, the theorem guarantees that F · (Θ̆′, C̆′) is also effective. If (Θ̆′, C̆′) is compatible but
not effective, (Θ̆′, C̆′) may be undefined (see [6]).

If F ·(Θ̆, C̆) = (Θ̆′, C̆′) the irregular class Θ̆′ only depends on Θ̆, so we set F ·Θ̆ = Θ̆′. We will
also set F · 〈q〉 := L(〈q〉) ∈ π0(I) for any circle 〈q〉. If (Θ̆, C̆) are effective formal data, 〈q〉 is an
active circle of Θ̆ if and only if F 〈q〉 is an active circle of Θ̆′. Explicitly, if Θ̆ = n1〈q1〉+ . . . nr〈qr〉,
we have

Θ̆′ = F · Θ̆ = n1F · 〈q1〉+ · · ·+ nrF · 〈qr〉.

Rank of the Fourier-Laplace transform From the stationary phase formula we obtain a
formula for the rank of the Fourier-Laplace transform of a connection with formal data (Θ,C).

Lemma 4.2.8. Let (Θ̆, C̆) the modified formal data defined in section 4.1. and (Θ̆′, C̆′) :=
F · (Θ̆, C̆). The rank of a connection with modified formal data (Θ̆′, C̆′), if it exists, is

∑
k

(
mk +

rk∑
i=1

n
(k)
i (α(k)

i + β
(k)
i )

)
+

∑
i,slope>1

n
(∞)
i (α(∞)

i − β(∞)
i ), (4.2.4)

where the second sum is on all active circles 〈q(∞)
i 〉∞ at infinity with slope α(∞)

i /β
(∞)
i > 1.

Proof. From the stationary phase formula the active circles of V ′ at infinity are the following:

• Images by Legendre transform of irregular circles 〈q(k)i〉ak , k = 1, . . . ,m i.e circles 〈−akξ+
q̃(k)j 〉∞, with ramification α(k)

i + β
(k)
i and multiplicity n(k)

i .

• Images of the tame circles 〈0〉ak , k = 1, . . . ,m: pure circles 〈−akξ〉∞, with multiplicity
mk.

• Images of circles of slope > 1 at infinity among the 〈q(∞)
i 〉, i = 1, . . . , r∞, of the form

〈q̃(∞)
i 〉, with slope α(∞)

i − β(∞)
i and multiplicity n(∞)

i .

Adding the contribution of those circles to the rank gives the result.

Remark 3. Notice that this is consistent with the formula given by Malgrange [70, p. 79] for the
rank of the Laplace transform of modules over the Weyl algebra.
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4.2.2 Symplectic transformations

The Fourier-Laplace transform is part of a larger group of transformations acting on modules
over the Weyl algebra. Indeed, to any matrix

A =
(
a b
c d

)

in SL2(C), we can associate an automorphism of the Weyl algebra A1 = C[z]〈∂z〉 given by
z 7→ az + b∂z, ∂z 7→ cz + d∂z. This induces an action of the group SL2(C) of symplectic
transformations on modules over the Weyl algebra (see [70]).

The group of symplectic transformations is generated by three types of elementary transfor-
mations:

• The Fourier-Laplace transform F , corresponding to the matrix
(

0 1
−1 0

)
.

• Twists at infinity Tλ, for λ ∈ C, corresponding to the matrix
(

1 λ
0 1

)
.

• Scalings Sλ, for λ ∈ C∗, corresponding to the matrix
(
λ−1 0

0 λ

)
.

The geometric interpretation of twists and scalings is the following. The twist Tλ corresponds
to taking the tensor product with the rank one module (C[z], ∂z + λz), and the scaling Sλ
corresponds to do the change of variable z 7→ z/λ on P1.

As for the Fourier transform, any element of SL2(C) induces a transformation on connections
on Zariski open subsets on the affine line, and a corresponding formal transformation (that we
will also denote by A) on compatible formal data, such that the diagram

(E,∇) (E′,∇′)

(Θ̆, C̆) (Θ̆′, C̆′)

A

A

commutes. To show this, it is enough to check this for elementary transformations. We have
already dealt with the case of the Fourier transform, and for the twists and scalings we have:

Proposition 4.2.9. Let (E,∇) a connection on a Zariski open subset of the affine line, V̆ → I
its modified formal local system, and (Θ̆, C̆) its isomorphism class.

• Let tλ : I∞ → I∞ be the homeomorphism of I∞ defined by qU (1/z) 7→ qU (1/z)+ λ
2 z

2, where
qU is a section of I∞ over an open sector U ⊂ ∂∞. We extend tλ to an homeomorphism of
I by having it act trivially on

⊔
a∈C Ia. Then the modified formal local system associated

to Tλ · (E,∇) is isomorphic to (tλ)∗V̆ .

• For λ ∈ C∗, let sλ : I → I be the homeomorphism of I defined in the following way: for
a ∈ C, if qUa(z − a) is a section of Ia on the open sector U ⊂ ∂a, its image by sλ is the
section qUa/λ(λ(z−a/λ)) over the sector Ua/λ ⊂ ∂a/λ which is the image of U by z 7→ z/λ.
If qU (1/z) is a section of I∞, its image is qU/λ( 1

(λz)). The modified formal local system
associated to Sλ · (E,∇) is isomorphic to (sλ)∗(V̆ ).

We thus define Tλ · (Θ̆, C̆) as the isomorphism class of (tλ)∗(V̆ ) for λ ∈ C, and Sλ · (Θ̆, C̆) as
the isomorphism class of (sλ)∗(V̆ ) for λ ∈ C∗.
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Proof. The twist Tλ consists of tensoring (E,∇) with the rank one connection (O, d + λzdz),
having a third order pole at infinity and no other singularity. Therefore, Tλ only modifies the
formal data of ∇ at infinity. Since λzdz = −λdz∞

z3
∞

, if A is the matrix of the formalization at
infinity ∇̂∞ in some basis, i.e. ∇̂∞ corresponds ∂z∞ + A in this basis, then the matrix of the
formalization of Tλ · ∇ at infinity in the same basis is A− λ

z3
∞
. Integrating this, we obtain that

the exponential factors at infinity of Tλ · (E,∇) are obtained from the exponential factors of
(E,∇) by adding λ

2z2
∞
. The formal monodromies do not change.

The scaling Sλ corresponds to making the change of variable z′ = λz The singularities of
Sλ · (E,∇) are thus the images of the ones of (E,∇) by z 7→ z/λ, and the exponential factors of
Sλ · (E,∇) are obtained from the ones of (E,∇) by expressing them as a function of z′, i.e. by
substituting z with λz′.

As for the Fourier transform, if A · (Θ̆, C̆) = (Θ̆′, C̆′) the irregular class Θ̆′ only depends on
Θ̆, so we set A · Θ̆ = Θ̆′. For any circle 〈q〉, there is also a well-defined circle A · 〈q〉 ∈ π0(I)
such that, if (Θ̆, C̆) are effective formal data, 〈q〉 is an active circle of Θ̆ if and only if A · 〈q〉 is
an active circle of Θ̆′. If Θ̆ = n1〈q1〉+ . . . nr〈qr〉, we have

Θ̆′ = A · Θ̆ = n1A · 〈q1〉+ · · ·+ nrA · 〈qr〉.

The circle A · 〈q〉 can be determined in practice by factorizing A as a product of elementary
operations: for A = Tλ we have A · 〈q〉 = tλ(〈q〉) and for A = Sλ we have A · 〈q〉 = sλ(〈q〉).

4.3 Invariance of the diagram for one irregular singularity
In this section, we discuss the properties of the diagram associated by [26] to an irregular class
at infinity. We show that the diagram is invariant under Fourier-Laplace transform, and under
SL2(C) transformations. To do this, we compute an explicit formula for the number of edges
and loops of the diagram, as well as a formula for the terms appearing in the Legendre transform
of an exponential factor.

4.3.1 Diagram for one irregular singularity

Let (E,∇) be an algebraic connection on the affine line. The only singularity is at infinity. Its
formal local system V 0 → I (which is also the modified formal local system) has support on I∞.
Let (Θ∞,C∞) denote its formal data. Let us fix a direction d ∈ ∂. We set G := GL(Vd) and
H := GrAut(V 0

d ) the set of graded automorphisms of Vd. Recall that the conjugacy class C∞ of
the monodromy of V 0 → ∂∞ is an element of a twist H(∂) of H. The wild character variety is
in this case a multiplicative symplectic quotient

MB(E,∇) =MB(Θ∞,C∞) = HomS(V 0) //C H, (4.3.1)

where
HomS(Θ∞) = A(V 0) // G, (4.3.2)

is a twisted quasi-Hamiltonian H-space, itself obtained by symplectic reduction with respect to
G from the twisted quasi-Hamiltonian G×H-space

A(V 0) = H(∂)×G×
∏
d∈A

Stod(V 0). (4.3.3)

Let us denote by 〈q1〉, . . . , 〈qr〉 the active circles, and βi := ram(qi). In this case, recall that
we have from [26] the definition of a diagram, whose core is given by:
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Definition 4.3.1. The core diagram ΓBYc (Θ∞) associated to the irregular class Θ∞ has a set
of nodes N given by the set of active circles 〈q1〉, . . . , 〈qr〉, and for i, j = 1, . . . , r, the number of
arrows Bij between 〈qi〉 and 〈qj〉 is given by

• If i 6= j then
Bij = Aij − βiβj , (4.3.4)

where Aij = Irr(Hom(〈qi〉, 〈qj〉), and βi = ram〈qi〉.

• If i = j, the number of oriented loops at 〈qi〉 is given by

Bii = Aii − β2
i + 1. (4.3.5)

The numbers of arrows may be negative. One has Bij = Bji and we will show that Bii is
always an even number, so we can group the arrows two by two to get an unoriented diagram.
The motivation for this definition comes from counting the number of appearances of blocks
between graded parts of V 0 associated to the different active circles in the explicit presentation
of the wild character variety. The positive terms in Bij correspond to the matrix blocks inA(V 0),
and the negative terms in the Bij correspond to the relations given by the quasi-Hamiltonian
reduction.

The core diagram only depends on the irregular class Θ∞, but it does not take into account
the monodromies of the active circles. This can be done by adding legs to the core diagram
encoding the conjugacy classes of the monodromies. For each circle I ∈ π0(I∞) in the support
of Θ∞, with multiplicity n(I), let CI ⊂ GLn(I)(C) be the corresponding conjugacy class. Recall
that a choice of marking of CI determines a leg LI , which comes together with its dimension
vector dL ∈ ZNL , and vector of labels qL ∈ (C∗)NL , where NL denotes the set of vertices of L.

Definition 4.3.2. Let us choose for each active circle I a special marking of the conjugacy class
CI . The full diagram ΓBY (Θ∞,C∞) associated to (Θ∞,C∞) is the diagram obtained by gluing
for each active circle I the leg L(I) to the corresponding vertex vI of ΓBYc (Θ∞,C∞).

The full diagram inherits in this way a dimension vector d ∈ ZN , as well as a vector of
multiplicative labels q ∈ (C∗)N .

This recipe only enables us to define a diagram for connections with only one singularity at
infinity. Our goal is to define a diagram for the general case, that is for connections with an
arbitrary number of singularities. The task is not straightforward: although it is possible to
draw a diagram corresponding to the formal data at each singularity, it is not clear that there is
a natural way to somehow glue those diagrams together to define a global diagram having good
properties. In other words, the way in which the different singularities should “interact” is not
clear.

The idea, already present in [20], is thus to use the Fourier transform to reduce to the case
where all active circles are at infinity, where we know how to draw the diagram. Indeed, the
Fourier transform sends to infinity all active circles at finite distance. However, the Fourier
transform also sends to finite distance some of the active circles at infinity, and we are back to
the problem we started with. For this reason, we need before taking the Fourier transform to
apply some operation to prevent the active circles at infinity to go to finite distance. This can
be achieved by using more general SL2(C) transformations on modules over the Weyl algebra.
As we shall see, any matrix in an open dense subset of SL2(C) sends all active circles to infinity.

We thus want to define the diagram associated to a connection as the diagram associated
to its image under a generic SL2(C) transformation. For this to be well defined however, the
diagram must not depend on the choice of SL2(C) transformation to bring all active circles to
infinity, in other words the diagram has to be invariant under SL2(C) transformations. The
goal of this section is to show that it is indeed the case. The main step will be to show that the
diagram is invariant under Fourier transform.
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4.3.2 An explicit formula for the number of edges

Let 〈q〉 and 〈q′〉 be two exponential factors at infinity, with ramification orders β, and β′, with
slopes α/β and α′/β′. We set

q =
p∑
j=0

bjz
−αj/β
∞ , q′ =

p′∑
j=0

b′jz
−α′j/β

′

∞

the expression for q and q′ where we write only the monomials with non-zero coefficients, i.e.
bj 6= 0 and b′j 6= 0, α0 > · · · > α′p and α′0 > · · · > α′p′ . Because of ramification, a monomial
appearing both in q and q′ can give rise to Stokes arrows associated to the difference q−q′, since
there are several leaves on the covers I := 〈q〉 and I ′ := 〈q′〉. The leaves of 〈q〉 correspond to the
images q under the action of the Galois group isomorphic to Z/βZ arising from ramification, i.e.
to the polynomials

qi =
p∑
j=0

bjω
−αjz

−αj/β
∞ , i = 0, . . . , β − 1,

with ω = e2iπ/β. In a similar way, the leaves of 〈q′〉 correspond to the polynomials

q′i =
p′∑
j=0

b′jω
′−α′jz

−α′j/β
′

∞ , i = 0, . . . , β′ − 1,

with ω′ = e2iπ/β′ .
Let r be the biggest integer such that

∑r−1
j=0 bjz

−αj/β
∞ and

∑r−1
j=0 b

′
jz
−α′j/β

′

∞ have the same
Galois orbit.

We set

qc :=
r−1∑
j=0

bjz
−αj/β
∞ , q′c :=

r−1∑
j=0

b′jz
−α′j/β

′

∞ ,

and
qd :=

p∑
j=r

bjz
−αj/β
∞ , q′d :=

p∑
j=r

b′jz
−α′j/β

′

∞ ,

We get a decomposition
q = qc + qd, q′ = q′c + q′d,

of q and q′ as the sum of a common part qc and a different part qd. Replacing q or q′ by another
element of their Galois orbit if necessary, we may assume that qc = q′c. In the case where q and
q′ do not have the same leading term, then r = 0 and we have qc = q′c = 0 and q = qd, q′ = q′d.
In particular, this happens when q and q′ do not have the same slope. Otherwise, q and q′ have
a non-zero common part, in particular they have the same slope α0/β = α′0/β

′. The slope of
qd is αr/β, and the slope of q′d is α′r/β′. We use the usual notation (·, ·) to denote the greatest
common divisor. With those notations now set, we are in position to state the formula for the
number of edges between I and I ′.

Lemma 4.3.3. • Assume that and αr/β ≥ α′r/β′. Then the number of edges between I = 〈q〉
and I ′ = 〈q′〉 is

BI,I′ =(β′ − (α′0, β′))α0 + ((α′0, β′)− (α′0, α′1, β′))α1 + · · ·+ ((α′0, . . . , α′r−2, β
′)− (α′0, . . . , α′r−1, β

′))αr−1

+ (α′0, . . . , α′r−1, β
′)αr − ββ′.

• In particular, if q and q′ have no common parts and α/β ≥ α′/β′, then

BI,I′ = β′(α− β).
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We have a similar result for the number of loops at a circle 〈q〉.

Lemma 4.3.4. Let q =
∑p
j=0 bjz

−αj/β
∞ be an exponential factor of slope α0/β > 1 as before.

• One has

BI,I = (β−(α0, β))α0+((α0, β)−(α0, α1, β))α1+· · ·+((α0, . . . , αp−1, β)−(α0, . . . , αp, β))αp−β2+1.
(4.3.6)

• In particular, if (α, β) = 1, then we have

BI,I = (β − 1)(α− β − 1). (4.3.7)

Proof. To compute the number of edges between 〈q〉 and 〈q′〉 we have to determine the local
system Hom(〈q〉, 〈q′〉) as well as its irregularity. For this we have to look at the differences qi−q′j ,
with i = 0, . . . β−1, j = 0, . . . , β′−1 between all possible leaves 〈q〉 of 〈q′〉, find which connected
components of I they fall into and what the irregularity of those circles is. The subtlety is that
the degree of qi − qj depends in general of i and j, so that the circles will not have the same
irregularity.

Let µ be the smallest common multiple of β and β̃. We set

µ = kβ, µ = k′β′.

Let us also denote by δ the greatest common divisor of β and β′. We have

β = k′δ, β′ = kδ.

For 0 ≤ i ≤ r, let γi be the integer such that

αi
β

= α′i
β′

= γi
δ
.

Any difference qi − q′j belongs to a circle I = 〈qi − q′j〉 which is a connected component of
Hom(〈q〉, 〈q′〉). However, several differences qi − q′j belong to the same connected component:
each difference qi− qj corresponds to exactly one leaf of such a circle. This implies the following
formula:

Irr(Hom(〈q〉, 〈q′〉)) =
β−1∑
i=0

β′−1∑
j=0

slope(qi − q′j). (4.3.8)

Indeed, regrouping the terms of the sum according to the connected components, to each con-
nected component I of ramification order r and irregularity s correspond r differences qi− q′j in
the sum, with slope equal to slope(qi − q′j) = s/r. The total contribution of those terms is thus
equal to s = Irr(I).

The computation can be simplified by noticing the following fact: for any k ∈ Z,

slope(qi − qj) = slope(qi+k − q′j+k),

where the index i+ k is seen as an element of Z/βZ, and j + k is seen as an element of Z/β′Z.
Under this shifting action of Z, the set Z/βZ × Z/β′Z is partitioned into δ orbits, each having
cardinal µ. Furthermore, the differences

q0 − q′j , j = 0, . . . , δ − 1,
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belong to distinct orbits and thus yield one representative of each orbit. The formula (4.3.8)
therefore becomes

Irr(Hom(〈q〉, 〈q′〉)) = µ
δ−1∑
j=0

slope(q0 − qj)

=
δ−1∑
j=0

degz−1/µ(q0 − qj).

The task is thus reduced to computing the degree of the differences q0 − q′j , j = 0, . . . , δ − 1
as polynomials in z−1/µ. It is the exponent of the largest monomial having different coefficients
in q0 and q′j .

The common part qc = q′c is given by

qc = q′c =
r∑
i=0

biz
−αi/β
∞ =

r∑
i=0

biz
−α′i/β

′

∞ =
r∑
i=0

biz
−γi/δ
∞ =

r∑
i=0

biz
−kk′γi/µ
∞ .

We will start by determining the number of indices j = 0 ∈ {0, . . . , δ − 1} such that this degree
is the maximal possible degree kk′γ0, then the number of indices for which it is kk′γ1, etc.

Let us thus begin by computing the number of differences with degree kk′γ0. We consider
the coefficient of zkk

′γ0/µ
∞ in the difference q0 − q′j , j = 0, . . . , δ − 1: the corresponding term is

a0(zkk′γ0/µ
∞ − e2iπjγ0/δzkk

′γ0/µ
∞ ) = a0(1− e2iπjγ0/δ)zkk′γ0/µ

∞ .

The factor 1− e2iπjγ0/δ is zero if and only if j is an integer multiple of δ/(γ0, δ). There are thus
(γ0, δ) differences q0−q′j having a degree strictly less than kk′γ0. The δ−(γ0, δ) other differences
q0− q′j have degree kk′γ0. Each one of these contributes to kk′γ0 Stokes arrows from 〈q〉 to 〈q′〉.

Next, we compute the number of differences q0 − q′j , j = 0, . . . δ − 1, whose degree is kk′γ1.
In q0 − qj the monomial of degree kk′γ1 is

a1(1− e2iπjγ1/δ)zkk′γ1/µ
∞ .

As previously, this term is non-zero when j is an integer multiple of δ/(γ1, δ). It follows that
q0− q′j has degree strictly less than kk′γ1 when j is both a multiple of δ/(γ1, δ) and of δ/(γ0, δ),
i.e. is a multiple of their lowest common multiple lcm

(
δ

(γ0,δ) ,
δ

(γ1,δ)

)
. Since we have the equality

lcm
(

δ

(γ0, δ)
,

δ

(γ1, δ)

)
= δ

(γ0, γ1, δ)
,

we conclude that the number of differences q0 − q′j , j = 0, . . . , δ − 1 having degree strictly less
than kk′γ1 is equal to (γ0, γ1, δ). Therefore, the number of differences having degree equal to
kk′γ1 is (γ0, δ) − (γ0, γ1, δ). Each if these differences gives rise to kk′γ1 Stokes arrows from 〈q〉
to 〈q′〉.

The same reasoning can be carried out for the next terms in qc = q′c. By induction, we find
that for 1 ≤ i ≤ r, the number of differences q0−q′j , j = 0, . . . , δ−1 with degree kk′γi is equal to
the difference (γ0, . . . , γi−1, δ)− (γ0, . . . , γi, δ), and each of those circles gives rise to kk′γi Stokes
arrows between 〈q〉 and 〈q′〉.

There only remain (γ0, . . . , γr−1, δ) differences having degree strictly less than kk′γr−1. For
those differences, we have qc,0− q′c,j = 0, so only the different parts matter: q0− q′j = qd,0− q′d,j .
Now, the leading term of qd is brz−αr/β∞ = brz

−kαr/µ
∞ , so qd has degree kαr as a polynomial in

z−1/µ, and q′d has degree k′α′r in z−1/µ. It follows that the degree of q0 − q′j is max(kαr, k′α′r),
since we have assumed that αr/β ≥ α′r/β

′, the maximum is kαr. Each of these thus accounts
for kαr Stokes arrows from 〈q〉 to 〈q′〉.
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Adding all contributions, and subtracting the ββ′ arrows appearing in the definition of
B〈q〉,〈q′〉, we get the following expression for the number of edges between 〈q〉 and 〈q′〉:

B〈q〉,〈q′〉 =(δ − (γ0, δ))kk′γ0 + ((γ0, δ)− (γ0, γ1, δ))kk′γ1 + · · ·+ ((γ0, . . . , γr−2, δ)− (γ, . . . , γr−1, δ))kk′γr−1

+ (γ0, . . . , γr−1, δ)kαr − ββ′.

Since kδ = β′, kγi = α′i, and k′γi = αi, this yields the desired formula.
The case where q and q′ have no common part corresponds to having r = 0. In the formula, all

terms corresponding to the common part disappear, there only remains B〈q〉,〈q′〉 = β′(α−β).

The similar formula for the number of loops is

Lemma 4.3.5. Let q =
∑p
j=0 bjz

−αj/β
∞ be an exponential factor of slope α0/β > 1 as before.

• One has

Bq,q = (β−(α0, β))α0+((α0, β)−(α0, α1, β))α1+· · ·+((α0, . . . , αp−1, β)−(α0, . . . , αp, β))αp−β2+1.
(4.3.9)

• Otherwise, if (α, β) = 1, then we have

Bq,q = (β − 1)(α− β − 1). (4.3.10)

Proof. The proof is similar to the case of two different circles. As previously we have

Irr(End(〈q〉)) =
β−1∑
i=0

β−1∑
j=0

slope(qi − qj) =
β−1∑
j=0

slope(q0 − qj).

Among those β differences, we determine how many have degree α0, . . . αp, as polynomials in
z−1/β, and the remaining differences will have degree 0. We find that the number of differences
with degree α0 is β−(α0, β), the number of differences with degree α1 is (α0, β)−(α0, α1, β), etc.
One has (α0, . . . , αp−1, β) − (α0, . . . , αp, β) differences with degree αp, and the (α0, . . . , αp, β)
remaining differences belong to connected components that are copies of 〈0〉. Each difference of
degree αi accounts for αi Stokes arrows. The total number of (positive) Stokes arrows is thus

(β − (α0, β))α0 + ((α0, β)− (α0, α1, β))α1 + · · ·+ ((α0, . . . , αp−1, β)− (α0, . . . αp, β))αp.

To this we must subtract a number of arrows equal to β(β − 1) + (β − 1) = β2 − 1, which gives
the desired formula.

When α and β are relatively prime, only the first term remains: the number of positive
Stokes arrows is (β − 1)α, and the conclusion follows.

Lemma 4.3.6. The integer BI,I is even.
Proof. Let us first assume that β is odd. Then all greatest common divisors appearing in the
formula for BI,I are odd, so differences between two consecutive g.c.d.s are even, and all terms
involving those differences are even. The sum of the remaining terms is −β2 + 1 which is even,
so the result follows.

Now, let us consider the case when β is even. Let us consider the sequence of greatest common
divisors β, (α0, β), . . . , (α0, . . . , αp, β). The first element β is even, the last one (α0, . . . , αp, β) is
odd, and the sequence consists first of even integers until (α0, . . . , αk0 , β) where k0 is the smallest
index k such that αk is odd. Starting from this element, all g.c.d.s in the sequence are odd.
As a consequence, all the terms involving differences of g.c.d.s in the formula for BI,I are even
except ((α0, . . . , αk0−1, β)− (α0, . . . , αk0 , β))αk0 which is odd. The sum of the remaining terms
−β2 + 1 is odd, and the conclusion follows.

This proves what was a statement in [26, p.3], and guarantees that we have a diagram with
unoriented edges.

70



4.3.3 Form of the Legendre transform

In this paragraph, we compute the Legendre transform of an exponential factor q at infinity as
explicitly as possible. We determine the monomials appearing (with non-zero coefficients) in the
Legendre transform.

Proposition 4.3.7. Let q =
∑p
j=0 bjz

αj/β, with bj 6= 0, be an exponential factor at infin-
ity with ramification β. We set α := α0, so the slope of q is α/β > 1. Then the ex-
ponents of ξ possibly appearing with non-zero coefficients in its Legendre transform q̃ are of
the form α−k1(α−α1)−···−kp(α−αp)

α−β , with k1, . . . , kp ≥ 0. More precisely, if we set E := {γ ∈
N | ∃k1, . . . , kp ∈ N, γ = k1(α− α1) + · · ·+ kp(α− αp)} the Legendre transform has the form

q̃(ξ) =
∑
γ∈E
α−γ>0

b̃γξ
α−γ
α−β , (4.3.11)

where the sum is restricted to the terms such that the exponent α−γ
α−β is positive. Furthermore,

the coefficients b̃(α−αi) are non-zero for i ≥ 1.

Lemma 4.3.8. Let q =
∑p
j=0 bjz

αj/β, with bi 6= 0,be an exponential factor at infinity. We set
α := α0, so the slope of q is α/β > 1. Then the exponents of ξ possibly appearing with non-zero
coefficients in its Legendre transform q̃ are of the form α−k1(α−α1)−···−kp(α−αp)

α−β , with k1, . . . , kp ≥
0. More precisely, if we set E := {γ ∈ N | ∃k1, . . . , kp ∈ N, γ = k1(α − α1) + · · · + kp(α − αp)}
the Legendre transform has the form

q̃(ξ) =
∑
γ∈E
α−γ>0

b̃γξ
α−γ
α−β , (4.3.12)

where the sum is restricted to the terms such that the exponent α−γ
α−β is positive. Furthermore,

the coefficients b̃(α−αi) are non-zero for i ≥ 1.

Proof. The proof consists in computing the Legendre transform directly from the system of
equations by which it is defined, in a way explicit enough to find the order of the terms which
appear. The first equation of the system is

dq

dz
= ξ, (4.3.13)

it is interpreted as determining ξ as a function of z. We will show that this implies ξ is of the
form

z =
∑
γ∈E

cγξ
β−γ
α−β . (4.3.14)

The second equation of the system then yields dq̃
dξ = −z, and the lemma follows by integrating.

Equation (4.3.13) has a solution z(ξ) in the field of Puiseux series in the variable ξ which
is unique once we fix a choice of α − β-th root. To show (4.3.14), we thus can take this form
of solution as an ansatz, and check that it gives a unique solution for the coefficients of this
expression: this will automatically be the solution z(ξ). So let us assume (4.3.14). We set

dq

dz
=

p∑
j=0

b′jz
αj−β
β .

This implies

ξ = dq

dz
=

p∑
j=0

b′j

∑
γ∈E

cγξ
β−γ
α−β


αj−β
β

.
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We develop this expression to identify the coefficients. We have

ξ =
p∑
j=0

b′j

(∑
γ

cγξ
β−γ
α−β

)αj−β
β

=
p∑
j=0

b′jξ
−
αj−β
α−β

(∑
γ

cγξ
−γ
α−β

)αj−β
β

=
p∑
j=0

b′′j ξ
1−

α−αj
α−β

1 +
∑
γ 6=0

c′γξ
−γ
α−β


αj−β
β

=
p∑
j=0

b′′j ξ
1−

α−αj
α−β

 ∑
(lγ)γ 6=0

∏
{γ, lγ 6=0}

A
(j)
lγ
c′γ
lγξ
−lγγ
α−β



=
∑
j,(lγ)

b′′j

 ∏
{γ, lγ 6=0}

A
(j)
lγ
c′γ
lγ

 ξ
(

1−
(α−αj)+

∑
γ
lγγ

α−β

)

=
∑
δ≥0

dδξ
1− δ

α−β ,

with

dδ =
∑
j,(lγ)∑

γ
lγγ+(α−αj)=δ

b′′j

 ∏
{γ, lγ 6=0}

A
(j)
lγ
c′γ
lγ

 . (4.3.15)

In the calculation, we have set b′′j = b′jc
(αj−β)/β
0 , c′γ = cγ/c0, and the A(j)

lγ
are the combina-

torial coefficients appearing in the series expansion of the term (1 + . . . )(αj−β)/β.
The crucial point in this computation is that the integers δ =

∑
γ lγγ + (α− αj) still belong

to the set of exponents E. This is the reason why our ansatz is correct. This enables us to find
the coefficients cγ by induction:

• For δ = 0, we have d0 = b′′0. By comparing the terms in ξ, we find 1 = d0 = b′′0, then c0.
This is where the choice of α− β-th root takes place.

• Let δ ∈ E. Assume that we know all cγ for γ ∈ E such that γ ≤ δ. Let δ′ be the smallest
element of E strictly greater than δ. Equation (4.3.13) gives dδ′ = 0. But δ′ is a sum of
terms featuring the c′γ for γ ≤ δ′, and of a single term featuring d′δ, equal to

b′′0A
(0)
1 c′δ1 = α0 − β

β
c′δ′

since we have A(0)
1 = α0−β

β 6= 0. All the other terms being known by induction hypothesis,
this determines c′δ′ and hence cδ′ , in a unique way.

It remains to see that the first subleading term associated to each αi, that is b̃(α−αi), is non-zero.
For this we look at the coefficient δ(α−αj). Equation (4.3.14) implies that δ(α−αj) = 0. On the
other hand δ(α−αj) is given by (4.3.15) with δ = α− αj . Let us write down this equation more
explicitly. There are only two decompositions α− αj of the form

α− αj =
∑
γ∈E

lγγ + (α− αk),
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with lγ ≥ 0, k ∈ {0, . . . , p}:

α− αj = 0 + (α− αj), and α− αj = 1× (α− αj) + (α− α0)︸ ︷︷ ︸
=0

.

Equation (4.3.15) thus yields

0 = dα−αj = b′′j × 1 + b′′0A
(j)
α−αjc

′
α−αj .

Since b′′0, b′′j and A(j)
α−αj are non-zero, this implies that c′α−αj 6= 0, and the conclusion follows.

4.3.4 Invariance of the diagram under Fourier-Laplace transform

We now prove the invariance of the diagram under Fourier transform.

Theorem 4.3.9. Let Θ∞ : π0(I∞) → N an irregular class infinity, such that the slopes of all
active circles are > 1. Then the core diagram ΓBYc (Θ∞) is invariant under Fourier-Laplace
transform.

Proof. The proof comes from combining lemma 4.3.3 giving the number of edges of the diagram,
and lemma 4.3.7 giving the structure of the Legendre transform. This allows us to compute the
number of edges in the diagrams Γc(Θ∞) and Γc(Θ′∞), where Θ′∞ := F · Θ∞, and check they
are the same. Keeping the same notations as before, let I := 〈q〉 and I ′ := 〈q′〉 be two distinct
active circles of Θ∞. We want to compute the number of edges between their images Ĩ := 〈q̃〉
and Ĩ ′ := 〈q̃′〉. Lemma 4.3.7 implies that q̃ is of the form

q̃ =
∑
γ∈E

b̃γξ
−α−γ
α−β
∞ ,

with E = {γ ∈ N | γ < α, ∃k1, . . . , kp ≥ 0, γ = k1(α0 − α1) + · · ·+ kp(α0 − αp)}, and similarly

q̃′ =
∑
γ′∈E′

b̃′γ′ξ
−α
′−γ′

α′−β′
∞ ,

with E′ = {γ′ ∈ N | γ′ < α′, ∃k1, . . . , kp ≥ 0, γ′ = k1(α′0−α′1)+· · ·+kp(α′0−α′p)}. Let us denote
by 0 = γ0 < · · · < γN the distinct elements of E and 0 = γ′0 < · · · < γ′N ′ those of E′. We first
determine the common parts and the different parts of q̃ and q̃′. The integers γ and γ′ containing
only terms common to q and q′, i.e. of the form γ = k1(α0 − α1) + · · · + kr−1(α0 − αr−1) and
γ′ = k1(α′0−α′1) + · · ·+ kr−1(α′0−α′r−1), belong to the part common to q̃ and q̃′. Let us denote
by Ec ⊂ E and E′c ⊂ E′ the corresponding subsets. Furthermore, the respective leading terms
of the different parts of q̃d and q̃′d correspond to the first integers γ where the factors (α − αr)
and (α′−α′r) appear, which are α−αr =: γR, and α′−α′r+1 =: γ′R with R ≤ N . It follows that
q̃d is of degree αr

α−β and q̃′d is of degree α′r
α′−β′ . Since we have assumed αr/β > α′r/β

′, we have
αr
α−β >

α′r
α′−β′ . From lemma 4.3.3, the number of edges between 〈q̃〉 and 〈q̃′〉 is

B
Ĩ,Ĩ′

= ((α′ − β′)− p′0)α0 +
R−1∑
k=1

(p′k−1 − p′k)(α− γk) + pR(α− γR)− (α− β)(α′ − β′), (4.3.16)

where p′k = (α′0, . . . , α′0 − γk, α′ − β′).
In this expression, let us examine the g.c.d.s p′k and the differences p′k−1 − p′k. Notice that

one has p′k−1 = p′k as soon as any decomposition γk = k1(α′0−α′1) + · · ·+ kp(α′0−α′p) of γk only
contains factors (α − αj) already present in in some pl with l ≤ k − 1. In other words, we can
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have p′k−1 > p′k only when in γk a new factor (α−αj) appears, that is when γk = α−αj for some
j = 1, . . . , p. The distinct values of p′k are thus the g.c.d.s (α′0, . . . , α′l, α′− β′) = (α′0, . . . , α′l, β′).
Therefore, the non-zero terms involving g.c.d.s in the formula for B〈q̃〉,〈q̃′〉 are exactly the same
as those for BI,I′ . The sum of the remaining terms is α′β − ββ′ = β(α′ − β′) for BI,I′ , and
(α′ − β′)α0 − (α − β)(α′ − β′) = β(α′ − β′) for B

Ĩ,Ĩ′
: they are also the same. Finally, we have

the equality BI,I′ = B
Ĩ,Ĩ′

of the numbers of edges.
It remains to deal with the case of loops at 〈q〉 and 〈q̃〉. In a similar way as the previous

case, the non-zero differences of g.c.d.s appearing in the formula for B
Ĩ,Ĩ

are exactly the same as
those appearing in the formula for BI,I . The sum of the remaining terms for BI,I is β(α−β)+1,
and this expression is invariant under Fourier transform since α 7→ α and β 7→ α− β. We thus
have BI,I = B

Ĩ,Ĩ
, which completes the proof of the invariance of the graph.

4.3.5 Invariance of the diagram under symplectic transformations

The goal of this section is to show:

Theorem 4.3.10. Let Θ∞ be an irregular class at infinity. There is an open dense subset
SV ⊂ SL2(C) such that for all A ∈ SV , A ·Θ∞ only has a singularity at infinity. Furthermore,
we have ΓBYc (Θ∞) = ΓBYc (A ·Θ∞).

To prove this, the idea is to decompose the elements of SL2(C) as products of elementary
operations.

Lemma 4.3.11. Let Θ∞ be an irregular class at infinity. Then

• For λ ∈ C, Γc(Tλ ·Θ∞) = ΓBYc (Θ∞).

• For λ ∈ C∗, Γc(Sλ ·Θ∞) = ΓBYc (Θ∞).

Proof. The twist Tλ induces via tλ a bijection between the active circles of Θ∞ and Tλ ·Θ∞. The
differences of exponential factors qU (z∞)−q′U (z∞) are invariant under a twist Tλ, so the number
of Stokes arrows between two active circles and their images by tλ are the same. This proves
the first part of the lemma. In a similar way, Sλ induces via sλ a bijection between the active
circles of Θ∞ and Sλ ·Θ∞. The degree of a difference qU (za)− q′U (za) of exponential factors at
a ∈ C is the same as its image qU (λ(za/λ))− q′U (λ(za/λ)) by sλ. This is also true for exponential
factors at infinity. Therefore, the number of Stokes arrows between two active circles and their
images by sλ are the same, and the conclusion follows.

Since we have already seen that the Fourier transform preserves the diagram when all circles
are of slope > 1, i.e. when F ·Θ∞ only has a singularity at infinity, all elementary transformations
preserve the core diagram. However, deducing the theorem from this by factoring matrices of
SL2(C) as products of elementary transformations is not entirely straightforward. Indeed, if
A ∈ SL2(C) admits a factorization A = Ak . . . A1 as a product of elementary transformations, it
may occur that for some 1 ≤ i ≤ k, Ai . . . A1 ·Θ∞ has singularities at finite distance. Therefore,
we have to show that A always admits a factorization such that this doesn’t happen. We will
do this in several steps.

Lemma 4.3.12. Let Θ∞ be an irregular class at infinity. There exists A ∈ SL2(C) such that
all active circles of A · Θ∞ have slope no greater than 2. More precisely, there exists such a
matrix of the form FTλ, for some λ ∈ C.

Proof. Let 〈q〉∞ be an irregular circle at infinity. Its image by Tλ is 〈q + λ
2 z

2〉. The term λ
2 z

2

is of slope 2. There are thus two possibilities: either q has slope strictly greater than 2 and
slope(q) = slope(q+ λ

2 z
2), or q has slope less than 2 and slope(q+ λ

2 z
2) = 2, if we choose λ such

that −λ/2 is not equal to the coefficient of slope 2 of q. We then apply the Fourier transform.
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In the first case, if we denote slope(Tλ · 〈q〉) = p/q > 2, with p, q ∈ N, one has p − q > q,
so from the stationary phase formula slope(FTλ · 〈q)〉 = p

p−q < 2. In the second case we have
slope(FTλ · 〈q〉) = slope(Tλ · 〈q〉) = 2. As a consequence, if we choose λ such that −λ/2 is not
equal to any of the coefficients of slope 2 of the active circles of Θ∞, then FTλ · Θ∞ only has
active circles at infinity of slope no greater than 2.

Let 〈q〉 be a circle at infinity of slope ≤ 2. It is clear that this circle remains at infinity when
a twist or a scaling is applied. It remains at infinity under Fourier transform if and only if its
slope is strictly greater than 1. In particular, it remains at infinity if its coefficient of slope 2 is
non-zero.

Proposition 4.3.13. Let q be an exponential factor at infinity of slope ≤ 2. We write q =

−λ
2 z

2 + q<2 with q<2 of slope < 2. Let A =
(
a b
c d

)
∈ SL2(C). Let 〈q′〉 be the image of 〈q〉∞

by A. Then 〈q′〉 is also at infinity unless slope(q<2) ≤ 1 and cλ + d = 0. In this case, writing
q′ = −λ′

2 + q′<2 with q<2 of slope < 2, the coefficients λ and λ′ are related by

λ′ = aλ+ b

cλ+ d
. (4.3.17)

To prove this, we begin with the case of elementary transformations.

Lemma 4.3.14. The proposition is true if A is an elementary transformation

Proof. The twist Tµ =
(

1 µ
0 1

)
acts on q according to

Tµ(q) = q − µ

2 z
2 = −λ+ µ

2 z2 + q<2.

This amounts to λ 7→ λ+ µ, so the property is verified. The scaling Sµ =
(
µ−1 0

0 µ

)
sends q to

Sµ(q) = q(z/µ) = −λµ
2

2 z2 + q<2(z/µ).

This amounts to λ 7→ λµ2, so the property is again verified. The Fourier transform F =
(

0 1
−1 0

)
acts on q according to the Legendre transform: computing it explicitly we find

F (q) = Lq = 1
2λx

2 + q̃0,

where q̃0 has slope < 2. This amounts to λ 7→ − 1
λ and the property is once again verified.

The idea is then to factorize A as a product of elementary operations, using the following
lemma.

Lemma 4.3.15. Let A =
(
a b
c d

)
∈ SL2(C), and hA : P1 → P1 be the corresponding homogra-

phy z 7→ az+b
cz+d .

• If hA(∞) =∞, then A admits a factorization as a product of elementary operations of the
form A = SνTρ, with ν ∈ C∗, ρ ∈ C.
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• Otherwise, if hA(∞) 6=∞, A admits a factorization of the form

A = TµFSνTρ, (4.3.18)

with µ ∈ C, ν ∈ C∗, ρ ∈ C.

Proof. We have hA(∞) = a
c ∈ P1, so hA fixes infinity if and only if c = 0. This implies a 6= 0

and d = a−1, and we have A = SνTρ with ν = a, ρ = b/a. When hA(∞) 6=∞,we can reduce to
the case where hA fixes infinity. Let µ := hA(∞) = a

c . We introduce

Bµ :=
(

0 −1
1 −µ

)
= F−1T−µ,

such that the corresponding homography hBµ sends µ to ∞. Then the homography associated
to BµA sends ∞ to ∞. This implies that BµA has the form

BλA =
(
ν σ
0 ν−1

)
,

with ν = −c and σ = −d, so that BµA = SνTρ with ρ = σ/µ. Finally we get A = B−1
µ SνTρ =

TµFSνTρ.

Proof of the proposition. If c = 0 then d 6= 0 and cλ + d = d 6= 0. In this case A factorizes
as A = SνTρ, so the circle 〈q′〉 is at infinity. Now if c 6= 0, from the lemma A factorizes as
A = TµFSνTρ. Let 〈q′′〉 := SνTρ · 〈q〉∞, and write q′′ = −λ′′

2 + q′′<2 with the slope of q′′<2 being
< 2. The circle 〈q′〉 is at infinity if and only if 〈q′′〉 is not sent to finite distance by the Fourier
transform, i.e. using the stationary phase formula if we don’t have λ′′ = 0 and slope(q′′<2) ≤ 1.

From the Legendre transform slope(q′′<2) = slope(q<2). We have SνTρ =
(
−c −d
0 −c−1

)
, so

λ′′ = − cλ+d
−c−1 . Therefore we have λ′′ 6= 0 if and only if cλ + d 6= 0. It follows from this that, if

we do not have cλ+ d = 0 and slope(q<2) ≤ 1, then at each step of the factorization the images
of 〈q〉 remain at infinity. Since at each elementary operation the coefficient λ is transformed
according to the corresponding homography, the conclusion follows.

We are now in position to prove the theorem.

Proof of the theorem. Let Θ∞ be an irregular class at infinity. Up to applying a well-chosen
symplectic transformation, we may assume that all active circles of Θ∞ have slope less than 2.
We denote by −λi/2, i = 1, . . . , r the coefficients of z2 of these active circles. It follows from the

previous proposition that for A =
(
a b
c d

)
∈ SL2(C) ∈ SL2(C), A ·Θ∞ only has a singularity at

infinity if and only if cλi + d 6= 0 for i = 1, . . . ,m. This corresponds to an open dense subset of
SL2(C). Furthermore A has a factorization A = TλFSµTν , such that when applying successively
the elementary operations, Θ∞ always remains with only one singularity at infinity. At each
step, the diagram doesn’t change, and the conclusion follows.

Remark 4. It follows from this analysis that one may view the active circles at finite distance
as circles at infinity of slope ≤ 2 for which the coefficient of slope 2 is infinite. We may call the
copy of P1 where those coefficients live the Fourier sphere, as in [20]. Acting with symplectic
transformations on circles at infinity of slope ≤ 2 amounts to acting on the Fourier sphere
with the corresponding homographies. It is then clear that for a generic rotation none of the
coefficients will be at infinity, i.e. there will only be one singularity at infinity.

76



4.4 Diagrams for general connections

4.4.1 Definition of the diagram

To define the diagram in the the general case where there are several irregular singularities,
the idea is to use the Fourier-Laplace transform to reduce to the situation where there is only
one singularity at infinity studied in the previous section. The invariance of the diagram under
SL2(C) will ensure that this construction is well defined.

Theorem 4.4.1. Let (E,∇) an algebraic connection on a Zariski open subset of A1 with modified
formal data (Θ̆, C̆). Then for any A in an open dense subset of SL2(C), the local system A·(Θ̆, C̆)
only has support at infinity, and the diagram ΓBY (A · (Θ̆, C̆)) is independent of A.

Proof. It is easy to find a matrix A ∈ SL2(C) such that A · (Θ̆, C̆) has support at infinity. For
example we may take A of the form A = FTλ, with λ ∈ C: it suffices to choose the coefficient λ
of the twist such that all the coefficients of the terms of slope 2 in the active circles of Tλ · (Θ̆, C̆)
at infinity are non-zero. Applying then the Fourier transform, this guarantees that the active
circles at infinity of Tλ · Θ̆ remain at infinity while the active circles at finite distance are sent to
infinity. The results of the previous section now imply that BA · (Θ̆, C̆) has support at infinity
and that ΓBY (BA · (Θ̆, C̆)) = ΓBY (A · (Θ̆, C̆)) for B in an open dense subset of SL2(C).

Definition 4.4.2. Let (E,∇) a connection on a Zariski open subset of the affine line, (Θ,C)
its formal data, and (Θ̆, C̆) the corresponding modified formal data. We define the diagram
associated to (E,∇) as

Γ(E,∇) = Γ(Θ,C) = Γ(Θ̆, C̆) := ΓBY (A · (Θ̆, C̆))

for any A ∈ SL2(C) such that A · (Θ̆, C̆) has support at infinity.

4.4.2 Direct formula for the core diagram

The definition of the diagram involves a choice of SL2(C) transformation. The explicit formulas
for the number of edges and our understanding of the Legendre transform allow us to give a
direct expression of the core diagram, which we may then take as the definition of the core
diagram as in the introduction.

Let I = 〈q〉, I ′ = 〈q′〉 be circles at points a, a′ ∈ P1. Using similar notations as before, we
write β := ram(q), β′ := ram(q′) and

q =
k∑
i=0

biz
−αi/β
a , q′ =

k′∑
i=0

b′iz
−α′i/β

′

a′ ,

where the coefficients bi, b′i ∈ C are non-zero, and set α := α0 = Irr(q), α′ := α′0 = Irr(q′). If
q and q′ are both at infinity, that is if a = a′ = ∞, then we know from a previous lemma the
number of edges B〈q〉,〈q′〉, which depends only on the degrees of the terms of q and q′. Let us
denote by B∞〈q〉,〈q′〉 this formula.

Theorem 4.4.3. Let I = 〈q〉a and I ′ = 〈q′〉a′ be active circles. If a = a′, denoting as before
by αr/β and α′r/β′ the slopes of the different parts of q and q′, we assume that αr

β ≥
α′r
β′ . The

number of edges BI,I′ between the vertices associated to I and I ′ following:

1. If a = a′ =∞ then BI,I′ = B∞I,I′.

2. If a =∞ and a′ 6=∞ then BI,I′ = β(α′ + β′).

3. If a 6=∞, a′ 6=∞ and a 6= a′ then BI,I′ = 0.
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4. If a = a′ 6=∞ then BI,I′ = B∞I,I′ − αβ′ − α′β.

Proof. To prove this, we apply a generic SL2(C) twist at infinity acting on exponential factors
at infinity as q 7→ q + λz2, followed by Fourier transform. From our study of the Legendre
transform we obtain the form of the images of q and q′ under this process, then we apply the
formula for the number of edges at infinity. Let us first deal with the cases where q 6= q′.

1. This case is just a consequence of the fact that the twist and the Fourier transform leave
B∞〈q〉,〈q′〉 invariant.

2. Let q1 and q′1 be the images of q, q′. If α
β ≤ 2, then q1 has ramification β and slope

2 = 2β/β. If αβ > 2, then q1 has ramification α− β and slope α
α−β . On the other hand, q′1

is of the form
q′1 = −a′z + b′zα

′/(α′+β′) + . . .

for some b′ ∈ C, b′ 6= 0, so q′1 has ramification α′ + β′ and slope 1 (if a 6= 0), or α′

α′+β′ (if
a = 0). When α

β ≤ 2, it follows from the formula for B∞ that

B〈q〉,〈q′〉 = B∞〈q1〉,〈q′1〉
= (α′ + β′)(2β − β) = β(α′ + β′).

When α
β > 2 the same formula gives

B〈q〉,〈q′〉 = B∞〈q1〉,〈q′1〉
= (α′ + β′)(α− (α− β)) = β(α′ + β′).

so both cases yield the expected result.

3. In this case q1 and q′1 are of the form

q1 = −az + bzα/(α+β) + . . . , q′1 = −a′z + b′zα
′/(α′+β′) + . . . ,

that is q1 and q1 have respective ramification orders α+ β and α′ + β′, have both slope 1
and non common part. The formula for B∞ thus gives

B〈q〉,〈q′〉 = B∞〈q1〉,〈q′1〉
= (α′ + β′)((α+ β)− (α+ β)) = 0.

4. If a = a′, q1 and q′1 are of the form

q1 = −az + q̃, q′1 = −az + q̃′,

with q̃ having ramification α + β and slope α
α+β , and q̃′ having ramification α + β and

slope α′

α′+β′ . Let us first assume that q and q′ have a common part. Then so do q1 and q′1.
The slopes or their different parts are αr

α+β ≥
α′r

α′+β′ . The form of q1 and q′1 is given by the
lemma giving the form of the Legendre transform. The slopes or their different parts are
αr
α+β ≥

α′r
α′+β′ and the formula for B∞〈q1〉,〈q′1〉

gives

B〈q〉,〈q′〉 = B∞〈q1〉,〈q′1〉

= ((α′ + β′)− (α′0, α′ + β′))α0 + · · ·+ (α′0, . . . , α′r−1, α
′ + β′)αr − (α+ β)(α′ + β′)

= ((α′ + β′)− (α′0, β′))α0 + · · ·+ (α′0, . . . , α′r−1, β
′)αr − (αα′ + ββ′ + α′β + αβ′)

= B∞〈q〉,〈q′〉 − αβ
′ − α′β

= B∞〈q〉,〈q′〉 − 2αβ′,

where in the last step we have used that α
β = α′

β′ since q and q′ have a common part. Now
assume that q and q′ have no common part. Then the slope of q̃ and q̃′ are respectively
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α
α+β ≥

α′

α′+β′ (the order is preserved by the Legendre transform), so from the formula for
B∞〈q̃〉,〈q̃′〉 we have

B〈q〉,〈q′〉 = −β(α′ + β′).

On the other hand, we have B∞〈q〉,〈q′〉 = β′(α − β), so we again have B∞〈q〉,〈q′〉 = B∞〈q〉,〈q′〉 −
αβ′ − α′β as expected.

To complete the proof, it remains to deal with the case of loops. We check that one has
B〈q〉,〈q〉 = B∞〈q〉,〈q〉 − 2αβ when a 6=∞, so the formula for B〈q〉,〈q′〉 remains valid when q = q′.
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Chapter 5

Dimension of the wild character
variety

In this chapter, we prove that the dimension of the wild character variety is obtained from the
diagram and its dimension vector. Let Γ be a diagram, possibly with loops, negative edges or
negative loops. Let N be its set of vertices and k its cardinal. A dimension vector associated
with Γ is an element d = (di)i∈N ∈ NN . Let B ∈Mk(Z) be the adjacency matrix of the diagram.
The Cartan matrix of the diagram is defined by

C = 2 Id−B.

We denote by (·, ·) the bilinear form on Ck with matrix C.
We have the following result:

Theorem 5.0.1. The dimension of the wild character varietyMB(Θ,C), when it is non-empty,
is given by

dimMB(Θ,C) = 2− (d,d), (5.0.1)

where (·, ·) is the bilinear form associated with the diagram Γ(Θ,C), and d is the dimension
vector of Γ(Θ,C).

Corollary 5.0.2. If (Θ̆, C̆) are the modified formal data of a connection (E,∇) and A ∈ SL2(C),
then the character varietiesMB(Θ̆, C̆) andMB(A · (Θ̆, C̆)), if nonempty, have the same dimen-
sion.

This is consistent with the preservation of the index of rigidity by Fourier transform [12].

Proof. By construction of the diagram (Θ̆, C̆) and A ·(Θ̆, C̆) have the same diagram Γ. Therefore
we have dimMB(Θ,C) = 2− (d,d) = dimMB(A · (Θ̆, C̆)).

To prove this, we will use the quasi-Hamiltonian description of the wild character variety.
We briefly recall the main facts. Let us set G := GLn(C) where n is the rank of (E,∇), and
keeping the previous notations let a1, . . . , am ∈ P1 be the singular points of any connection with
set of formal data V . Let V 0 → I be the (non-modified) local system on I giving rise to V . For
k = 1, . . . ,m, we consider the restriction V 0

ak
→ ∂ak of the local system system V 0, that we now

see as a local system over the circles ∂a, a ∈ C. Let us choose a direction d ∈ ∂ak , and denote
by ρk ∈ GL(V 0

d ) the monodromy of V 0
ak
. As before, we denote by 〈q(k)

1 〉, . . . 〈q
(k)
rk 〉 ∈ π0(Iak) the

active circles at ak, n
(k)
i ∈ N their respective multiplicities, and β(k)

j their respective ramification
orders. Let Hk := GrAut(V 0

ak
) ∼=

∏rk
i=1GLn(k)

i

(C)b
(k)
i . The monodromy ρk is an element of the

Hk-torsor Hk(∂ak) (see [25]). Explicitly, an element of Hk(∂ak) is of the form

h(k) = diag(h(k)
1 , . . . , h(k)

rk
),
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where h(k)
i is a square diagonal block matrix of size β(k)

i of the form

h
(k)
i =


0 . . . 0 ∗
∗ 0

. . . ...
∗ 0

 ,
with each block in GL

n
(k)
i

(C).
The wild character varietyMB(E,∇) =MB(Θ,C) is obtained as a symplectic reduction of

the twisted quasi-Hamiltonian manifold

HomS(V ) ∼= A(V 0
a1)~ · · ·~A(V 0

am) // G,

where ~ is the quasi-Hamiltonian fusion operation. Here, each piece A(V 0
ak

) is a twisted quasi-
Hamiltonian Hk ×G-space:

A(V 0
ak

) = H(∂ak)×G×
∏

d∈Aak

Stod,

where Aak is the set of singular directions of the connection at ak, and Stod is the Stokes group
associated to the singular direction d ∈ Aak . Hence, HomS(E,∇) is a twisted quasi-Hamiltonian
H×G-space, where H = H1 × · · · ×Hm.

The formal monodromies ρ(ak) ∈ H(∂ak) determine twisted conjugacy classes C(∂ak) ⊂
H(∂ak) which do not depend on the choice of direction d ∈ ∂ak and the choice of isomorphism
V 0
d
∼= C

∑
j
n

(k)
i β

(k)
i . Finally, the wild character variety is the twisted quasi-Hamiltonian reduction

of HomS(E,∇) at the twisted conjugacy class C :=
∏m
k=1 C(∂ak), i.e.

MB(Θ,C) = HomS(E,∇) //C H. (5.0.2)

This description enables us to compute the dimension ofMB(E,∇). One has

dimA(V 0
ak

) = dimG+ dimH(∂ak) + dim
∏

d∈Aak

Stod . (5.0.3)

The dimension of G is dimG = n2. One has dimH(∂ak) =
∑
i β

(k)
i n

(k)
i

2
. The dimension of the

product of the Stokes groups can be expressed as a function of the number of Stokes arrows
between the active circles (see [21]):

dim
∏

d∈Aak

Stod =
∑

1≤i,j≤rk
n

(k)
i n

(k)
j B+

i,j , (5.0.4)

where B+
i,j denotes the number of (positive) Stokes arrows between 〈q(k)

i 〉 and 〈q
(k)
j 〉 in the Stokes

diagram corresponding to the formal local system V 0
ai → ∂ai .

The dimension of HomS(V 0) is

dim HomS(V 0) =
m∑
i=1

dimA(V 0
ak

)− 2 dimG+ 2 dimZ(G).,

and the dimension of the wild character variety is then, taking into account the symplectic
reduction at the conjugacy classes C(∂ak) is given by

dimMB(Θ,C) =
m∑
k=1

(
dimA(V 0

ak
) + dim C(∂ak)− 2 dimH(∂ak)

)
− 2 dimG+ 2 dimZ(G).

(5.0.5)
We now are in position to compute the quantities D := 2− (d,d) and D′ := dimMB(Θ,C).

We recall our notations:
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• Let a1, . . . , am be the singularities at finite distance.

• For k = 1, . . . ,m, let 〈q(k)
1 〉ak , . . . 〈q

(k)
rk 〉ak ∈ π0(Iak) denote the irregular active circles at

ak, n
(k)
i ∈ N their respective multiplicities, and β(k)

j their respective ramification orders,
and α(k)

j their irregularities, in an order such that the slopes satisfy

α
(k)
1

β
(k)
1
≥ · · · ≥ α

(k)
rk

β
(k)
rk

.

• For k = 1, . . . ,m, let mk be the multiplicity of the tame circle 〈0〉ak in the modified formal
local system at ak.

• At infinity, let 〈q(∞)
1 〉∞, . . . 〈q(∞)

r∞ 〉∞ ∈ π0(Iak) denote the active circles (the tame circle is
included), β(∞)

j their respective ramification orders, and α
(∞)
j their irregularities, in an

order such that the slopes satisfy

α
(∞)
1

β
(∞)
1
≥ · · · ≥ α

(∞)
r∞

β
(∞)
r∞

.

Here we will assume that all Stokes arrows come from the leading terms in the exponential
factors. In the language of the previous section, this means that the different exponential
factors have no common part. This entails no loss of generality, indeed in the computation of
the number of Stokes arrows we have seen that the terms involving subleading terms do not
change under Fourier transform, so that those term will give the same contribution to 2− (d,d)
and dimMB(Θ,C).

Let us list the number of loops and edges between the different types of circles. From the
formulas for the number of loops and edges, and the formulas the the transformation of slopes
under Fourier transform, we get

• Loops at circles at infinity: B〈q(∞)
i 〉,〈q(∞)

i 〉 = (β(∞)
i − 1)(α(∞)

i − β(∞)
i − 1).

• Edges between different circles at infinity: B〈q(∞)
i 〉,〈q(∞)

j 〉 = β
(∞)
j (α(∞)

i − β(∞)
i ) if i < j.

• Loops at irregular circles at finite distance: B〈q(k)
i 〉,〈q

(k)
i 〉

= (−β(k)
i − 1)(α(k)

i + β
(k)
i − 1).

• Edges between different irregular circles at a same pole at finite distance: B〈q(k)
i 〉,〈q

(k)
j 〉

=

−β(k)
i (α(k)

j + β
(k)
j ) if i < j.

• Edges between the tame circle 〈0〉ak and an irregular circle at ak: B〈0〉ak ,〈q(k)
i 〉

= −β(k)
i .

• Edges between circles at two different poles at finite distance: they are none, i.e. B〈q(k)
i 〉,〈q

(l)
j 〉

=
0

• Edges between an irregular circle at finite distance and a circle at infinity: B〈q(k)
i 〉,〈q

(∞)
j 〉 =

β
(∞)
j (α(k)

i + β
(k)
i ).

• Edges between the tame circle 〈0〉ak and a circle at infinity: B〈0〉ak ,〈q∞i 〉 = β
(∞)
j .
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For each circle I, let DLI be the contribution to 2 − (d,d) of the leg LI associated to I.
Putting everything together, this gives us the following lengthy expression for D:

2− (d,d) =2 +
∑
i(∞)

(
−2 + (β(∞)

i − 1)(α(∞)
i − β(∞)

i − 1)
)
n

(∞)
i

2

+
∑

i(∞)<j(∞)

2β(∞)
j (α(∞)

i − β(∞)
i )n(∞)

i n
(∞)
j +

∑
k

∑
i(k)

(
−2 + (−β(k)

i − 1)(α(k)
i + β

(k)
i − 1)

)
n

(k)
i

2

+
∑
k

∑
i(k)<j(k)

−2β(k)
i (α(k)

j + β
(k)
j )n(k)

i n
(k)
j +

∑
k

∑
i(k)

−2β(k)
i mkn

(k)
i

+
∑
k

∑
i(k)<j(∞)

2β(∞)
j (α(k)

i + β
(k)
i )n(k)

i n
(∞)
j +

∑
k

∑
j(∞)

2β(∞)
j mkn

(∞)
j − 2

∑
k

m2
k

+
∑
i(∞)

D(L〈q
i(∞) 〉) +

∑
k

∑
i(k)

D(L〈q(k)
i 〉

) +
∑
k

D(L〈0〉ak ).

(5.0.6)

To compute the dimension of the wild character variety, we have to find the number of
(positive) Stokes arrows at each singularity. We have

• Number of Stokes arrows between two irregular circles 〈q(k)
i 〉, 〈q

(k)
i 〉 with i < j at ak:

β
(k)
j α

(k)
i

• Number of Stokes loops at the irregular circle 〈q(k)
i 〉: α

(k)
i (β(k)

i − 1).

• Number of Stokes arrows between the irregular circle 〈q(k)
i 〉 and the tame circle 〈0〉ak at

ak: α
(k)
i .

We also have the similar numbers of arrows at infinity.
Let nk be the multiplicity of the tame circle 〈0〉ak in the non-modified local system V 0

ak
, i.e.

the rank of the regular part of the connection at ak. The dimension of the torsor H(∂ak) is

dimH(∂ak) =
∑
i(k)

n
(k)
i

2
β

(k)
i + nk

2.

Therefore, we get from (5.0.3) the following expression for dimA(V 0
ak

):

dimA(V 0
ak

) = n2+
∑
i(k)

(n(k)
i

2
β

(k)
i +nk2)+

∑
i(k)

α
(k)
i (β(k)

i −1)n(k)
i

2
+

∑
i(k)<j(k)

2β(k)
j α

(k)
i n

(k)
i n

(k)
j +

∑
i(k)

2α(k)
i n

(k)
i nk.

(5.0.7)
Let C(k)

i be the twisted conjugacy class of the monodromy of the irregular circle 〈q(k)
i 〉, and C

reg
k

the conjugacy class of the monodromy of the tame circle in V 0
ak
, so that

C(∂ak) ∼=
∏
i(k)

C(k)
i × C

reg
k ⊂ H(∂ak).

Using dimZ(G) = 1, the formula (5.0.5) for the dimension of the wild character variety then
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becomes

dimMB(Θ,C) =2− 2n2

+
∑
k

n2 −
∑
i(k)

(n(k)
i

2
β

(k)
i + nk

2) +
∑
i(k)

α
(k)
i (β(k)

i − 1)n(k)
i

2

+
∑

i(k)<j(k)

2β(k)
j α

(k)
i n

(k)
i n

(k)
j +

∑
i(k)

2α(k)
i n

(k)
i nk


+ n2 −

∑
i(∞)

n
(∞)
i

2
β

(∞)
i +

∑
i(∞)

α
(∞)
i (β(∞)

i − 1)n(∞)
i

2

+
∑

i(∞)<j(∞)

2β(∞)
j α

(∞)
i n

(∞)
i n

(∞)
j

+
∑
k

∑
i(k)

dim C(k)
i + dim Creg

k

+
∑
i(∞)

dim C(∞)
i + dim Creg

∞

(5.0.8)

We have to compare these two expressions. First, we relate the contributions of the legs to
the dimension of the conjugacy classes.

Dimensions of conjugacy classes

We have to deal with a subtlety: the leg LI which we glue to a circle I of ramification order
β over the pole a ∈ P1 of the core of the diagram corresponds to the conjugacy class of the
monodromy of the local system V 0

I → I, whereas the twisted conjugacy class CI ⊂ H(I) is the
one of the monodromy of V 0

I → ∂a, i.e. the local system downstairs on the circle of directions
∂a.

V 0
I I

∂a

φ

ψ
π

Let us fix a direction d ∈ ∂a, let d0, . . . dβ1 be its preimages by the cover π : I → ∂a. The fibre
of V 0

I over d is the direct sum

V 0
I,d = V 0

I,d0 ⊕ · · · ⊕ V
0
I,dβ−1,

where V 0
I,di

is the fibre of φ : V 0
I → I over di, and the indices i are in Z/βZ. The monodromy

of V 0
I → ∂a is given by the collection of linear applications

ρi : V 0
I,di → V 0

I,di+1 , i = 0, . . . , β − 1.

The monodromy of V 0
I → I is then given by the product

ρ = ρβ−1 . . . ρ0 : V 0
I,d0 → V 0

I,d0

The group HI := GL(V 0
I,d0

)× · · · ×GL(V 0
I,dβ−1

) acts on the monodromy by

(k0, . . . , kβ−1).ρi = ki+1ρik
−1
i ,

where k = (k0, . . . , kβ−1) ∈ HI . The twisted conjugacy class CI is the orbit of (ρ0, . . . , ρβ−1)
under this action. This induces on ρ the transformation

k.ρ = k0ρk
−1
0 .
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which is just the action of GL(V 0
I,d0

) by conjugation, so that its orbit, which we will denote C̃I ,
is the conjugacy class of the monodromy of V 0

I → I. Furthermore, each fibre of the map

CI → C̃I
(ρi) 7→ ρ

is isomorphic to GL(V 0
I,d1

)× · · · ×GL(V 0
I,dβ−1

). It follows from this that the dimension of CI is

dim CI = n2
I(β − 1) + dim C̃I , (5.0.9)

where nI is the dimension of each fibre V 0
I,di

.
The legs of the diagram correspond to the reduced conjugacy classes C̃I . The dimension of

a conjugacy class is obtained from the associated leg in the following way (see again [20]):

Lemma 5.0.3. Let C ⊂ GLn(C) a conjugacy class, L the associated leg (after choosing a
marking), with d its dimension vector. The dimension of C is given by

dim C = 2n2 − (d,d). (5.0.10)

We can now compare the different terms appearing in the quantities D = 2 − (d,d) and
D′ = dimMB(Θ,C). Let us consider the terms in D involving the multiplicities mk of the tame
circles: their contribution to D is∑

k

∑
i(k)

−2β(k)
i mkn

(k)
i +

∑
k

∑
j(∞)

2β(∞)
j mkn

(∞)
j − 2

∑
k

m2
k

=− 2
∑
k

nk(n− nk)− 2m2
k + 2

∑
k

mkn

=
∑
k

2mknk − 2m2
k,

where we use that n = nk +
∑
i(k) β

(k)
i n

(k)
i for each k, and the similar formula at infinity. We can

recognize that 2mknk − 2m2
k is exactly the contribution of the first edge of the leg associated to

a special marking of the conjugacy class of the monodromy of the tame circle 〈0〉k; i.e. the edge
corresponding to the eigenvalue 1. From this we deduce that

D(L〈0〉ak ) + 2mknk − 2m2
k = dim Creg

k . (5.0.11)

We also have for each irregular circle at finite distance

D(L〈q(k)
i 〉

) = dim C̃(k)
i ,

and similarly for the circles at infinity

D(L〈q(k)
i 〉

) = dim C̃(k)
i .

This already gives us equalities between some terms appearing in D and D′. Let us deal with
the remaining terms. First, for each pole ak at finite distance, we have an equality between the
following term in D, which is the contribution of the irregular circles at ak∑

i(k)

(
−2 + (−β(k)

i − 1)(α(k)
i + β

(k)
i − 1)

)
n

(k)
i

2
+

∑
i(k)<j(k)

−2β(k)
j (α(k)

i + β
(k)
i )n(k)

i n
(k)
j

+
∑

i(k),j(∞)

2β(∞)
j (α(k)

i + β
(k)
i )n(k)

i n
(∞)
j ,

85



and the following term in D′

n2 −
∑
i(k)

(n(k)
i

2
β

(k)
i + nk

2) +
∑
i(k)

α
(k)
i (β(k)

i − 1)n(k)
i

2

+
∑

i(k)<j(k)

2β(k)
j α

(k)
i n

(k)
i n

(k)
j +

∑
i(k)

2α(k)
i n

(k)
i nk + n

(k)
i

2
(β(k)
i − 1),

where the term n
(k)
i

2
(β(k)
i − 1) comes from equation (5.0.9). To obtain this equality, we notice

that since n =
∑
j(∞) β

(∞)
j n

(∞)
j ,

∑
i(k),j(∞)

2β(∞)
j (α(k)

i + β
(k)
i )n(k)

i n
(∞)
j = n

∑
i(k),j(∞)

(α(k)
i + β

(k)
i )n(k)

i ,

then we decompose on the both sides the total rank: n =
∑
i(k) β

(k)
i n

(k)
i + nk. It is then a

somewhat tedious but straightforward check that we have the same terms on both sides.
It only remains to consider the contributions to D and D′ of the circles at infinity: we have

an equality between the following term in D∑
i(∞)

(
−2 + (β(∞)

i − 1)(α(∞)
i − β(∞)

i − 1)
)
n

(∞)
i

2
+

∑
i(∞)<j(∞)

2β(∞)
j (α(∞)

i − β(∞)
i )n(∞)

i n
(∞)
j

and the following term in D′:

− 2n2 + n2 −
∑
i(∞)

n
(∞)
i

2
β

(∞)
i +

∑
i(∞)

α
(∞)
i (β(∞)

i − 1)n(∞)
i

2

+
∑

i(∞)<j(∞)

2β(∞)
j α

(∞)
i n

(∞)
i n

(∞)
j +

∑
i(∞)

n
(∞)
i

2
(β(∞)
i − 1),

where once again the term n
(∞)
i

2
(β(∞)
i − 1) comes from (5.0.9). These equalities exhaust all

terms appearing in D and D′, so this concludes the proof.
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Chapter 6

Examples and fundamental
representations

In this chapter, we list several examples to illustrate the construction of diagrams from singu-
larity data (Θ,C) on the Riemann sphere. We will later discuss in more detail the properties
of some of these examples. Since gluing on the legs from the conjugacy classes C is standard
the main part is to describe core diagram. Thus we will list the modified irregular class Θ̆ and
the core diagram it determines. In §6.2 we then discuss how each diagram determines several
different representations, the “fundamental representations”. We apply this to the study of dif-
ferent Lax pairs of several isomonodromy systems. This generalizes the different readings of the
simply-laced cases [17, 20].

6.1 Examples of diagrams
We begin by reviewing known cases, before studying new ones provided by our more general
construction of the diagrams.

Complete bipartite case Let us consider the case of a connection with a second order poles at
infinity, together with simple poles a1, . . . , am at finite distance, with a global modified irregular
class of the form

Θ̆ = k1〈α1z〉∞ + · · ·+ kn〈αnz〉∞ + l1〈0〉a1 + · · ·+ lm〈0〉am ,

with ki ∈ N, lj ∈ N, and αi ∈ C two by two distinct, ai ∈ C two by two distinct. There are n
active circles of slope 1 at infinity. The diagram is the following:

〈0〉a1

〈0〉am

〈α1x〉∞

〈αnx〉∞

It is a complete bipartite graph, one part having n vertices and one part having m vertices.
If n = 1 or m = 1 this is the star-shaped case.
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Simply laced case An important case to consider is the one where there is only one unramified
irregular pole at infinity of order 3, together with simple poles at finite distance. This is the case
extensively studied in [17, 20, 22], giving rise in those works to simply-laced supernova graphs,
with core any complete multipartite graph. We can check that our definition gives the same
diagrams.

In this case, the circles at infinity are unramified and have slope ≤ 2, i.e. they are of
the form 〈qi,j〉∞ with qi,j = λiz

2 + µi,jz, for i = 1, . . . k, j = 1, . . . si, where the coefficients
λ1, . . . , λk are all different, as well as µi,1, . . . , µi,si for all i. The simple poles correspond to
tame circles 〈0〉a1 , . . . , 〈0〉at , where a1, . . . at ∈ C. Let I0 := {〈0〉a1 , . . . , 〈0〉at} and for i = 1, . . . k,
Ii := {〈λiz2 + µi,1z〉, . . . , 〈λiz2 + µi,siz〉}. The sets I0, . . . , Ik constitute a partition of the set of
active circles. The core diagram has the following structure: two active circles are either linked
by no edge in the diagram when they belong to the same set Ik, otherwise they are linked by
exactly one edge. The core diagram that we obtain is thus a k + 1-partite graph. The diagram
coincides with the one considered in [20, 22].

The standard rank two Lax representations of the Painlevé V and Painlevé IV equation fit
into this setting. The representation for Painlevé V has one irregular singularity at infinity of
order 2, together with two simple poles at finite distance. The modified irregular class is of the
form

Θ̆ = 〈αz〉∞ + 〈βz〉∞ + 〈0〉a + 〈0〉b,
with α 6= β ∈ C, a 6= b ∈ C. This gives the following diagram:

The standard representation for Painlevé IV has one irregular singularity at infinity of order
3, together with one simple pole at finite distance. The modified irregular class is of the form

Θ̆ = 〈αz2〉∞ + 〈βz2〉∞ + 〈0〉a,

with α 6= β ∈ C, a ∈ C. This gives the following diagram:

Other supernova graphs More general supernova graphs correspond to the case where there
is one irregular singularity at infinity with all active circles being unramified, together with simple
poles at infinity. This is the case considered in [17, appendix C] and [57]. If the active circles at
infinity are 〈q1〉, . . . , 〈qr〉 we have Bij = deg(qi − qj)− 1.

The standard Painlevé II Lax pair fits into this framework. The (modified or not) irregular
class is of the form Θ = Θ∞ = 〈αz3〉∞ + 〈βz3〉∞ with α 6= β. The diagram is

Painlevé III The standard Painlevé III Lax pair corresponds to a rank 2 connection with
2 irregular singularities. The active circles are two irregular circles of slope 1 at infinity and
2 irregular circles of slope 1 at z = 0, say 〈λ1z〉∞, 〈λ2z〉∞ 〈µ1z

−1〉0, 〈µ2z
−1〉0, with λ1 6= λ2,

µ1 6= µ2. With no loss of generality, up to applying a twist by a rank one connection on the
trivial bundle on P1, we may assume that µ2 = 0, so that we have the active circle 〈0〉0, and that
the tame circle has trivial formal monodromy in the non-reduced formal local system, so that it
has multiplicity zero in the associated modified formal local system. The diagram associated to
the connection is given by
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〈λ1z〉∞
〈µ1z

−1〉0
〈λ2z〉∞

with dimension vector d = (1, 1, 1). This is exactly the same diagram as the one in [26].

Degenerate Painlevé V The representation of Painlevé III known as degenerate Painlevé V
corresponds as for Painlevé V to a rank 2 connection with one order two pole at infinity and
two simple poles at finite distance [63, p. 34]. The difference is that the leading term of the
connection is nilpotent (this is the meaning of the word degenerate in this context) which implies
there is just one ramified active circle at infinity of slope 1/2. The modified irregular class is of
the form:

Θ̆ = 〈αz1/2〉∞ + 〈0〉a + 〈0〉b,
and this gives the diagram

〈0〉a
〈αz1/2〉∞

〈0〉a

computed in [26]. This is the same diagram as for the standard Painlevé III Lax pair, as we
shall explain later.

Degenerate Painlevé III The degenerate Painlevé III system admits, as for the standard
Painlevé III representation, a representation corresponding to a rank 2 connection with two
order two poles [80]. The difference is that the leading term of the connection matrix at one of
the poles is nilpotent. Again, this corresponds to having one active circle with slope 1/2. The
modified irregular class has the following form:

Θ̆ = 〈z1/2〉∞ + 〈αz−1〉0 + 〈βz−1〉0

with α, β ∈ C, α 6= β.
Up to performing a twist at zero, we may assume that β = 0, so that we have the tame circle

at 0, and that this circle has trivial formal monodromy, so that the corresponding piece of the
modified formal local system has multiplicity 0. This leads to the following diagram, with one
negative loop at each vertex, and 4 edges between the two vertices.

4

〈αz−1〉0 〈z1/2〉∞

−1−1

The Cartan matrix is
C =

(
4 −4
−4 4

)
.

Doubly degenerate Painlevé III The doubly degenerate Painlevé III system admits a Lax
representation corresponding to two irregular singularities of order two, each with nilpotent
leading term leading to an active circle of slope 1/2 [80]. The modified irregular class is of the
form

Θ̆ = 〈αz1/2〉∞ + 〈βz−1/2〉0
with α, β nonzero complex numbers. This gives the following diagram, where the number on
the edges correspond to their multiplicities.
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6

〈z−1/2〉0 〈z1/2〉∞

−1−3

The Cartan matrix is
C =

(
8 −6
−6 4

)
,

Flaschka-Newell Lax pair for Painlevé II The Flaschka-Newell Lax pair for Painlevé II
[45], also known as degenerate Painlevé IV, corresponds to a rank 2 connection with one irregular
singularity at infinity with one active circle of slope 3/2, together with one simple pole at finite
distance. The modified irregular class is of the form

Θ̆ = 〈αz3/2〉∞ + 〈0〉0.

with α 6= 0. This gives the diagram

that is the same diagram as for Painlevé II, as found in [26].

Painlevé I The standard Lax pair for the Painlevé I equation corresponds to a rank 2 con-
nection with just one irregular singularity at infinity, with one active circle of slope 5/2. The
modified irregular class is of the form

Θ̆ = 〈αz5/2〉∞,

with α 6= 0. The corresponding diagram has one vertex and one loop.

H3 surfaces The Painlevé equations correspond to the simplest examples of non-trivial wild
character varieties, since their moduli spaces are 2-dimensional. The corresponding nonabelian
Hodge spacesM are thus complete hyperkähler manifolds of real dimension four, so are examples
of H3 surfaces in the terminology of [23] to designate the two-dimensional wild character varieties.
Apart from the cases corresponding to Painlevé equations, there are 3 other known H3 surfaces
whose standard representation correspond to fuchsian connection with 3 regular singularities.
Since they have no deformation parameters, they do not give rise to an isomonodromy system.
Thanks to our more general theory, we are now able to associate a diagram to all H3 surfaces.
They are represented on fig. 6.1. The reader may check that in each case we have 2− (d,d) = 2
as expected. Notice that for Painlevé II, IV, V, VI, the diagram is exactly the affine Dynkin
diagram corresponding to its Okamoto symmetries [82, 84, 83, 85, 80],
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Space Diagram

Ẽ8 2 4 6

3

5 4 3 2 1

Ẽ7 1 2 3

2

4 3 2 1

Ẽ6 1 2 3

2

1

2 1

D̃4

2

Ã3 = D̃3

D̃2

D̃1
4 −1−1

D̃0
6 −1−3

Ã2
Ã1

Ã0

Figure 6.1: Diagrams associated to all known H3 surfaces. The names of the surfaces are as in
[23]. All unspecified multiplicities are equal to 1.

h-Painlevé systems It is possible to define a notion of h-Painlevé systems hP (n)
k , where h

stands for higher or hyperbolic or Hilbert. Higher Painlevé systems hP (n)
k were introduced by

Boalch [17, 20]: for each integer n there is a rank 2n Lax representation giving rise to a 2n-
dimensional higher Painlevé moduli space. All higher Painlevé systems of a given number have
the same diagram, but the dimension vector is a function of n. More precisely, the diagram
associated to a given higher Painlevé system is obtained by taking the original diagram with all
multiplicities scaled by n, then adding a leg of length one, with its end vertex having multiplicity
1, as on fig. 6.2 for higher Painlevé IV,V,VI. The higher Painlevé diagrams are hyperbolic Dynkin
diagrams since they are obtained by adding a vertex to an affine Dynkin diagram. In this sense
they can be seen as the next simplest examples after the affine case. The higher Painlevé moduli
spaces are (conjecturally) related to Hilbert schemes on n points on the corresponding H3 surface

91



(see [20]).

2n

n

n

n
n 1 n

n

n

n

1 n

n

n

1

Figure 6.2: Diagrams for higher Painlevé systems hP (n)
V I , hP

(n)
V , hP (n)

IV .

The same recipe for Painlevé III yields the hP (n)
3 diagram:

n n n 1

Some 4-dimensional cases Another point of view on higher dimensional isomonodromy sys-
tems consists in looking at degenerations of an equation coming via isomonodromy from a fuch-
sian connection. This approach is used in [65] to list some representations of some 4-dimensional
isomonodromy systems: they are defined there as the systems coming via degeneration from the
isomonodromic deformation equations associated to connections with regular singularities giving
rise to 4-dimensional moduli spaces. Whereas for the usual 2-dimensional Painlevé equations
there is only one possible choice of formal data for fuchsian connections with non-trivial admissi-
ble deformations and 2-dimensional moduli spaces, in the 4-dimensional case there are 4 possible
choices. The full degeneration scheme is represented at [65, p. 40]. Each of the 4 fuchsian formal
data gives rise via degeneration to a family of 4-dimensional Painlevé type equations.

The two points of view on higher-dimensional isomonodromy systems are actually not in-
dependent. The elements of the fourth degeneration family of 4-dimensional Painlevé-type
equations in the degeneration scheme of [65] (called there matrix Painlevé systems) correspond
to the higher Painlevé equations in the sense of [20] in the 4-dimensional case, and the master
diagram hP

(2)
6 at the top of the coalescence cascade first appeared in the context of Painlevé

systems in the list of 4-dimensional hyperbolic examples in [17, p. 12]. This notion of higher
Painlevé systems is however more general than just this 4-dimensional case.

On figure 6.3 are drawn the diagrams associated by our approach to the 4-dimensional
isomonodromy systems listed in [65] whose Lax representations feature several irregular singu-
larities. These diagrams are to be contrasted with the shapes in [56, p.235].
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Name in [65] Mod. irreg. class Diagram

H2+2+1
Gar 〈αz〉∞+〈βz〉∞+〈γz−1〉0+〈0〉1

1

1

1

1

H3+2
Gar 〈αz2〉∞ + 〈βz2〉∞ + 〈γz−1〉0

1

1 1

HA3
FS 2〈αz〉∞ + 〈βz〉∞ + 2〈γz−1〉0 22 11

1

H
3/2+1+1+1
Gar 〈αz1/2〉∞ + 〈0〉a + 〈0〉b + 〈0〉c

1

1
1

1

HD4
Ss 3〈αz〉∞ + 〈βz〉∞ + 2〈γz−1〉0 1 2 3 2 1

HMat
III (D6) 2〈αz〉∞ + 2〈βz〉∞ + 2〈γz−1〉0 2 2 2 1

Figure 6.3: Diagrams for the Lax representations of 4-dimensional Painlevé-type equations of
[65] featuring several irregular singularities.

Remark 5. Notice that the diagram associated to the Painlevé-type equation denoted HMat
III (D6)

in [65] fits in the higher Painlevé picture in the sense of Boalch: it is hP (2)
3 , obtained from the

Painlevé III diagram by taking all multiplicities equal to 2 and adding a vertex with multiplicity
1. Beware that the usual terminology “matrix Painlevé equations” [7] differs from that of [65].
Remark 6. It is interesting to compare our diagrams with those of Hiroe [57] and Hiroe and
Oshima [56]. In [55], Hiroe defines diagrams associated to meromorphic connections with several
unramified irregular singularities. When there is only one irregular singularity, these diagrams
coincide with the ones of [20] and in turn with ours, however when they are several irregular
singularities they differ from ours. Hiroe also introduces the notion of “shape”, and in their
approach the moduli spaces are classified by these shapes. When there are several irregular
singularities, the shape differs from the diagram. As an example, figure 6.4 shows the shapes
associated to the third Painlevé equation and the 4-dimensional Painlevé-type equation whose
Hamiltonian is denoted by H

3
2 +1+1+1
Gar in [65]. This approach however does not allow to define

diagrams for the degenerate and doubly degenerate Painlevé equations.
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(a) shape of Painlevé III (b) shape associated to H
3
2 +1+1+1

Gar

Figure 6.4: Shapes associated to some Painlevé-type equations in [65, 55].

6.2 Fundamental representations of the diagrams
In this section, we discuss how a diagram can be “read” in different ways corresponding to
connection on bundles of different ranks with different formal data, which we call the fundamental
representations of the diagram.

This generalizes the k-partite cases considered in [20] reviewed in chapter 3. As an applica-
tion, we discuss in the next section how many known different Lax pairs for Painlevé equations
and higher Painlevé isomonodromy systems correspond to different fundamental representations
of the same diagram. Many cases fit into the simply laced framework [17, 20], but our more
general construction of the diagrams gives a few new examples.

The idea is the following. We have seen that the diagram associated to a meromorphic
connection is invariant under the action of SL2(C). Each orbit under this action contains
different formal data, with in general different numbers of singularities.

Let 〈q〉∞ be the circle at infinity associated with an exponential factor q. We have seen that
〈q〉 can be sent to finite distance by a symplectic transformation if and only if it is of the form

q = λz2 + q′, (6.2.1)

where q′ is of slope ≤ 1. Furthermore, when this is the case, the position of the singularity at
finite distance that we obtain is determined by the coefficient of z in q, i.e. the number µ ∈ C
such that

q = λz2 + µz + q′′, (6.2.2)

where q′′ has slope < 1.
Let us consider formal data at infinity (Θ∞,C∞) at infinity. Let N ⊂ π0(I∞) be the subset of

active exponents, i.e. the support of Θ∞. N is the set of vertices of the core diagram associated
to Θ∞. We can partition N according to the coefficients of z2 and z in the exponential factors.
Let N∞ ⊂ N be the set of exponential factors in N which are not of the form (6.2.1) for any
λ ∈ C. For λ ∈ C, let Nλ ⊂ N be the set of exponential factors of the form (6.2.1). For λ, µ ∈ C,
let Nλ,µ ⊂ Nλ be the set of exponential factors of the form (6.2.2).

There is a finite number of coefficients λ ∈ C such that Nλ, is non empty, which we denote
λ1, . . . , λk. We set Ni := Nλi for i = 1, . . . , r. Then, for each i, there is again a finite number
of coefficients µ ∈ C such that Nλi,µ is non-empty, which we denote µi,1, . . . , µk,si , and we
set Ni,j := Nλi,µi,j . For each pair i, j, let ti,j := CardNi,j , and qi,j,k, k = 1, . . . , ti,j be the
exponential factors of slope < 1 such that the elements of Ni,j are

λiz
2 + µi,jz + qi,j,k. (6.2.3)

Let βi,j,k = ram qi,j,k be the ramification order of qi,j,k, and αi,j,k/βi,j,k its slope. We thus have
the following partition of the set of active circles:

N = N∞ ∪N1 ∪ . . . Nr.

94



There are r + 1 fundamental representations of diagram: the generic representation, cor-
responding to Θ, and r other representations, depending on which of the sets N1, . . . , Nr we
choose to send to finite distance by a symplectic transformation. The generic representation
corresponds to symplectic transformations A ∈ SL2(C) such that all circles remain at infinity
under A. From the previous discussion of the action of SL2(C) on the coefficients of z2 in the
exponential factor, if

A =
(
a b
c d

)
,

the condition for this is 2cλ− d 6= 0.
For each i = 1, . . . , r the i-th representation of the diagram corresponds to acting on Θ∞

with A ∈ SL2(C) such that 2cλi − d = 0. Such a symplectic transformation sends all circles
in Ni to finite distance. The formal data that we obtain have si = Card(Ni) poles at finite
distance corresponding to the coefficients µi,1, . . . , µi,si (and whose position depends on A). For
each j = 1, . . . , si, the vertices in Ni,j then correspond to the active circles of A ·Θ∞ at the pole
associated to µi,j . It follows from the Legendre transformation that the image A · 〈qi,j,k〉 of the
circle 〈qi,j,k〉 has ramification order βi,j,k−αi,j,k and slope αi,j,k/(βi,j,k−αi,j,k). This generalizes
the different readings of the diagram considered in [17, 20, 22]. The situation considered in those
works is the simply laced case where all circles at infinity are of the form

q = λz2 + µz,

with λ, µ ∈ C. In particular N∞ is empty. In this situations, each circle can be sent by a
symplectic transformation to a tame circle at finite distance.

An example is shown on fig. 6.5, to be contrasted with the simply laced situation of fig. 3.8.

N∞

N1

N2

4

2

1

Figure 6.5: An example of core diagram with the partition of the set of nodes N = N∞∪N1∪N2.
The integers indicate the multiplicities of the edges.

6.3 Examples of different representations
We now discuss how the different fundamental representations of the diagrams also allow to
recover many known different Lax representations for the Painlevé equations as well as 4-
dimensional isomonodromy systems which do not fit into the simply laced case [17, 20, 22].
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Painlevé VI Let us first mention a well-known example. Figure 6.6 shows two representa-
tions of the Painlevé VI moduli space, corresponding to two fundamental representations of its
diagram. The second representation corresponds to a rank 3 connection obtained by Harnad du-
ality [53] (see also [14]). The generic representation of the diagram corresponds to a connection
of rank 5.

2 1

1

1

1
(a) Dimension vector

〈0〉∞

〈0〉a

〈0〉b

〈0〉d

(b) Standard representation

〈0〉0

〈αz〉∞

〈βz〉∞

〈γz〉∞

(c) Harnad dual

Figure 6.6: Two Lax representations for Painlevé VI corresponding to several representations of
the same diagram. The standard Lax representation corresponds to a rank 2 connection with 4
simple poles at a, b, c,∞, the other Lax representation corresponds to a rank 3 connection with
a second order pole at infinity and a simple pole at zero.

Painlevé III In a similar way, we can see that the standard Painlevé III Lax representation
and the degenerate Painlevé V representation correspond to two fundamental representations
of the Painlevé III diagram. Recall that the standard representation corresponds to a rank two
connections, with two irregular circles of slope 1 at infinity and 2 irregular circles of slope 1
at z = 0, say 〈λ1z〉∞, 〈λ2z〉∞ 〈µ1z

−1〉0, 〈µ2z
−1〉0, with λ1 6= λ2, µ1 6= µ2. With no loss of

generality, up to applying a twist by a rank one connection on the trivial bundle on P1, we may
assume that µ2 = 0, so that we have the active circle 〈0〉0, and that the tame circle has trivial
formal monodromy in the non-reduced formal local system, so that it has multiplicity zero in
the associated modified formal local system. The diagram associated to the connection is given
by

〈λ1z〉∞
〈µ1z

−1〉0
〈λ2z〉∞

with dimension vector d = (1, 1, 1). The generic representation of the diagram corresponds to a
rank 4 connection, with active circles of the following form

〈αz2 + λ′′1z〉∞
〈βz2 + µ′z1/2〉∞

〈αz2 + λ′′2z〉∞

with α 6= β ∈ C and λ′′1 6= λ′′2 ∈ C.
The other nongeneric representation of the diagram has circles of the form

〈0〉λ′1 〈µ′z1/2〉∞
〈0〉λ′2

and we see that it is precisely the alternative Lax representation for Painlevé III used there to ob-
tain this diagram. The two Lax representations correspond to two fundamental representations
of the diagram.
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Painlevé II In the case of Painlevé II, we recover with our general theory the observation of [26]
that the Painlevé II diagram comes from two representations: the standard one with one irregular
singularity at infinity, corresponding to the generic representation of the diagram, and another
representation corresponding to a rank 2 connection with one irregular pole at infinity with one
active circle of slope 3/2, together with one simple pole at finite distance. More explicitly, the
active circles of the usual Lax representation are of the form 〈αz3〉∞, 〈βz3〉∞ with α 6= β, each
with multiplicity 1, whereas the active circles of the alternative Lax representation are of the
form 〈λz3/2〉∞, and 〈0〉0, with 〈λz3/2〉∞ having multiplicity 1, and 〈0〉0 having multiplicity 1 (i.e.
the formal monodromy at the simple pole has two distinct eigenvalues, up to a twist we may
assume one of the eigenvalues is equal to 1 so that the multiplicity of 〈0〉0 is 1 in the modified
formal local system associated to the connection). The generic representation corresponds to a
rank 3 connection.
Remark 7. Notice that the rank 2 Lax representations discussed in this paragraph exhaust all
cases listed in [81], looking at Painlevé equations from the perspective of degeneration of the
fuchsian Painlevé VI Lax representation.

Higher isomonodromy systems As in the two-dimensional case, the diagrams give us a nice
interpretation of many known different Lax representations of the same 4-dimensional isomon-
odromy system: they correspond again to different representations of the diagram. Many cases
are already covered by the simply laced framework, but our more general construction allows us
to extend this to a few new cases, so that:

Theorem 6.3.1. For each type of 4-dimensional isomonodromy system equation listed in [65,
p. 40], the formal data associated to the different representations mentioned there correspond to
different representations of the same diagram.

Proof. Among all isomonodromy systems in figure of [65, p. 40], we have to consider the ones
associated to several Lax representations. For all equations except two, the formal data involved
satisfy the hypotheses of [17, 20]: they feature only one unramified irregular singularity together
with regular singularities. In this case, it follows directly from the simply laced case that the
different formal data correspond to different readings of the diagram.

Let us discuss in more detail the two cases involving several irregular singularities or rami-
fication. The first case is the box corresponding to the Hamiltonian denoted by H

5
2 +1+1
Gar . It is

associated to two different representations. The first one corresponds to a rank 3 connections
with one irregular singularity at infinity, with 3 active circles of the form 〈αz3〉∞,〈α′z3 + βz〉,
〈α′z3 + β′z〉, with α 6= α′ and β 6= β′. Up to performing a twist, we may assume that α′ = 0.
The corresponding diagram is drawn below:

〈βz〉∞
〈αz3〉∞

〈β′z〉∞

The second Lax representation corresponds to a rank two connection, with one irregular
singularity with one active circle of slope 3/2, of the form 〈λz3/2〉∞ with multiplicity 1 together
with two simple poles at finite distance, i.e. active circles of the form 〈0〉a, and 〈0〉b with
multiplicity 1 (as before, the formal monodromy has two distinct eigenvalues, up to a twist we
may assume one of them is equal to 1 so the multiplicity of the tame circle is 1). This leads to
the following diagram:

〈0〉a
〈λz3/2〉∞

〈0〉b
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These two formal data give the same diagram. They correspond (up to twists) to several
representations of the same diagram, and are related by the Fourier-Laplace transform. The
rank 3 Lax representation corresponds to the generic representation of the diagram, while the
rank 2 one corresponds to one of the non-generic representations.

The second case is the one with the Hamiltonian denoted by H
3
2 +1+1+1
Gar . It is associated

to two different representations. The first one corresponds to a rank 3 connection with two
irregular singularities. The first singularity, say at ∞, has three active circles of slope one,
each with multiplicity 1, of the form 〈αz〉∞, 〈βz〉∞, 〈γz〉∞ with α, β, γ all distinct. The second
singularity, say at 0, has two active circles of slope 1, of the form 〈λz−1〉0 and 〈µz1〉∞, with
λ 6= µ. The circle 〈λz−1〉0 has multiplicity 1, whereas 〈µz−1〉0 has multiplicity two and trivial
conjugacy class. Up to applying a twist at 0, we may assume that µ = 0, so that the circle
〈µz−1〉0 is the tame circle 〈0〉0. Since its formal monodromy is trivial, its multiplicity in the
associated modified irregular class is 0 and the corresponding vertex will not appear in the
diagram. The diagram we obtain is the following (the dimension is 1 at all vertices):

〈λz−1〉0

〈αz〉∞
〈βz〉∞

〈γz〉∞

On the other hand, the second representation corresponds to a rank two connection, with one
irregular singularity with one active circle of slope 1/2, say 〈λz1/2〉∞, together with three simple
poles at finite distance, which we denote by a, b, c ∈ C. The formal monodromies at the simple
pole have two distinct eigenvalues, so up to a twist we may assume one of them is equal to 1,
so that in the modified irregular class the tame circles 〈0〉a, 〈0〉b, 〈0〉c have multiplicity 1. This
leads to the diagram:

〈λz1/2〉∞

〈0〉a
〈0〉b

〈0〉c

This is the same diagram as for the first Lax representation. More precisely, the two modified
irregular classes are related (up to twists and admissible deformations) by applying the Fourier
transform.
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Chapter 7

Weyl reflections and operations on
connections

We have seen that the diagram associated to a connection (E,∇) is invariant under SL2(C)
transformations. We now turn to the study of the effect on the diagrams of other operations
on connections: Möbius transformations, and more general twists than the ones being part of
SL2(C). In the remainder of the thesis, we will refer to these operations as basic operations. We
discuss how the diagrams are modified under these operations. We show that abstract simple
Weyl reflections acting on the dimension vector and labels of the diagrams, with respect to some
of the vertices, come from combinations of such operations, partly generalizing what happens in
the simply laced case. As examples of these processes, we look at several diagrams corresponding
to Lax pairs for the third Painlevé equation as well as for its degenerate versions. Finally, we
study how the Okamoto symmetries of Painlevé III are related to the effect of operations on its
Lax pairs.

7.1 Möbius transformations
In all the constructions that we have done, the point at infinity has played a special role. The
basic reason for this is that we needed to remove a point to pass from P1 to the affine line and
use the Weyl algebra. In the previous discussion, the point at infinity was fixed once and for all.
However, we are free to choose how to identify the Riemann surface Σ ∼= P1 to P1, in particular
which point in P1 is at infinity. This is equivalent to acting on P1 with Möbius transformations
to move the singular points of our connection according to the corresponding homography.

Let µ : z → az+b
cz+d , with ad − bc = 1 a Möbius transformation. If (E,∇) is a connection on

a Zariski open subset Σ◦ of P1, we define µ · (E,∇), as the connection on µ(Σ◦) obtained by
rotating P1 according to µ. If Θ is the irregular class of (E,∇), the irregular class of µ · Θ of
µ · (E,∇) is such that

(µ ·Θ)a = Θµ(a),

for any point a ∈ P1.
Beware that, since the point at infinity play a special role and because we take the minimal

extension at the points at finite distance, the modified irregular classes are not transformed in
as simple a way by a Möbius transformation. In particular, the modified irregular class Θ̆′ of
µ·(E,∇) does not just depend on the modified irregular class Θ̆ of (E,∇): it also depends on the
monodromies. Even more, their number of active circles are different in general: if a = µ−1(∞)
is not a singular point of E,∇), the tame circle 〈0〉a is not an active circle of Θ, but the tame
circle at infinity 〈0〉∞ will be an active circle of Θ̆′ with trivial monodromy. Similarly, if 〈0〉∞
is an active circle of Θ̆ and has trivial monodromy, then if a = µ(∞) 6=∞ 〈0〉a is not an active
circle of Θ̆′.
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However, if 〈q〉a is not a tame circle, it is an active circle of Θ̆ if and only if 〈q〉µ(a) is an
active circle of Θ̆′: we thus set µ · 〈q〉a = 〈q〉µ(a).

Let us see the effect of Möbius transformations on the diagrams. Let a ∈ P1 a point of the
Riemann sphere, Θa an irregular class at a, and Ia the corresponding set of active circles. For
any connection (E,∇) with a singularity at a with irregular class Θa at a, the active circles
of the corresponding modified irregular class Θ̆a at a define a subdiagram of the core diagram
Γc(E,∇) that we denote by Γc,a(Θa). From the direct formula for the diagram, it follows that
Γc,a(Θa) only depends on whether a is at infinity or not. This motivates the following definition:

Definition 7.1.1. Let Θ a local irregular class, expressed in terms of some local coordinate z.

• The subdiagram at infinity Γ∞c (Θ) associated to Θ is the diagram such that the number
of edges between two active circles I and I ′ is B∞I,I′ .

• The subdiagram at finite distance Γ 6=∞c (Θ) associated to Θ is the diagram such that the
number of edges between two active circles I and I ′ with ramifications β, β′ and slopes
α/β, α′/β′ is

B 6=∞I,I′ := B∞I,I′ − αβ′ − α′β.

If a = ∞ we have Γc,a(Θa) = Γ∞c (Θa), whereas is a is at finite distance, then Γc,a(Θa) =
Γ6=∞c (Θa).

Example 7.1.2. Let Θa an irregular class with two active circles 〈z−1
a 〉a, 〈−z−1

a 〉a of slope 1.
The infinity subdiagram and finite distance subdiagram associated to Θa are drawn below:

〈z−1
a 〉a

〈−z−1
a 〉a

〈z−1
∞ 〉∞

〈−z−1
∞ 〉∞

Now let µ ∈ PSL2(C) a Möbius transformation, and Θ a global irregular class. Applying µ
changes the position of the singularities. Assume that Θ has r distinct singularities a1, . . . , ar ∈
P1. Then, in a similar way as for the different representations of the diagram, we have r + 1
different diagrams depending whether one of the singularities is at infinity.

The generic position corresponds to having ∞ different from all the poles a1, . . . , ar. In
this case, in the diagram we have one extra vertex corresponding to the tame circle 〈0〉∞ at
infinity, with multiplicity equal to the rank of (E,∇) (and trivial monodromy). The subdiagrams
corresponding to the irregular class at the poles ai are the subdiagrams For i = 1, . . . , r, the
i-th position corresponds to having ∞ = ai. In this case, in the diagram, the subdiagram
corresponding to the circles at ai coincides with the Stokes diagram of the irregular class at ai,
whereas for the other poles we have the subdiagrams at finite distance. The diagram has one
vertex less than in the generic case.

7.2 Twists
Another operation to consider is to tensor a connection with a rank one meromorphic connection
on P1. The symplectic twists that we have considered are special cases of this, where the rank
one connection only has a singularity of slope 2 at infinity. However, we are free to choose more
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general connections with any number of singularities. At each singularity, the irregular class has
to consist of only one circle, which must be unramified (otherwise the rank would be greater
than one). More precisely, let (L,∇L) a meromorphic line bundle with connection on P1. The
twist by L is the operation on connections given by

TL : (E,∇) 7→ (E ⊗ L,∇⊗∇L). (7.2.1)

For any point a ∈ P1 let 〈pa〉 ∈ π0(Ia) the (unique) exponential factor of∇L at a, andW 0
a → 〈pa〉

the local system corresponding to the formal data of (L,∇L) at a. On the level of the I-graded
local system V 0

a → ∂a, the twist induces

V 0
a

∂a

ψ
TL7−→

V 0
a ⊗W 0

a

∂a

(7.2.2)

Let us describe how this operation behaves with respect to the Ia-grading. The twist transforms
any exponential factor q into q+ pa. As a consequence, it induces a transformation on the local
system Va → Ia such that we have

V 0
a

〈q〉

TL7−→
V 0
a ⊗W 0

a

〈q + pa〉

(7.2.3)

For each circle 〈q〉 ∈ π0(Ia).
Since W 0

a is of rank one, its monodromy is given by a scalar λa ∈ C∗. Let us fix a direction
d ∈ ∂a. For a circle 〈q〉 of ramification index β, the fibre of V 0

〈q〉 at d decomposes as

V 0
〈q〉,d = V 0

〈q〉,d0
⊕ · · · ⊕ V 0

I,d〈q〉−1,
.

The monodromy of V 0
〈q〉 → ∂a around ∂a is of the form

ρ∂a =


0 . . . 0 ρβ−1
ρ0 0

. . . ...
ρβ−2 0

 ∈ GL(V 0
〈q〉,d),

with ρi : V 0
〈q〉,di → V 0

〈q〉,di+1
for i = 0, . . . , β − 1. The fibre over d of the tensor product V 0

a ⊗W 0
a

at d is
(V 0
a ⊗W 0

a )d = V 0
〈q〉,d ⊗W

0
a,d = V 0

〈q〉,d0
⊗W 0

a,d ⊕ · · · ⊕ V 0
〈q〉,d〈q〉−1,

⊗W 0
a,d,

and its monodromy over ∂a is ρ′∂a = ρ∂a ⊗λ IdW 0
a,d

. The twist thus sends ρi to ρ′i = ρi⊗λ. Since
the monodromy of V 0

〈q〉 → 〈q〉 is given by

ρ = ρβ−1 . . . ρ0 ∈ GL(V 0
〈q〉,d0

),

the monodromy of V 0
〈q〉 ⊗W

0
a → 〈q + pa〉 is

ρ′ = ρ⊗ λβ ∈ GL(V 0
〈q〉,d0

⊗W 0
a,d). (7.2.4)

How does a twist modify the diagram? We first consider what happens at infinity. Let
p∞ the exponential factor at infinity of a meromorphic rank one connection (L,∇L). The
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corresponding twists acts on the formal data of a connection (E,∇) by adding p∞ to each of
its exponential factors. Therefore, the differences q − q′ between different exponential factors
are infinity are unchanged by the twist. It follows that the number of Stokes arrows between
two circles at infinity 〈q〉 and 〈q′〉 does not change when we apply a twist, hence the number
of edges between the corresponding vertices remains the same (since we just subtract a number
of arrows determined by ram q and ram q′ to pass from the Stokes arrows to the edges of the
diagram). The number of edges between a circle 〈q〉 at infinity and a circle at finite distance
also does not change when q 7→ q + p∞. This means that

Lemma 7.2.1. A twist by a rank one connection with only one singularity at infinity does not
change the diagram.

The situation is different for singularities at finite distance: indeed, the number of edges
between two circles 〈q〉 and 〈q′〉 at a same pole a ∈ C is determined by the Stokes arrows
between the Legendre transforms 〈q̃〉 and 〈q̃′〉, and adding the same exponential factor pa to q
and q′ does change the difference q̃′ − q̃. Therefore, in general the graph does not remain the
same under the twist by a connection having poles at finite distance.

An important particular case of twist at finite distance is the following : If 〈q〉a is an un-
ramified circle at a ∈ C, we can do a twist at finite distance by a connection (L,∇L) such that
pa = −q to “cancel” q and transform 〈q〉 into the tame circle 〈0〉a at a. This will modify the
number of edges adjacent to the active circles at a.

7.3 Weyl reflections
We will now discuss how some operations on connections give rise to simple Weyl reflections
with respect to some of the vertices of the diagram. This is a generalization of the reflections
considered in [22, 20]. The general idea goes as follows: we get simple reflections when we
exchange two consecutive eigenvalues in the marking corresponding to a leg of the full diagram.
This gives reflections with respect to all vertices internal to some leg. But there is a subtlety
involving the tame circles at finite distance, related to passing from the non-modified to the
modified formal irregular class to obtain the diagram: a tame circle at finite distance can be
viewed as the first internal vertex of a splayed leg with a special marking, i.e with the first
eigenvalue equal to 1. This enables us to get reflections with respect to tame circles at finite
distance. In turn, we also get reflections with respect to circles at infinity which can be brought to
a tame circle at finite distance under a SL2(C) transformation, that is in an other representation
of the diagram.

Definition 7.3.1. Let I ∈ π0(I) a circle. We say that I is simple if there exists a symplectic
transformation A ∈ SL2(C) which sends I to a tame circle at finite distance 〈0〉a, for some
a ∈ C.

Since we know how SL2(C) transformations act on tame circles, we immediately get the
following characterization:

Lemma 7.3.2. I is simple if either I = 〈0〉a for a ∈ C, or I = 〈λx2 + µx〉∞, for λ, µ ∈ C.

This means that the generic representative at infinity of a simple circle is of the form 〈λx2 +
µx〉∞, that is an unramified circle of slope less that two.

Let (E,∇) a connection of a Zariski open subset of the affine line with formal data(Θ,C) and
modified formal data (Θ̆, C̆). Choosing a marking for each conjugacy class in C̆, we have a triple
(Γ,d,q) where Γ = Γ(E,∇), d is the dimension vector, and q is the vector of multiplicative
labels.
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Theorem 7.3.3. Let i be a vertex of the diagram Γ(E,∇). If i is not in the core, or corresponds
to a simple circle I, then there exists a change of marking of C̆i or a combination of twists and
Fourier transforms which acts on the diagram Γ(E,∇) as the simple reflection with respect to i,
i.e. which transforms the triple (Γ,d,q) into

(Γ, si(d), ri(q)).

Proof. We first deal with the case where i is not in the core, i.e. is in the interior of a leg L
with marking (ξ1, . . . , ξk). Then, the corresponding reflection simply arises by swapping the
eigenvalues ξj and ξj−1 such that the value of the component in GL(Cdi) of the moment map at
which take the quasi-hamiltonian symplectic reduction is ξj−1/ξj IdCdi . The details are exactly
similar to the proof of theorem 10.2 in [22].

Now, if i corresponds to a simple circle I, the proof is again almost similar to the proof of [22]
theorem 10.2. We apply a SL2(C) transformation to change the representation of the diagram
and send I to a tame circle at finite distance 〈0〉a. Let ξ the first eigenvalue of the marking
(ξ, . . . ) of C̆〈0〉a associated to the leg Li. Then (1, ξ, . . . ) is a (special) marking of the non-reduced
conjugacy class C〈0a〉. We swap the two eigenvalues 1 and ξ i.e. we do (1, ξ, ...) 7→ (ξ, 1, ...), then
we do a twist by a regular connection at a to rescale (1, ξ) 7→ (ξ−1, 1) so that we get a special
marking of the new conjugacy class C′〈0〉a .

The difference with [22] is in the way we check that this transformation acts as the de-
sired reflection on the dimension vector and the multiplicative labels. Let Ta ∈ GL(V 0

〈0〉a) the
monodromy of the regular part of the connection at a. The dimension at i is

di = rank(Ta − 1) = dimV 0
〈0〉a − dim Ker(Ta − 1).

Let i+ 1 be the vertex adjacent to i in the leg Li. We have

di+1 = rank(Ta − ξ)(Ta − 1) = dimV 0
〈0〉a − dim Ker(Ta − 1)− dim Ker(Ta − ξ)

The other vertices j adjacent to i in the diagram correspond to two types of circles :

• Circles at infinity 〈q〉∞, for which the number of edges between i and j is Bi,j = ram q.

• Irregular circles 〈q〉a at a, for which for which the number of edges between i and j is
Bi,j = − ram q.

Therefore, the dimension at i after Weyl reflection is

(ri(d))(i) = di −
∑
j∈I

Cijdj

= di − 2di + di+1 +
∑
j∈I∞

Bijdj +
∑

j∈Iari
Bijdj

= −di + di+1 + n− (n− na)
= −(dimV 0

〈0〉a − dim Ker(Ta − 1)) + (dimV 0
〈0〉a − dim Ker(Ta − 1)− dim Ker(Ta − ξ)) + dimV 0

〈0〉a

= dimV 0
〈0〉a − dim Ker(Ti − ξ)

= rank(Ti − ξ),

Indeed we have ∑
j∈I∞

Bijdj =
∑
〈q〉∞

ram(〈q〉)n〈q〉 = rankE = n,

and similarly ∑
j∈Iari

Bijdj =
∑

〈q〉a,q 6=0
ram(〈q〉)n〈q〉 = n− nk
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is the rank of the irregular part of the connection at a.
Therefore, we get (ri(d))(i) = rank(Ti− ξ) which is exactly the new dimension at i after our

operation.
Now for the multiplicative labels of q = (qj)j∈I , our twist multiplies the monodromy around

∂a by ξ−1 and the monodromy at infinity around ∂∞ by ξ. This transforms the marking corre-
sponding to the legs in the following way.

• The marking of the leg Li at i is transformed according to (ξ, ξi2, . . . ) 7→ (ξ−1, ξ−1ξi2, . . . ).

• If j ∈ Ia r i corresponds to a circle 〈q〉a at a of ramification r, the marking of the leg Lj
is transformed according to (ξj1, ξj2, . . . ) 7→ (ξ−rξj1, ξ−rξj2, . . . )

• If j ∈ I∞ corresponds to a circle 〈q〉∞ at ∞ of ramification r, the marking of the leg Lj is
transformed according to (ξj1, ξj2, . . . ) 7→ (ξrξj1, ξrξj2, . . . )

The markings of the other legs do not change. Recall that the labels qj are defined by qj = ξj1
if j is in the core, and Lj is the corresponding leg, and qjk = ξjk/ξj(k−1) where jk denotes the
k-th vertex of the leg Lj . This implies the following transformations of the labels:

• For the vertex i, the label qi is transformed according to ξ 7→ ξ−1.

• For the vertex i2 next to i in the leg Li, qi2 is transformed according to ξi1/ξ 7→ ξi1.

• If j ∈ Ia r i corresponds to a circle 〈q〉a at a of ramification r, qj1 follows ξj1 7→ ξ−rξj1,
and for k ≥ 2, qjk follows ξjk/ξj(k−1) 7→ ξjk/ξj(k−1), i.e. does not change.

• If j ∈ I∞ corresponds to a circle 〈q〉∞ at ∞ of ramification r, qj1 follows ξj1 7→ ξrξj1, and
for k ≥ 2, qjk follows ξjk/ξj(k−1) 7→ ξjk/ξj(k−1), i.e. does not change.

The other components do not change since they come from markings which don’t. In all cases,
we find that those transformations coincide with what is expected from the simple reflection,
that is

qj 7→ ξ−Cijqj .

Remark 8. Notice that the simply laced case considered in [20, 22] is exactly the case where all
active circles are simple. We thus recover in our framework the result that in this case we get
simple reflections with respect to every vertex of the diagram.

Combining twists with reflections Until now we have only used symplectic transformations
and twists by regular rank one connections to get Weyl reflections of the diagram. We can get
reflections with respect to some of the other vertices using more general twists.

Let i ∈ I be a vertex corresponding to an unramified circle 〈q〉∞ at infinity. We can obtain
a reflection with respect to i in the following way: we do a twist by a rank one connection with
exponential factor −q at infinity to cancel the exponential factor q, which transforms 〈q〉∞ into
the tame circle 〈0〉∞. As we have seen, this operation does not change the diagram. Now the
vertex i corresponds to a simple circle, and we know how to get the reflection corresponding to
i.

If i ∈ I is in the core of the diagram and corresponds to an unramified irregular circle 〈q〉a at
finite distance, we can cancel q using a twist, but we have seen that this changes the diagram.
In the new diagram, i corresponds to the tame circle 〈0〉a, so we get a reflection with respect
to i. We thus get a reflection also in this case, but not in the diagram we started with. Notice
that, by an appropriate twist, one can cancel one unramified circle per pole, obtaining different
new diagrams for each combination of choices. An important consequence is that in the case of
(non simply laced) supernova diagrams, we obtain in this way simple reflections with respect to
all vertices from operations on connections.
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Remark 9. Notice that all the simple reflections that we have found are relative to vertices with
no loops in the diagram. This seems to be consistent with having some kind of generalized
Kac-Moody algebra associated to the diagram acting on connections. A natural question which
arises is: can we obtain a simple reflection with respect to all loopless vertices from operations
on connections?

7.4 Other diagrams for Painlevé equations

7.4.1 Painlevé III

We have already seen how to obtain the Painlevé III diagram from its standard Lax pair. As an
example of the effects of operations on connections on the diagram, it is interesting to look at
the diagram we obtain if we do not assume that µ2 = 0. In this case there are 4 active circles,
and the diagram is represented below:

〈λ1z〉∞ 〈λ2z〉∞

〈µ1z
−1〉0

〈µ2z
−1〉0

with µ1 6= µ2, λ1 6= λ2, and the dimension at every vertex being 1, i.e. d = (1, 1, 1, 1). The
Cartan matrix is 

4 2 −2 −2
2 4 −2 −2
−2 −2 2 0
−2 −2 0 2

 ,
and we have 2− (d,d) = 2 as expected since Painlevé equations correspond to two-dimensional
moduli spaces.

Let us describe the different representations of the diagram. There are two other representa-
tions of the diagram, obtained by applying SL2(C) transformations. The generic representation
corresponds to having circles of the form

〈αz2 + λ′1z〉∞ 〈αz2 + λ′2z〉∞

〈βz2 + µ′1z
1/2〉∞

〈βz2 + µ′2z
1/2〉∞

Indeed, the Legendre transform sends a circle of the form 〈µz−1〉0 of slope 1 at 0 to a circle
〈µ′z1/2〉∞ of slope 1/2 at infinity. The generic representation corresponds to a rank 6 connection
with only one pole at infinity. The other nongeneric representation may then obtained by
cancelling the term αz2 by an appropriate twist and applying the Fourier-Laplace transform.
The active circles are of the following form:
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〈0〉−λ′1 〈0〉−λ′2

〈β′z2 + µ′′1z
1/2〉∞

〈β′z2 + µ′′2z
1/2〉∞

This is a rank 4 connection, with one irregular singularity at infinity, and two simple poles at
finite distance where the monodromy has rank one.

We can do reflections with respect to the two loopless vertices of the diagram. The figure
below shows the new dimensions after the reflection with respect to the vertex on the left on
the figure below:

3 1

1

1

The operation on connections which gives rise to this reflection can be understood from the
third representation of the diagram, the one featuring simple poles. In this representation, the
(multiplicative) formal monodromy of the connection at the simple pole at −λ1 is a 4 by 4
matrix with two eigenvalues 1 and λ 6= 1, with eigenspaces of respective dimensions 1 and 3.
The reflection comes from swapping the two eigenvalues, hence the dimension of the eigenspaces.
The same goes for the reflection with respect to the other vertex without loops. We can also
check that we still have 2− (d,d) = 2.

The reduction from this diagram to the 3 vertex diagram of [26] can be decomposed in
two steps. The first step consists in applying a (non SL2(C)) twist at z = 0 to connections
corresponding to the first representation of the graph to transform one of the circles at 0, say
〈µ2z

−1〉0 into the tame circle 〈0〉0 without changing the formal monodromy. In the generic case
where the monodromy around this circle is not trivial, this gives us the new diagram

〈λ1z〉∞ 〈λ2z〉∞

〈(µ1 − µ2)z−1〉0

〈0〉0

with multiplicity 1 at the tame circle 〈0〉0. The Cartan matrix of this new diagram is

C ′ =


4 1 −2 −2
1 2 −1 −1
−2 −1 2 0
−2 −1 0 2

 ,
and we still have 2− (d,d) = 2.

In this diagram, it is now possible to do a reflection with respect to the vertex corresponding
to the tame circle. This gives the new dimensions
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1 1

1

0

We notice that the mutliplicity at the tame becomes 0. Indeed, the operation corresponding to
the reflection consists in setting to 1 the unique eigenvalue of multiplicity 1 of the monodromy
of 〈0〉0, so the monodromy becomes trivial, and the reduced monodromy has rank 0. Therefore,
we may erase this vertex to recover the 3 vertex diagram of [26] (with µ = µ1 − µ2):

〈λ1z〉∞
〈µz−1〉0

〈λ2z〉∞

Remark 10. At this point, we could try to cancel the circle 〈µz−1〉0 by a twist at z = 0. However,
if we do this, the tame circle 〈0〉0 with multiplicity 0, corresponding to 〈0〉0 with rank 1, becomes
〈−µx−1〉0 with multiplicity 1. In other words, the circle that we had just erased reappears. The
simplified diagram still “knows” about the tame circle with trivial monodromy.

Möbius transformations We can also apply a Möbius transformation to the original Lax
representation to have both poles at finite distance, say at a, b ∈ C. We must then add to the
diagram a vertex corresponding to the tame circle at infinity 〈0〉∞, with multiplicity 2 and trivial
monodromy. This gives the following diagram.

〈λ1z
−1
a 〉a

〈λ2z
−1
a 〉a

〈µ1z
−1
b 〉b

〈µ2z
−1
b 〉b

〈0〉∞

where the multiplicity of the central vertex is 2, and the other multiplicities are 1. The Cartan
matrix is 

2 −2 −2 −2 −2
−2 4 2 0 0
−2 2 4 0 0
−2 0 0 4 2
−2 0 0 2 4

 ,

and again we check that 2 − (d,d) = 2. As for the previous diagram, we can do a twist at
finite distance to transform one of the circles at a into the tame circle 〈0〉a, say 〈λ2z

−1
a 〉a. In the

generic case where the monodromy is not trivial, we get the following diagram
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〈(λ1 − λ2)z−1
a 〉a

〈0〉a

〈µ1z
−1
b 〉b

〈µ2z
−1
b 〉b

〈0〉∞

where 〈0〉a has multiplicity 1. Once again, we can do a Weyl reflection with respect to the
tame circle 〈0〉a. Its multiplicity then becomes zero, so we can erase the circle and get the
simpler diagram.

〈(λ1 − λ2)z−1
a 〉a

〈µ1z
−1
b 〉b

〈µ2z
−1
b 〉b

〈0〉∞

We can do exactly the same thing for the circles at b. This leads to the diagram

〈λz−1
a 〉a 〈λz−1

b 〉b〈0〉∞

The Cartan matrix is  4 −2 0
−2 2 −2
0 −2 4


and once again we check that 2− (d,d) = 2.
Remark 11. At this stage, we can make the following intriguing observation: the Cartan matrix
of this last diagram and the Cartan matrix of the 3-vertex diagram of [26] are the symmetrized
Cartan matrices coming from two non-symmetric Cartan matrix which are the transpose of each
other, i.e. whose associated generalized Lie algebras are the Langlands dual of each other.

Indeed, these two diagrams have the following Cartan matrices:

C0 =

 2 −2 0
−2 4 −2
0 −2 2

 , C1 =

 4 −2 0
−2 2 −2
0 −2 4


.

We have
C0 = Ĉ0D0, C1 = Ĉ1D1.

with

Ĉ0 =

 2 −1 0
−2 2 −2
0 −1 2

 , Ĉ1 =

 2 −2 0
−1 2 −1
0 −2 2

 ,
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and

D0 =

1 0 0
0 2 0
0 0 1

 , D1 =

2 0 0
0 1 0
0 0 2

 .
This means that C0 and C1 are symmetrized Cartan matrices coming from the non-symmetric
Cartan matrices Ĉ0, Ĉ1. The observation is that Ĉ1 is the transpose of Ĉ0, i.e. they correspond
to Langlands dual Lie algebras. In particular, this implies that the corresponding Weyl groups
are isomorphic. It is unclear whether this fact is a mere coincidence or if it has a deeper meaning.

7.4.2 Degenerate Painlevé III equations

Degenerate Painlevé III The standard Painlevé III Lax pair has the following active circles:
a circle of slope 1/2 at infinity, say 〈z1/2〉∞ and two circles of slope 1 at 0, 〈αz−1〉0, 〈βz−1〉0,
with α, β ∈ C, α 6= β. We have already studied the corresponding diagram in the case where
β = 0 and 〈βz−1〉0 has trivial monodromy.

We can perform a Möbius transformation to exchange 0 and ∞. If we do this we get the
diagram drawn below, where the central vertex has 3 negative loops and is linked to the 2 other
vertices by a triple edge.

3 3〈αz〉∞
〈z−1/2〉0

〈βz〉∞

−3

The Cartan matrix is  8 −3 −3
−3 2 0
−3 0 2

 ,
and we again have 2− (d,d) = 2 as expected. The generic representation corresponds to a rank
5 connection with one irregular singularity at infinity, with three active circles, one of them with
ramification 3, the two others with ramification 1. There is a representation of this graph where
the central vertex corresponds to a circle at infinity of slope 1/3 (the image of the slope 1/2 at 0
under formal Fourier transform) and two simple poles at infinity, at which the modified formal
local system has rank 1.

Doubly degenerate Painlevé III The doubly degenerate Painlevé III admits a Lax repre-
sentation with the following active circles, each having multiplicity 1: a circle of slope 1/2 at
infinity, say 〈z1/2〉∞, and circle of slope 1/2 at 0, say 〈z−1/2〉0. We have already studied the
corresponding diagram.

We have seen that there is a representation of this diagram whose modified irregular class
has an active circle of slope 1/3 at infinity, and a circle of slope 1 at 0, with multiplicity 1. In
the non-modified irregular class, the tame circle 〈0〉0 has multiplicity 2 and trivial monodromy.

Now, performing a Möbius transformation to exchange 0 and ∞, we get formal data giv-
ing the following diagram, with 〈0〉∞ having multiplicity 2, and the two other circles having
multiplicity 1.
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4 4〈0〉∞
〈z−1/3〉0

〈αz−1〉∞

−6

The Cartan matrix is

C =

 2 −4 0
−4 14 −4
0 −4 2

 ,
and once again we have 2− (d,d) = 2. There is a representation of this diagram corresponding
to a rank 4 connection, with one circle of slope 1/4 at infinity, and two simple poles at finite
distance.

7.5 Okamoto symmetries of Painlevé III
In this paragraph, we consider the Okamoto symmetries of the parameter space of the Painlevé
III equation, and investigate whether they can be obtained from basic operation on the Painlevé
III Lax pair(s). This is in the same spirit as in [14], where the Okamoto affine Weyl group
symmetries of Painlevé VI are realized from operations on different Lax pairs. More precisely,
there are three sides to the story that we wish to compare.

1. Okamoto symmetries of the Painlevé III equations.

2. The abstract Weyl group defined from the Cartan matrix of the Painlevé III diagram.

3. Action of geometric operations on the Painlevé III Lax representation(s).

7.5.1 Okamoto symmetries

Let us first briefly review the third Painlevé equations and its Okamoto symmetries follow-
ing [85, 98]. The third Painlevé equation admits a Hamiltonian formulation: the Painlevé III
Hamiltonian H(p, q) is given by

tH = q2p2 − (q2 − (α1 + β1)q − t)p− α1q.

It depends on two parameters α1, β1 ∈ C. The space of parameters of the Painlevé III equations
is thus a two dimensional vector space V . Setting t = τ2 and y = q/τ , this gives for y the
Painlevé III equation

d2y

dτ2 = 1
y

(
dy

dτ

)2
− 1
τ

dy

dτ
+ 1
t
(αy2 + β) + γy3 + δ

y
,

where the four complex coefficients α, β, γ, δ are related to α1, β1 by

α = 4(α1 − β1), β = −4(α1 + β1 − 1), γ = 4, δ = −4.

Recall from e.g. [28] the root system of type B2. If V is a two-dimensional vector space
with scalar product (·, ·) and orthonormal basis (ε1, ε2), the B2 root system is the set R =
{±ε1,±ε2,±ε1 ± ε2}. The simple roots are α1 = ε1 − ε2, α2 = ε2. The corresponding coroots
are α∨1 = ε1 − ε2, α∨2 = 2ε2. The B2 Weyl group is generated by the simple Weyl reflections
s1 = sα1 and s2 = sα2 . It isomorphic to the dihedral group with 8 elements D8. The affine Weyl
group of type B2, on the other hand, is generated by the affine Weyl reflections

sα,k = t(kα∨) ◦ sα, α ∈ R, k ∈ Z
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where t(kα∨) denotes the translation by kα∨. The affine group is generated by any subset of 3
reflections corresponding to the walls of an alcove.

The Okamoto symmetries are birational canonical transformations preserving the Painlevé
III equation, but changing the parameters. In his original article, Okamoto parametrizes the
vector space VOk of Painlevé III parameters using the coordinates (v1, v2) with

v1 = β1 − α1, v2 = −α1 − β1.

The group of transformations is generated by the three reflections sOk1 , sOk2 , sOk0 ∈ GL(VOk)
defined by

sOk1 : (v1, v2) 7→ (v2, v1), (7.5.1)
sOk2 : (v1; v2) 7→ (v1,−v2), (7.5.2)
sOk0 : (v1, v2) 7→ (−1− v2,−1− v1). (7.5.3)

whose axes are represented on the figure below.

•

sOk1

sOk2

sOk0

The two reflections sOk1 , sOk2 generate a group isomorphic to the Weyl group of type B2, via
the isomorphism ε1 = (1, 0), ε2 = (0, 1). Furthermore sOk1 , sOk2 , sOk0 generate a group isomorphic
to the affine Weyl group of type B2. Indeed, their axes are the walls of an alcove.
Remark 12. The article [98] on the other hand uses a different parametrization of the birational
transformations, which involves the parameters α1, β1 along with α0 := 1−α1 and β0 := 1−β1.
The group of transformations is described there as the extended Weyl group W̃ ((2A1)(1)) =
Aut((2A1)(1))nW ((2A1)(1)) associated to two copies of the affine A1 Dynkin diagram. The group
W ((2A1)(1)) is generated by four transformations s0, s

′
0, s1, s

′
1. If we use (α1, β1) as coordinates

on V , they are given by

s0 = (α1, β1) 7→ (2− α1, β1),
s1 = (α1, β1) 7→ (−α1, β1),
s′0 = (α1, β1) 7→ (−α1, 2− β1),
s′1 = (α1, β1) 7→ (α1,−β1).

The group of automorphisms Aut((2A1)(1)) is generated by π1, π2, σ1, whose expressions are

π1 : (α1, β1) 7→ (1− α1, β1),
π2 : (α1, β1) 7→ (α1, 1− β1),
σ1 : (α1, β1) 7→ (β1, α1).

On the (α1, β1) plane, s0, s
′
0, s1, s

′
1 are reflections with respect to the lines on the figure below.

111



• s′1

s′0

s1 s0

Adding the reflections generating Aut((2A1)(1)) the figure becomes

• s′1

s′0

s1 s0 σ1π1

π2

It follows from this that the action of W̃ ((2A1)(1)) on the parameters (α1, β1) is actually gen-
erated by three reflections only whose axes constitute the walls of an alcove, e.g. by σ1, s

′
1, π1.

Let us compare the group of transformations in those two descriptions. Using that{
α1 = −v1−v2

2 ,

β1 = v1−v2
2 ,

we can express s0, s1, s2 in terms of the coordinates (α1, α2). Noticing that

sOk1 : (α1, β1) 7→ (α1,−β1) = s′1

sOk2 : (α1, β1) 7→ (−β1,−α1) = s′1σ1s
′
1

sOk0 : (α1, β1) 7→ (1− α1, β1) = π1.

we conclude that the groups of transformations of the Painlevé III parameters in [85] and [98]
are the same group WOk = 〈σ,s′1, π1〉, isomorphic to the affine Weyl group of type B2.

7.5.2 Abstract Weyl group of the Painlevé III diagram

We now discuss abstract the Weyl group corresponding to the Painlevé III diagram:

The Cartan matrix of the diagram is

C =

 2 −2 0
−2 4 −2
0 −2 2

 . (7.5.4)

As already mentioned, it is the symmetrization of the generalized Cartan matrix of type C̃2
(see e.g. [30, p. 576]). Let e1, e2, e3 basis vectors corresponding to the three vertices of the
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diagram, and Γ := Ze1 ⊕ Ze2 ⊕ Ze3. Let (·, ·) the bilinear form on Γ defined by (ei, ej) = Cij
for i, j = 1, 2, 3. It is degenerate, with its kernel is generated by the null root δ = (1, 1, 1). The
Weyl groupW of the diagram is the group generated by the simple Weyl reflections ri, i = 1, 2, 3
with

ri(d) = d− 2(ei, d)
(ei, ei)

ei. (7.5.5)

In the diagrams coming from meromorphic connections, we have labels at each vertex cor-
responding to the eigenvalues of the formal monodromies. In our case, let E = Γ ⊗Z C =
Ce1⊕Ce2⊕Ce3 the vector space of labels at the three vertices. The dual Weyl reflections acting
on the labels are defined by

si(λ) = λ− λi
3∑
j=1

2(ei, ej)
(ei, ei)

ej , (7.5.6)

for λ = (λ1, λ2, λ3) ∈ E. Let · the inner product on E defined by ei ·ej = δij . The dual reflections
satisfy

ri(d) · si(λ) = d · λ, d ∈ Γ, λ ∈ E.
In the Painlevé III case, the dimension vector of the diagram is the null root (1, 1, 1). The

fact that it lies in the kernel of the Cartan matrix has the following consequence.
Lemma 7.5.1. Let VLie ⊂ E the hyperplane defined by VLie := {(λ = λ1, λ2, λ3) ∈ E, λ1 + λ2 + λ3}.
Then VLie is stable by si for all i.
Proof. For any λ ∈ E, we have δ · λ = ri(δ) · si(λ) = δ · si(λ). Since λ ∈ VLie means δ · λ = 0,
this implies that λ is in VLie if and only if si(λ) is in VLie.

This is important for us since, as we have seen in the previous paragraph, the labels corre-
sponding to the Lax representation of Painlevé III lie in VLie. The group to be compared to the
Okamoto symmetries is thus the group generated by the restriction to VLie of the abstract Weyl
reflections.
Lemma 7.5.2. The group WLie generated by the restrictions (si)|VLie to VLie of the Weyl re-
flections is isomorphic to the Weyl group of type B2.
Proof. We use the following basis (e1− e2, e3− e2) of VLie. The matrices of s1, s2, s3 are respec-
tively (

−1 0
0 1

)
,

(
0 −1
−1 0

)
,

(
1 0
0 −1

)
.

The group generated by these matrices is isomorphic to the Weyl group of type B2.

We have a similar discussion for the multiplicative Weyl reflections. Let E∗ = (C∗)3 the
multiplicative equivalent of the vector space E. We define Weyl reflections ŝi, i = 1, 2, 3 acting
on multiplicative labels q = (q1, q2, q3) ∈ E∗ by

(ŝi(q))j = qj q
−

2(ei,ej)
(ei,ei)

i , j = 1, 2, 3. (7.5.7)

Let TLie := {q = (q1, q2, q3) ∈ E∗, q1q2q3 = 1} ⊂ E∗ the multiplicative equivalent of VLie.
The fact that VLie is invariant under si implies by exponentiation that TLie is invariant under
ŝi. The group ŴLie generated by their restrictions on TLie is isomorphic to WLie.
Remark 13. We may ask whether considering the extended Weyl group, i.e. adding automor-
phisms of the diagram, results in a larger group of transformations. The matrix in the basis
(e1− e2, e3− e2) of VLie of the restriction to VLie of the automorphism exchanging the vertices 1

and 3 of the diagram is
(

0 1
1 0

)
. We notice that this matrix belongs to WLie. This means that

the extended Weyl group and nonextended Weyl group induce the same group of transformations
of VLie.
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7.5.3 Derivation of the symmetries geometrically

The Jimbo-Miwa Lax representation for Painlevé III corresponds to a rank two connection on the
Riemann sphere wtih two irregular singularities at 0 and ∞, of slope 1. In the parametrization
of [62], the active circles are given by

• At ∞ : 〈 tx2 〉∞, 〈− tx
2 〉∞.

• At 0 : 〈 tx−1

2 〉0, 〈−
tx−1

2 〉0.

each where the parameter t becomes the time of the third Painlevé equation, and active circle
has multiplicity 1. The data of the (multiplicative) formal monodromies at each active circle
lives in a torus isomorphic to (C∗)4.

In the parametrization of [62], the (additive) exponents of formal monodromy associated to
each active circles are the ones indicated on the figure below.

〈tx/2〉∞, θ∞/2 〈−tx/2〉∞,−θ∞/2

〈tx−1/2〉0, θ0/2

〈−tx−1/2〉0,−θ0/2

Since there are only two independent parameters only, the space of additive formal mon-
odromies is a two-dimensional vector space VLax0 with coordinates (θ0, θ∞).

In the Betti picture, we rather consider the multiplicative formal monodromies, which are ob-
tained from the additive ones by taking the exponential. This gives the point (q∞, q0, q

−1
∞ , q−1

0 ) ∈
(C∗)4, with q∞ := eiπθ∞ and q0 := eiπθ0 . The two independent formal monodromy parameters
q0, q∞ live in a torus TLax0 = (C∗)2.

The irregular class as well as the formal monodromies change when applying basic operations
on connections, i.e. combinations of twists, Fourier-Laplace and Möbius transformations. In
particular, we have seen that Weyl reflections come from combinations of twists and SL2(C)
transformations. We are interested in the action of these transformations on the Painlevé III
Lax representation(s), i.e. in transformations that preserve the irregular class of the connection,
but change the formal monodromies. Such transformations induce automorphisms of the formal
monodromy space TLax0 which we want to determine.

We have already noticed that reflections on the 4-vertex Painlevé III diagram do not leave
the dimension vector d = (1, 1, 1, 1) invariant. For example the reflection with respect to the
left vertex sends the dimension at this vertex to 3 (this comes from the fact that in the cor-
responding lecture of the graph, the connection has rank 4, and the left vertex corresponds to
a regular pole whose monodromy has two eigenvalues with multiplicities 1 and 3). In order to
find transformations on the standard Lax representation that preserve the dimension vector, it
is necessary to pass to some auxiliary Lax representation(s) whose monodromy spaces admit
automorphisms coming from geometry.

To this end, let us introduce some notations for twists: for a ∈ P1 and q ∈ C[x−1
a ], let T aq

denote the operation of taking the tensor product with the trivial line bundle with connection
∇ = d − dq. It has the effect of adding qa to each exponential factor at a. For a ∈ C and
λ ∈ C, let Ka

λ the operation of taking the tensor product with the trivial line bundle with
regular connection ∇ = d − λ

x−adx, having poles at a and ∞. It has the effect of multiplying
the (multiplicative) formal monodromy of an active circle with ramification order β at a by qβ,
and the monodromy of an active circle at∞ with ramification order β by q−β, where q := e2iπλ.
We may use such operations to pass to alternative Lax representations, as follows:
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Lemma 7.5.3. • The operation φ1 := K0
θ0/2T

0
tz−1/2 transforms the irregular class and the

multiplicative formal monodromies into those indicated on the figure below:

〈tz/2〉∞, q∞q−1
0 〈tz−1〉0, q2

0
〈−tz/2〉∞, q−1

∞ q−1
0

• The operation φ2 := K0
−θ0/2T

0
−tx−1/2 transforms the irregular class and the formal mon-

odromies into those indicated on the figure below:

〈tz/2〉∞, q∞q0
〈−tz−1〉0, q−2

0
〈−tz/2〉∞, q−1

∞ q0

Proof. For φ1, the twist T 0
tz−1/2 sends the irregular circle 〈−tz−1/2〉0 to the tame circle 〈0〉0,

then the twist K0
θ0/2 makes its formal monodromy trivial, so that the corresponding vertex

disappears. This is similar for φ2.

Let TLax1 and TLax2 denote the spaces of (multiplicative) formal monodromies of these Lax
representations. Both are readily identified via the diagram to the torus TLie of the previous
paragraph, so that φ1 and φ2 induce two maps:

φ̂1 : TLax0 → TLax1

(q0, q∞) 7→ (q∞q−1
0 , q2

0, q
−1
0 q−1
∞ ) ,

φ̂2 : TLax0 → TLax2

(q0, q∞) 7→ (q∞q0, q
−2
0 , q0q

−1
∞ ) .

In these Lax representations, the Weyl reflections with respect to the left and right vertices
do not change the dimension vector, and the dual Weyl reflections transform the (multiplicative)
labels. It follows from section 4.1 that the automorphisms sLaxi1 , sLaxi3 , i = 1, 2 of TLax1 and TLax2

corresponding to the simple abstract Weyl reflections s1 and s3 have a modular interpretation
in terms of geometric operations on the Lax representation.

Lemma 7.5.4. The automorphism φLax1 : (q1, q2, q3) 7→ (q3, q2, q1) of TLax1 comes from geo-
metric transformations.

Proof. We apply the Fourier transform to change the representation of the diagram: the circles
〈tz/2〉∞ and 〈tz/2〉∞ respectively become the tame circles 〈0〉−t/2 and 〈0〉t/2. Now, applying a
Möbius transformation µ exchanging the points t/2 and −t/2 in P1 amounts to exchange the
formal monodromies of these two circles. Taking the inverse Fourier transform to change the
representation back to the original one gives the result.

Let us denote by ŴLaxi ⊂ Aut(TLaxi) the group generated by sLaxi1 , sLaxi3 , φLaxi . One has
ŴLaxi

∼= D8.
We may now go back to the original Lax pair to obtain automorphisms of TLax0 .

Lemma 7.5.5. The following automorphisms of TLax0 come from geometric operations:

• τLax0
1 : (q0, q∞) 7→ (q∞, q0),

• τLax0
3 : (q0, q∞) 7→ (q−1

∞ , q−1
0 ),

• τLax0 : (q0, q∞) 7→ (q0, q
−1
∞ ),

• σLax0 : (q0, q∞) 7→ (−q0,−q∞).
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Proof. The automorphism τLax0
1 my be obtained by applying φ1 to pass to the corresponding

Lax pair, applying the geometric transformation corresponding to sLax1
1 , then going back to the

original Lax pair using φ−1
1 . For τLax0

3 and τLax0 the process is similar, only replacing sLax1
1 by

sLax1
3 and φLax1 . Finally, σLax0 is obtained by taking the twist K0

1/2, whose effect is to multiply
by -1 the multiplicative formal monodromies at 0 and ∞.

We have thus obtained some automorphisms of the two dimensional torus TLax0 of formal
monodromies parameters of the usual Painlevé III Lax representation from geometric transfor-
mations. Let us denote by ŴLax0 := 〈τLax0

1 , τLax0
3 , τLax0 , σLax0〉 the group they generate.

7.5.4 Links between the different pictures

The three settings we have described each feature two-dimensional vector spaces (in the additive
picture) and/or tori (in the multiplicative picture) and automorphisms of these spaces: for
Okamoto transformations, the vector space VOk of Painlevé III parameters, for the Dynkin
diagram the vector space VLie and the corresponding torus TLie, for the Lax representations
the residue space VLax0 and the tori TLaxi of eigenvalues of (multiplicative) formal monodromy.
We now discuss the dictionary relating these spaces and compare the automorphism groups on
either side.

The dictionary between the Lax representation and the Painlevé parameters is given by the
isomonodromic deformation equations. From [62], the isomonodromy equations for the Lax
representation give rise to the Painlevé III equation with parameters

α = 4θ0, β = 4(1− θ∞), γ = 4, δ = −4. (7.5.8)

This implies we have an isomorphism

Ψ : VOk → VLax

(α1, β1) 7→ (θ0, θ∞) = (α1 − β1, α1 + β1)

between the space of Okamoto parameters VOk and the space of eigenvalues of the Painlevé III
Lax representation VLax0 compatible with passing to the associated Painlevé equation. Passing
to the multiplicative monodromies yields a map

Ψ̂ : VOk → TLax0

(α1, β1) 7→ (q0, q∞) = (eiπ(α1−β1), (eiπ(α1+β1)).

We have the induced maps on the automorphism groups Ψ̂∗ : Aut(VOk) → Aut(VLie) and
φ̂1∗, φ̂2∗ : Aut(TLax0)→ Aut(TLaxi). This enables us to compare the symmetry groups on either
side.

Proposition 7.5.6. The image Ψ̂∗(WOk) of the group of Okamoto symmetries under Ψ̂∗ is
equal to ŴLax0.

Proof. Let us compute the images by Ψ̂∗ of the automorphisms sOk1 , sOk2 , σOk0 which generate
WOk . We have

Ψ̂∗(sOk1 ) = τLax0
1

Ψ̂∗(sOk2 ) = τLax0

Ψ̂∗(σ1) = σLax0 ◦ τLax0
3 ,

and these images generate ŴLax0 .
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Remark 14. One given element in ŴLax0 has an infinite number of preimages by Ψ̂∗ differing
from one another by translations. These translations correspond to Schlesinger transformations
(see e.g. [60]), shifting the additive residues by integers.

Proposition 7.5.7. ŴLaxi is the image of ŴLax0 by φ̂i∗ , for i = 1, 2.

Proof. We compute the images by φ̂1∗ of τ1, τ3, τ ∈ G. We find

φ̂1∗(τLax0
1 ) = ŝLax1

1 φ̂1∗(τLax0
3 ) = ŝLax1

3 φ̂1∗(τLax0) = φLax1 ,

This implies the result since ŴLie = 〈ŝLax1
1 , ŝLax1

3 , φLax1〉. Things are similar for φ̂2∗.

The situation is shown on the diagram below:

WOk

ŴLax0

ŴLax1 ŴLax2

ŴLie

Ψ̂∗

φ̂2∗

φ̂1∗

∼=
∼=

Remark 15. Each element of ŴLax1 has exactly two preimages by φ̂1∗. This comes from the
fact that φ̂1∗(σLax0) is the identity. Indeed, passing from the standard representation to the
representation corresponding to the 3-vertex diagram involves taking the quotient of the formal
monodromies at the two active circles at 0, and this quotient doesn’t change when applying the
twist giving rise to σLax0 .

To summarize, we have shown that the Okamoto symmetries of the Painlevé III parameters,
as well as the abstract Weyl group symmetries defined from the Painlevé III diagram (when
restricted to the subspace TLie) are modular, i.e. correspond via the maps Ψ̂, φ̂i, i = 1, 2, from
operations on some Painlevé III Lax representation. Notice that to get a modular interpretation
of all Okamoto symmetries, it is necessary to pass between different Lax representations, as e.g.
for the case of Painlevé V [15].
Remark 16. Notice that φ̂−1

2 ◦ φ̂1 = (ŝ2)|TLie , that is the reflection with respect to the central
vertex of the affine D2 diagram coïncides with the effect on labels of passing from one of the two
possible 3-vertex diagrams to the other. This gives a modular interpretation for the abstract
Weyl reflection (restricted to VLie) with respect to the vertex with a negative loop. It seems
however that this observation does not extend to more general cases in a straightforward way.
More work is needed to understand whether there is a suitable way to define from the diagram(s),
in the spirit of [22], some kind of global Weyl group having a modular interpretation in terms
of operations on connections.
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Chapter 8

Towards classification for simple
examples

We have seen that operations on connections such as SL2(C) transformations, twisting with a
rank one connection or Möbius transformations play an essential role the construction of the
diagrams, passing from one Lax representation to another, and interpreting the symmetries of
Painlevé equations. In this chapter, we explore more systematically how exponential factors and
formal data transform under the group generated by these transformations. In a spirit similar
to the philosophy of Katz’ middle convolution algorithm [64] for rigid regular connections, and
its extension by Arinkin [6] to rigid irregular connections, we would like to be able to describe
the formal data of the connections in an orbit of the group generated by these operations. One
may hope there is in each orbit a minimal diagram in some sense, so that the orbits would be
classified by these minimal diagrams, together with some extra data.

We take here a few modest first steps towards this goal: thanks to our understanding of the
action of the Legendre transform on exponential factors, we give a characterization of the expo-
nential factors which can be brought to a tame circle by iterated application of these operations.
For the case of diagram with only one vertex (with loops), we arrive at a characterization of all
exponential factors giving rise to such a diagram when the number of loops is 0, 1 or 2. In this
case, we find that all exponential factors for a given number of loops are related by successive
applications of twists and the Fourier transform.

8.1 Formal data and basic operations

8.1.1 Orbits of formal data

Let Θ̆ the modified irregular class of a connection (E,∇) on a Zariski open subset of P1. We
would like to answer the following questions: what are all the irregular classes possibly obtained
by iterated application of elementary operations? Arinkin’s generalized Katz’ algorithm answers
the case of rigid irregular connections:

Theorem 8.1.1 ([39, 6]). If (E,∇) is a rigid irregular connection on a Zariski open subset of
P1, it can be brought to the trivial connection by successive application of basic operations.

The proof consists in showing that for a rigid irregular connection of rank > 1 it is always
possible to find a basic operation that lowers the rank.

An easy general observation to make is that the number of active circles in any orbit is
unbounded:

Lemma 8.1.2. In each orbit, there are modified formal irregular classes with an arbitrarily large
number of active circles.
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Proof. Let (E,∇) a connection with modified irregular class Θ̆. It is enough to show that there
exists a basic operation increasing the number of active circles. The reason for this is that since
we do not take the reduced monodromy for the tame circle at infinity, it is an active circle even
when the connection has no singularity at infinity. Up to applying a twist at infinity, we may
assume that the tame circle at infinity 〈0〉∞ is not an active circle of Θ̆. Let then µ be a Möbius
transformation such that µ−1(∞) is not a singularity of (E,∇). Then µ · Θ̆ has one more active
circle than Θ̆: indeed all active circles of Θ̆ are sent by µ to singularities at finite distance (no
circle disappears since 〈0〉∞ isn’t active), and the tame circle at infinity gives an extra active
circle for µ · Θ̆. The result follows by induction.

It is thus straightforward to “complexify” a given irregular class. The more interesting
question is the following: is there a systematic way, in the non-rigid case, to simplify an irregular
class to obtain one with minimal number of active circles?

8.1.2 Levels of an exponential factor

We introduce the notion of levels of an exponential factor (see [24]).

Definition 8.1.3. The levels of 〈q〉 are the slopes of the active circles of Hom(〈q〉, 〈q〉).

We denote by Levels(q) ⊂ Q the set of levels of 〈q〉. Let 〈q〉a an exponential factor given by

q =
k∑
i=0

biz
αi/β
a

with β = ram(q) and bi 6= 0 for i = 1, . . . , k. The formula for B〈q〉,〈q〉 shows that not all degrees
in the set of degrees of {α0

β , . . . ,
αk
β } ⊂ Q of the terms of 〈q〉 contribute to Stokes arrows: the

term of slope αi
β in q, with i = 1, . . . , k, contributes to B〈q〉,〈q〉 only if

pi < pi−1,

where pi = (α0, . . . , αi, β). This implies the following result:

Lemma 8.1.4. the set of levels Levels(q) of q is the largest subset of {α0
β , . . . ,

αk
β } such that the

corresponding sequence of greatest common divisors is strictly decreasing.

We will say that an exponential factor 〈q〉 is reduced if the sequence (p0, . . . , pk) is strictly
decreasing. In this case its levels are just the degrees of its terms.

A consequence of this is that the diagram associated to a meromorphic connection (E,∇)
with only one active circle 〈q〉, as well as the quasi-Hamiltonian structure of the wild character
varietyMB(E,∇), only depend on the levels of the exponential factor.

Example 8.1.5. Let us look at a few simple examples.

• If (α0, β) = 1, q is reduced if and only if it has only one term. Its set of levels is {α0
β }.

• Consider q = z5/3 +z4/3 +z1/2. We have ram(q) = 6, and the sequence of g.c.d.s is (2, 2, 1)
so q is not reduced. Its set of levels is {5

3 ,
1
2}.

Using this notion of levels, we can interpret the formula for the form of the Legendre trans-
form in the following way:

Lemma 8.1.6. Let 〈q〉∞ an exponential factor at infinity of slope > 1, and 〈q̃〉∞ its Legendre
transform. There is a bijection between the sets of levels of q and q̃. If β = ram(q) and
Levels(q) = {α0

β , . . . ,
αl
β }, then

Levels(q̃) =
{

α0
α+ β

, . . . ,
αl

α+ β

}
.
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8.1.3 Action of basic operations on circles

To make an active circle disappear from the diagram, the only way is to transform it into a
tame circle at finite distance, with trivial formal monodromy. We have already encountered
several examples where some circles with ramification can be transformed into circles without
ramification by applying some suitable operation. For example the circle 〈zn/(n−1)〉∞ for any
integer n ≥ 1 is sent by Fourier transform to an unramified circle 〈λzn〉, with λ 6= 0. It is therefore
natural to ask whether any circle can be sent by iterated application of basic operations to a
tame circle (this is akin to some kind of “transitivity” property). We will show that the answer
is no.

Theorem 8.1.7. If α, β are two coprime integers such that β 6≡ ±1 mod α, then the circle
〈zα/β〉∞ cannot be sent to an unramified circle by iterated application of basic operations.

Lemma 8.1.8. The circle 〈zα/β〉∞, with α, β ∈ N coprime can be sent to an unramified circle by
a combination of Fourier transform and Möbius transformations if and only if β ≡ ±1 mod α.

Proof. The images of 〈zα/β〉∞ by combinations of Fourier-Laplace transform and Möbius trans-
formations are of the form 〈λ′zα′/β′〉a, with λ ∈ C∗, α′, β′ ∈ N and a ∈ P1. To determine whether
we can obtain an unramified circle, it suffices to track the transformation of the couple (α, β).
Möbius transformations only act on the location of the singularity and do not change (α, β). On
the other hand, the transformation of (α, β) under Fourier transform is given by the stationary
phase formula: there are three cases

(α, β) 7→ (α, α+ β) when a 6=∞,
(α, β) 7→ (α, α− β) when a =∞ and a/b < 1,
(α, β) 7→ (α, β − α) when a 6=∞ and a/b > 1.

It follows that the possible couples (α′, β′) for images of 〈zα/β〉∞ by compositions of Fourier
transform and Möbius transformations are the

(α, kα± β)

with k ∈ Z such that kα ± β > 0. This corresponds to an unramified circle if kα ± β = 1, and
the conclusion follows.

Proof. The previous lemma shows that the Fourier transform and Möbius transformations do
not allow to “deramify” the circle 〈zα/β〉∞, but this doesn’t include the case of twists. It might
be a priori possible that, by applying some preliminary twist so that the term zα/β becomes a
subleading term, then applying Fourier transform and Möbius transformations, and repeating
the process, we could send 〈zα/β〉∞ to the tame circle 〈0〉∞. We have to show that this cannot
actually happen.
Let us first look at the case where we apply one twist increasing the slope. Let q0 an exponential
factor with ramification order β0 and ramified leading term λ0z

α0/β0 , that is with α0 ∈ N not
multiple if β0. Applying a twist by a (necessarily unramified) exponential factor

λkz
nk + · · ·+ λ1z

n1 + terms of order < α0
β0

with nk > · · · > n1 >
α0
β0
, of order n := nk, we get

q′0 = λkz
nkβ0
β0 + · · ·+ λ1z

n1β0
β0 + λ0z

α0
β0 + . . .

Now, we apply some combination of Fourier transform and Möbius transformations. It follows
from the description of the orders of the terms appearing in the Legendre transform that the
exponential factor q1 that we obtain has the form

q1 = λ′kz
nkβ0

pnβ0±β0 + · · ·+ λ′1z
n1β0

pnβ0±β0 + λ′0z
α0

pnβ0±β0 + . . . ,
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where p ∈ Z, pnβ0 ± β0 > 0, n = nk > · · · > n1 >
α0
β0
. At this stage we make two crucial

observations:

• The term in zα0/(pnβ0±β0) has not disappeared, that is we have λ′0 6= 0. Indeed, from the
formula for the Legendre transforms the terms znk , . . . , zn1 give contributions to terms of
order (nβ0−mk−1(n−nk−1)β0−· · ·−m1(n−n1)β0)/(pnβ0±β0), with m1, . . .mk−1 ∈ N .
But α0/(pnβ0 ± β0) isn’t one of those terms since α0 is not a multiple of β0. As a conse-
quence, the coefficient λ′0 comes entirely from the first subleading correction coming from
the term λ0z

α0/β0 , and this contribution cannot be cancelled by higher order corrections
coming from λk−1z

nk−1 + . . . λ1z
n1 .

• Assuming we do not perform further twists which increase the slope of the exponential
factor, the only way to go back from q1 to a situation where the term zα0/∗ coming from
zα0/β0 is the leading term is to apply a combination of Möbius transformations and Fourier
transform which undoes the transformation (nβ0, β0) 7→ (nβ0, pnβ0 ± β0). Indeed, when
applying such an operation to q2, the possible ramification orders are the qnβ0 ± β0 > 0,
with q ∈ Z, and among those numbers β0 is the only one that divides nβ0 and brings
us back to an unramified leading term. Then, performing a twist, we are back to an
exponential factor with leading term zα0/β0 .

We have just shown that a sequence of basic operations featuring one slope increasing twist
can neither allow to make the term zα0/β0 disappear, nor transform it into zα0/β′ with β′ 6= β0.
By induction on the number of twists, it follows from this that no sequence of basic operations
(featuring an arbitrary number of twists) allows to make the term zα0/β0 disappear, or transform
it into into zα0/β′ with β′ 6= β0. The induction works by applying the same reasoning to q1, etc.
This concludes the proof.

Example 8.1.9. The circles 〈z5/3〉∞, 〈z7/2〉∞ cannot be transformed into unramified circles.

Thanks to Arinkin’s extension [6] of Katz’ algorithm to the irregular case, the theorem
implies the following corollary.

Corollary 8.1.10. Let (E,∇) a rigid irregular connection on P1. Then its modified irregular
class cannot admit any active circle of the form 〈λzα/β〉 with α, β coprime and β 6≡ ±1 mod α.

Proof. If this was the case, since (E,∇) is rigid by the irregular version of Katz’ algorithm,
there would exist a sequence of basic operations sending (E,∇) to the trivial connection of rank
one. In particular, it would send 〈λzα/β〉 to a tame circle. The theorem implies that this is
impossible.

Actually, we can characterize in a more explicit way the circles which can be brought to the
tame circle in this way.

Definition 8.1.11. Let 〈q〉 ∈ π0(I) an exponential factor. We say 〈q〉 is tamable is there exists
a sequence of basic operations bringing 〈q〉 to a tame circle.

Definition 8.1.12. Let 〈q〉 ∈ π0(I) an exponential factor. Let β := ram(q) and α := Irr(q), so
that slope(q) = α

β . The taming algorithm consists in repeatedly applying the following steps as
long as possible:

• Let r the remainder in the euclidean division of β by α. If r or α − r is a divisor δ of α,
apply a combination of Fourier-Laplace transforms and Möbius transformations acting on
the irregularity and ramification as (α, β) 7→ (α, δ).

• If α/β is an integer, apply a twist to cancel all terms of integer degree in q.

The algorithm terminates when neither action is possible.

121



Theorem 8.1.13. An exponential factor 〈q〉 is tamable if and only if the taming algorithm
applied to 〈q〉 terminates at a tame circle.

Proof. The proof is almost exactly the same as for the case 〈zα/β〉 studied in the previous
paragraph. If the taming algorithm terminates at a tame circle, then obviously 〈q〉 is tamable.
Otherwise, the algorithm terminates at some circle 〈q′〉 with ramification order β′ and irregularity
α′ such that, denoting by r′ the remainder in the euclidean division of β′ by α′, neither r′ nor
α − r′ divides α′. Then, an argument similar as in the proof of the previous theorem shows
that no natural operation is able to make the term of level α′/β′ disappear, and the conclusion
follows.

Example 8.1.14. Let 〈q〉 an exponential factor with set of degrees {3
5 ,

2
21 ,

2
105} = { 63

105 ,
14
105 ,

2
105}.

Running the algorithm gives

{63/105, 14/105, 2/105} → {63/21, 14/21, 2/21}
= {3, 14/21, 2/21}
→ {14/21, 2/21}
→ {14/7, 2/7}
→ {2/7}
→ {2/1}
→ {0},

which shows 〈q〉 is tamable.

8.2 One-vertex diagrams with small number of loops
We would like to explore to which extent the diagrams classify the formal data. A natural
question is: given a diagram, what are all the formal data giving rise to this diagram, or that
can be transformed into this diagram by iterated application of basic operations on connections.
In this paragraph, we look at this in the simplest case, the case of (core) diagrams with only
one vertex with loops. The question we ask is

Question Let k ∈ Z. What are the exponential factors q at infinity such that the core diagram
associated to a connections with only active circle 〈q〉∞ is a vertex with k loops? Can all such
factors can be reduced to one or several “minimal” exponential factors q?

8.2.1 Simplification algorithm

Among all basic operations, we have to restrict to the only two types of operations such that
〈q〉 remains at infinity, so that at each step the connection we only have one active circle.

• Fourier transform, if q has slope α/β > 1. It acts on slopes as α
β 7→

α
α−β .

• Twists.

Twists can be used to delete terms of q with integer degree. On the other hand, if q has slope
n+1
n for some n ≥ 1, then applying the Fourier transform, we get an exponential factor with

integer slope n + 1, whose leading term can be deleted by a twist. This leads to the following
algorithm for simplification of an exponential factor at infinity.

Definition 8.2.1. The simplification algorithm consists in applying the following operations as
long as it is possible.
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1. If q has slope n+1
n for some integer n ≥ 1, then apply the Fourier transform.

2. Otherwise apply a twist cancelling all terms of q having integer slope if there are any.

The algorithm terminates when we reach a non-simplifiable exponential factor.
Remark 17. When the algorithm terminates, up to applying the Fourier-Laplace transform we
may assume that the exponential factor we arrive at has slope less than 2 (indeed if it has
slope > 2, from the stationary phase formula, applying the Fourier-Laplace transform gives an
exponential factor of slope < 2).

Example 8.2.2. Consider an exponential factor q with levels {4/3, 4/9, 1/8}. Its number of
loops is k = 0. The algorithm applied to q gives

{4/3, 4/9, 1/8} = {96/72, 32/72, 9/72}
→ {96/24, 32/24, 9/24}
= {4, 4/3, 3/8}
→ {4/3, 3/8}
→ {32/8, 9/8}
→ {9/8}
→ {9}
→ {0}

The algorithm terminates at q = 0. As a second example, consider an exponential factor q with
levels {3/2, 4/7, 1/4}, with k = 2 loops. The algorithm gives

{3/2, 4/7, 1/4} = {42/28, 16/28, 7/28}
→ {42/14, 16/14, 7/14}
= {3, 8/7, 1/2}
→ {8/7, 1/2}
→ {8, 7/2}
→ {7/2}
→ {7/5}

8.2.2 Non-simplifiable exponential factors for small numbers of loops

From computing (with a computer) the number of slopes for exponential factors with all possible
levels, for small number of levels and bounded ramification orders, it seems that we have the
following conjecture.

Conjecture 8.2.3. The list of levels of non-simplifiable exponential factors of slope < 2 for
small number of loops is the following.

number of loops levels of exponential factors
0 0
1 z5/3

2 z7/5

3 z9/7, z7/4, z5/3 + z1/6

4 z11/9, z8/5, z5/3 + z1/2
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Notice that for k = 0, 1, 2, there is only one non-simplifiable exponential factor, so that the
conjecture means:

Theorem 8.2.4. Let q an exponential factor at infinity and k the corresponding number of
loops.

• k = 0 if and only if the algorithm applied to q terminates at the set of levels {0}.

• k = 1 if and only if the algorithm applied to q terminates at the set of levels {5/3}.

• k = 2 if and only if the algorithm applied to q terminates at the set of levels {7/5}.

However, for k ≥ 3 there are now several non-simplifiable exponential factors, some having
several levels.

8.2.3 Proof of the conjecture for small numbers of loops

We now prove that the conjecture is true for n = 0, 1, 2.

Proof. For any exponential factor q, the algorithm applied to q terminates at a non-simplifiable
exponential factor. It is therefore enough to show that there are no reduced levels of non-
simplifiable exponential factors having a number of loops equal to 0, 1, 2 other than the ones
listed. Let q a non-simplifiable exponential factor with ramification order β, slope α

β < 1, and
reduced shape {αβ , . . . ,

αk
β }.

We first show that if q has slope < 1 it has a negative number of loops.

B〈q〉,〈q〉 = (β − (α, β))α0 + · · ·+ ((α0, . . . , αk−1, β)− (α0, . . . , αk, β))αk − β2 + 1
≤ (β − (α, β))α+ · · ·+ ((α0, . . . , αk−1, β)− (α0, . . . , αk, β))α− β2 + 1
≤ αβ − β2 + 1
≤ −β + 1
≤ −1,

so the number of loops is negative.
Let us assume now that q has slope 1 < α

β < 2. If its reduced shape only has one level, then
one has

B〈q〉,〈q〉 = (β − 1)(α− β − 1).

Since q is non-simplifiable, we have α ≥ β+2, so B〈q〉,〈q〉 ≥ β−1. Since n = B〈q〉,〈q〉
2 , n = 0, 1, 2 is

possible only if β ≤ 5, and the conclusion follows. Finally, if the number of levels of the reduced
shape is k ≥ 2, we have

B〈q〉,〈q〉 = (β − (α, β))α+ · · ·+ (α0, . . . , αk, β)αk − β2 + 1
≥ (β − (α, β))α− β2 + 1.
= β(α− β)− (α, β)α+ 1

Let d := (α, β), and α = ad, β = bd so that α
β = a

d with (a, b) = 1. Since q is non-simplifiable,
we have a ≥ b+ 1, so α ≥ β + 2(α, β). It follows that

B〈q〉,〈q〉 ≥ 2β(α, β)− α(α, β) + 1.
= (2β − α)(α, β) + 1.

Now, 2β − α > 0 since α
β < 2, and it is a multiple of (α, β), so 2β − α ≥ (α, β). This implies

B〈q〉,〈q〉 ≥ (α, β)2 + 1.

Since the reduced shape of q has two levels, α and β cannot be coprime, so (α, β) ≥ 2, and in
turn B〈q〉,〈q〉 ≥ 5 so that n > 2. This concludes the proof.
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For small number of loops, the diagram thus classifies the exponential factors at infinity up
to iterated application of basic operations.
Remark 18. For all nondegenerate Painlevé equations, the simplest diagram of a corresponding
Lax pairs has one vertex more than the number of independent parameters of the equation [26].
The degenerate Painlevé equation has one parameter, and we have seen that it admits a Lax
pair giving rise to a two vertex. However, the case k = 1 of the theorem implies that this does
not hold for the doubly degenerate Painlevé equation. Indeed it has no parameter, so we might
hope to get a diagram with only one vertex. The dimension of the moduli space being equal to
two, this would be necessarily the diagram with one vertex and one loop. But because of the
theorem, the corresponding Lax pair would be related by successive operations to the standard
Lax pair of Painlevé I.
Remark 19. It is natural to expect that the Fourier-Laplace transform induces symplectic iso-
morphisms between wild character varieties. In some cases, there are some known isomorphisms
compatible with the full hyperkähler structure [97]. One expects that such isomorphisms can be
obtained by determining how the Stokes representations transform under Fourier-Laplace trans-
form. In the complete bipartite case, the transformation of Stokes data under Fourier-Laplace
transform is well understood (see [70, ch. 12]). The question has been adressed by several
authors using different frameworks in the general case [70, 74, 75, 37], or in simple examples
[92, 54, 37], but it seems very difficult to obtain an explicit enough answer apart from some
simple cases. One idea would be to extend the approach of [22] which set up a new theory of
multiplicative quiver varieties, such that the (simply laced) wild character varieties on either side
of the Fourier-Laplace transform arise simply by reordering the same multiplicative symplectic
quotient (analogously to [20] on the additive side).
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Résumé: Cette thèse est motivée par la ques-

tion de la classi�cation des variétés de caractères

sauvages, qui sont les espaces de modules de connex-

ions irrégulières sur les courbes. Ces variétés dépen-

dent du choix de données de singularité caractérisant

la forme des singularités des connexions, et il arrive

souvent que des données de singularité di�érentes,

correspondant à des connexions de rangs di�érents,

avec des nombres de singularités di�érents, donnent

lieu à des espaces de modules isomorphes. Nous

dé�nissons un diagramme associé à une connexion

algébrique quelconque sur un ouvert de Zariski de

la droite a�ne, généralisant des constructions précé-

dentes reliant les variétés de caractères sauvages aux

carquois au cas où il y a plusieurs singularités ir-

régulières, possiblement rami�ées. L'idée de la con-

struction est d'utiliser la transformation de Fourier-

Laplace pour se ramener à la situation de Boalch-

Yamakawa, où il y a seulement une singularité ir-

régulière. Le diagramme est invariant sous l'action

des automorphismes symplectiques de l'algèbre de

Weyl, de telle sorte qu'il y a plusieurs connexions,

avec des données de singularité di�érentes, corre-

spondant au même diagramme. D'autres propriétés

des cas précédents restent vraies dans notre cadre

plus général : ainsi la dimension de la variété de car-

actères sauvages est donnée par une formule faisant

intervenir la matrice de Cartan du diagramme, et on

obtient des ré�exions de Weyl simples par rapport à

certains sommets du diagramme en appliquant cer-

taines opérations sur les connexions. Comme ap-

plication de cette construction, nous pouvons voir

beaucoup de représentations de Lax connues pour les

équations de Painlevé, ainsi que pour des analogues

en dimension supérieure, comme des représentations

di�érentes du même diagramme. Nous classi�ons

aussi les cas où le diagramme a un seul sommet, et

moins de 2 boucles.

Title: Towards the classi�cation of wild character varieties
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Abstract: This thesis is motivated by the ques-

tion of the classi�cation of wild character varieties,

which are moduli spaces of irregular connections

on curves. These varieties depend on the choice

of some singularity data characterizing the form of

the singularities of the connections, and it often oc-

curs that di�erent singularity data, corresponding to

connections with di�erent ranks and di�erent num-

ber of singularities, give rise to isomorphic moduli

spaces. We de�ne a diagram associated to any al-

gebraic connection on a Zariski open subset of the

a�ne line, generalizing previous constructions relat-

ing wild character varieties to quivers to the case

where there are several irregular singularities, pos-

sibly rami�ed. The idea of the construction is to

use the Fourier-Laplace transform to reduce to the

setting of Boalch-Yamakawa, where there is only one

irregular singularity. The diagram is invariant under

symplectic automorphisms of the Weyl algebra, so

that there are several connections, with di�erent sin-

gularity data, giving rise to the same diagram. Some

other properties of the previous cases still hold in our

more general setting: the dimension of the wild char-

acter variety is given from the diagram by a formula

involving its Cartan matrix, and simple Weyl re�ec-

tions with respect to some vertices of the diagram

are obtained by applying some operations on con-

nections. As an application of this construction, we

can view many known di�erent Lax representations

of Painlevé equations, as well as of some higher di-

mensional analogues, as di�erent representations of

the same diagram. We are also able to classify all

cases for which the diagram has one vertex and less

than two loops.
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