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Abstract
In this work-in-progress paper, we present labeled union-

find, an extension of the union-find data structure where

edges are annotated with labels that form a group algebraic

structure. This structure allows to very efficiently represent

the transitive closure of many useful binary relations, such as

two-variables per equality (TVPE) constraints of the form𝑦 =

𝑎 ∗𝑥 +𝑏. We characterize the properties of labeled union-find

when used to represent binary relations between variables.

More specifically, we study the use of this domain in a static

analysis; either to represent binary relations, or as a reduced

product with non-relational abstract domainswith constraint

propagation; as well as the design of efficient algorithms for

the join of labeled union-find structures. We believe that this

structure could be used as a low-cost relational domain or

decision procedure, and that it could make other relational

domains more efficient by removing the need to track some

variables.

CCS Concepts: • Software and its engineering → For-
mal software verification; • Theory of computation →
Abstraction; Equational logic and rewriting.

Keywords: relational abstract domain, labeled union-find

1 Introduction
A natural way to represent the binary relations between any

pairs of program variables is using a graph whose nodes

are variables and edges are labeled using an abstraction of a

relation (e.g., Miné [2002]; Pratt [1977]).

Outside specific difficulties pertaining to the precision of

operator composition [Miné 2004, §5.2.3], the main prob-

lem with these weakly-relational domains is their supra-

quadratic cost. Even though they are much less expensive

than more expressive abstractions like polyhedra [Cousot

and Halbwachs 1978], they still require a O(𝑛2) space cost
to represent all the edges between 𝑛 variables. Furthermore,

the transitive-closure algorithm used to compute the most

precise relation between any two variables is O(𝑛3). These
supra-quadratic costs prevent performing a direct analysis

of large programs. Therefore, a long line of research has

been devoted to mitigating this cost, improving efficiency by

forgetting the relations between some variables [Blanchet

et al. 2003; Gange et al. 2021; Logozzo and Fähndrich 2008;

Singh et al. 2015], sometimes at the cost of precision.

The core reason for this cost is that there may be sev-

eral paths between any two variables carrying relations of

different precision. Therefore, we have to store the edges

on every path, and finding the most precise path requires a

costly transitive closure computation. The problem would

be vastly simplified if we were in a situation where all the
paths between any two variables would correspond to
the same abstract relation. This is the problem that we

are currently studying, with many promising results.

2 Union-Find with a Group of Edge-Labels
Let us consider (possibly infinite) directed graphs whose

edges are labeled. Formally, we have a set of nodes N, a set

of edge labels L, and an edge predicate 𝑛1
ℓ−→ 𝑛2 ∈ L →

P (N × N). Now, we suppose that labels are equipped with

an infix composition operator ; ∈ L × L → L. This allows
defining the notion of label of a path, which is the composi-

tion of labels on the edges traversed by the path. Formally,

we define a path predicate

ℓ−→→∈ L → P (N × N) as the tran-
sitive closure of the edge predicate, i.e., as follows:

𝑛1
ℓ−→ 𝑛2

𝑛1
ℓ−→→ 𝑛2

Edge

𝑛1
ℓ1−→→ 𝑛2 𝑛2

ℓ2−→→ 𝑛3

𝑛1
ℓ1;ℓ2−−−→→ 𝑛3

Trans

Ourmain requirement is that the label on every path between

two nodes is unique:

𝑛1
ℓ−→→ 𝑛2 ∧ 𝑛1

ℓ ′−→→ 𝑛2 ⇒ ℓ = ℓ ′ (HUniqeLabel)

These definitions imply, in many cases, that the label com-

position is associative; that the labels of cycles are a neutral

element for composition; and that the elements appearing

in cycles are invertible. Thus, the natural settings deriving

from HUniqeLabel is that ⟨L, ;⟩ is a monoid with a neutral

element id, where some elements are invertible (using a

function inv). In this paper, we study the case where all

elements are invertible, i.e. when ⟨L, ;, id, inv⟩ is a group.
Since the relation between any two nodes is the same on

every path, any relation can be retrieved by storing a span-

ning forest of the original graph, which minimizes the space

required. If we also try to minimize the height of the tree

and intertwine edge-additions with queries, our problem be-

comes very similar to the dynamic connectivity problem on

graphs. That problem is solved using the efficient union-find

data structure [Tarjan and van Leeuwen 1984] representing

trees as nodes pointing to their parent. We just add a label to

the edge from a node to its parent, i.e., it is a labeled union-

find data structure𝑈 ∈ U ≜ N ⇀ L × N (mapping non-root

nodes to their parent through a label). It only requires O(𝑛)
space to store all the O(𝑛2) edges between 𝑛 nodes, and can
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find label between any pair of nodes in amortized-constant

time.

There are several interesting applications of the labeled

union-find structure. One is the efficient maintenance of

a set of binary relations, which we describe in Section 3.

Another is map factorization. Suppose that a group action
A ∈ L → (V → V) (i.e., group homomorphism) exists that

maps labels to functions from values to values; and that we

have a partial valuation 𝜈 ∈ N ⇀ V from the roots nodes to

values. This partial valuation can be extended as

𝜈∗ [𝑛] = 𝜈 [𝑛] if 𝑛 ∈ dom(𝜈)
| A(ℓ) (𝜈 [𝑛2]) if 𝑛2 ∈ dom(𝜈) ∧ 𝑛

ℓ−→→ 𝑛2

Thus, we can represent a valuation using only the values

of the root nodes; which is interesting if we have to repre-

sent different valuations, or if we need to update the values

attached to variables, as explained in Section 5.

3 Abstract Group of Relations
The labeled union-find data structure is well-suited to repre-

sent binary relations between variables. In this setting, we

have variables 𝑥 ∈ X as nodes, and abstract (binary) rela-
tions R♯ ∈ R♯

as labels. Abstract relations are concretized to

concrete relations on values 𝑣 ∈ V using the concretization

function 𝛾R♯ ∈ R♯ → P (V × V). We require all operations

(identity, inversion, and composition) on abstract relations

to be sound over approximations of relational identity, in-

version and composition:

𝛾R♯ (id) ⊇ {(𝑣, 𝑣) | 𝑣 ∈ V}

𝛾R♯ (inv(R♯)) ⊇ {(𝑣2, 𝑣1) | (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)}

𝛾R♯ (R♯

1
; R♯

2
) ⊇

{
(𝑣1, 𝑣3)

����� ∃𝑣2, (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯

1
)

∧ (𝑣2, 𝑣3) ∈ 𝛾R♯ (R♯

2
)

}
Then, a union-find data structure labeled with abstract

relations is a relational abstract domain representing possible

valuations over the different variables:

𝛾 ∈ (X ⇀ R♯ × X) → P (X → V)
𝛾 (𝑈 ) ≜ {𝜈 | ∀𝑥 ↦→ (R♯, 𝑦) ∈ 𝑈 , (𝜈 [𝑥], 𝜈 [𝑦]) ∈ 𝛾R♯ (R♯)}

Alternatively, labeled union-find can be seen as a fast and

incremental procedure to decide if there is a relation between

two variables (and finding the relation). It only requires the

set of binary relations to have an algebraic group structure.

This view applies when there is no need to join different sets

of relations.

4 Properties of Abstract Relations
The fact that abstract relations are a group, and that all

operations are sound, implies many interesting theorems:

• inv is exact [Ranzato 2013] (i.e., 𝛾-complete);

• 𝛾R♯ (id) is an equivalence relation;

• Every abstract relationR♯
describes an injective partial

function between the equivalence classes induced by

the 𝛾R♯ (id) relation.
This both limits the possible candidates for suitable ab-

stract relations (e.g., inequality constraints are not express-

ible), but also makes it easy to find them.

The canonical setting for these abstract relations is given

by a theorem that establishes the equivalence of 𝛾R♯ being a

group homomorphism, ; to be exact, and the concretization

of R♯
to be bijective, total or surjective functions between

equivalence classes. In this case, abstract relations are just

a compact representation of a bijective function (on equiva-

lence classes, which is generally the identity). We can thus

easily find a lot of interesting and common relations that fit

this category.

Example 4.1 (Two-values per equality domain). Take V =

Q, the set of rationals, and use the relations R♯ ≜ Q≠0 × Q
concretized as 𝛾R♯ (𝑎, 𝑏) ≜ {(𝑥,𝑦) ∈ Q × Q | 𝑦 = 𝑎𝑥 + 𝑏}. We

name this domain TVPE by similarity with the two-variables

per inequality (TVPI) domain [Simon and King 2010];

Example 4.2 (xor and rotation). Let V = BV, the set of

bitvectors, with the relations R♯ ≜ N × BV concretized as

𝛾R♯ (𝑛, 𝑐) = {(𝑥,𝑦) ∈ BV × BV | 𝑦 = (𝑥 xor 𝑐) rot 𝑛}. These
do form a group, as they are a combination of two bijective

functions on bitvectors. While such direct rotations are un-

common in bitvector manipulations, shifts are very common;

and a shifting a bitvector whose erased bits are known can

be transformed as a sequence of (xor with constant, rotation).

An extension to this domain would be considering arbitrary

permutations instead of just rotations;

Example 4.3 (Modular arithmetic). In Z/2𝑛Z, addition with
a constant, or multiplication with an odd value, are invertible

operations. Thus, they can be seen as a TVPE abstract domain

for modular arithmetic. Multiplication with a power of two

is not an invertible operation, but it can be encoded as a xor

+ rotation if the erased bits are known (e.g. if there are no

overflows);

Example 4.4 (Invertible matrices multiplications). If V is a

vector of values in a field, then we can relate different such

vector values with using matrix multiplication, provided the

matrices are invertible.

Not all abstract relations have an exact composition oper-

ator. An interesting example is the TVPE abstract domain on

integers (i.e. when V = Z). In this example, (1/2, 0) ; (2, 0) =
id, while the concrete composition would have returned

{(𝑥, 𝑥) | 𝑥 ∈ 2 ∗ Z}, i.e. the abstract composition forgot that

the value is even. This allows the TVPE abstract domain to

be used on integer values, but it means that path compres-

sion in this case may lead to losses in precision; we have

investigated solutions to work around this problem.

A last property is that if ; is monotonic (which is the case

when it computes the best approximation), then the lattice of
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abstract relations is flat. This means that the intersection of

two relations cannot be represented by a labeled union-find;

for instance the intersection of the relations 𝑦 = 3𝑥 + 2 and

𝑦 = 2𝑥 + 7 must be represented in another domain (e.g. the

constant or interval domain that would contain the solution

of these equations).

5 Reduced Product with Non-Relational
and Constant Propagation Domains

There are several interesting interactions between a labeled

union-find U representing a set of abstract relations, and a

non-relational abstract domain X → V♯
. The first one is to

view the labeled union-find domain as a set of constraints,

and use them to perform constant propagation until arc-

consistency (generalized to the abstract) is obtained. More

precisely, we consider the operation refine that reduces

the value abstraction attached to two variables based on the

relation between these variables, i.e. is such that

refine ∈ R♯ × V♯ × V♯ → V♯ × V♯

refine(R♯, 𝑣
♯

1
, 𝑣

♯

2
) = (𝑣♯

1

′
, 𝑣

♯

2

′
) ⇒

𝛾V♯ (𝑣♯
1

′
) ⊇

{
𝑣1 ∈𝛾V♯ (𝑣♯

1
)
�� ∃𝑣2 ∈ 𝛾V♯ (𝑣♯

2
), (𝑣1, 𝑣2) ∈ 𝛾R♯ (R♯)

}
(and similarly for 𝑣

♯

2

′
). Then, we propagate constraints using

refine between any pair of variables using consistency (i.e.,

a fixpoint) is reached. An algorithm such as AC-3 [Mack-

worth 1977] provides a suitable schedule. Note that this

reduction is not specific to the relations representable by

a labeled union-find; for instance, reduced product of non-

relational abstraction with symbolic expressions [Lesbre and

Lemerre 2024] performs the same kind of propagation.

However, in the case of relations represented by a labeled

union-find, this propagation can often be done more effi-

ciently. Indeed, we can use the labeled union-find to perform

a map factorization, replacing a map𝑚 ∈ X → V with a par-

tial map �̂� ∈ X ⇀ V containing only the roots of the labeled

union-find trees. This is in particular the case when ; and
apply♯ ∈ R♯ × V♯ → V♯

are complete, where apply♯ is the
abstract counterpart of the application of a binary relation

R to a set S, defined as R(S) ≜ {𝑦 | ∃𝑥 ∈ S, (𝑥,𝑦) ∈ R}.
Applying a relation to a set generalizes the notion of apply-

ing a function to a value. Formally, apply♯ must be a sound

over-approximation of the application of a relation to a set:

𝛾V♯ (apply♯ (R♯, 𝑣♯)) ⊇ 𝛾R♯ (R♯) (𝛾V♯ (𝑣♯))
There are interesting examples of abstract relations and

abstract values such that the apply♯ operation is complete.

For instance, the TVPE relations are sound and complete

for the interval abstraction: if 𝑦 = 3𝑥 + 7, then we have

𝑥 ∈ [0, 5] if, and only if, 𝑦 ∈ [7, 22]. It is also complete for

the congruence abstraction [Granger 1989]. Applying xor

or rotation relations is also complete wrt. the bitwise (or

tristate) abstraction of bitvectors [Miné 2012; Vishwanathan

et al. 2022].

There are two benefits of this map factorization: storage

is cheaper, but also constraint propagation is faster, as we

instantly improve the value of all the variables in the same

union-find tree, instead of trying every combination of two

variables in the tree as would be done by standard AC-3.

6 Factorizing Other Relational Domains
Labeled union-find could be used not only to factorize non-

relational constraints, but also relational ones. In particular,

the TVPE domain can represent numerical constraints of the

form 𝑦 = 𝑎 ∗ 𝑥 + 𝑏 that appear in many other numerical do-

mains or decision procedures for the satisfiability of systems

of rational or integer constraints:

• Inequality constraints [Dill 1989; Pratt 1977], as found

in the DBM abstract domain [Miné 2001];

• Unit TVPI constraints [Harvey and Stuckey 1995] as

found in the Octagon domain [Miné 2006];

• TVPI constraints [Shostak 1981] as found in the TVPI

domain [Simon and King 2010]

• Conjunction of linear equalities, decided by Gauss-

Jordan elimination procedure and used in Karr’s do-

main [Karr 1976]

• Conjunction of linear inequalities [Dantzig 1990; Shos-

tak 1981][Kroening and Strichman 2008, §5.4] as in

the polyhedral domain [Cousot and Halbwachs 1978]

An interesting direction is to represent simple two-varia-

bles per equality constraints using the labeled union-find

structure, and replace variables by their root in this structure

(we call this process constraint factorization). This would

allow reducing the number of variables that need to be re-

lated, which is important as the complexity of relational

abstract domains depends on this number of variables. As

TVPE constraints are commonplace in many programs, we

hope that this method could help improve the efficiency of

other abstract domains.

7 Abstract Operations: Join, Forget
Using a union-find structure to represent relations is both

time and space efficient, however some work is required

to get it to work well in an abstract interpretation setting.

Firstly, killing/forgetting the relations about a variable is

hard to implement in a union-find structure, as one cannot

easily remove the representative from a class. A solution to

this problem is to implement the domain as an SSA domain

[Lesbre and Lemerre 2024] working on the SSA representa-

tion of the program, where variables are never killed.

An even harder difficulty is that union-find is generally

implemented as imperative data structure which is expen-

sive to copy. In abstract interpretation, we need copies at

control-flow splits to interpret each branch with a different

set of relations. Furthermore, we need a join operation that

reconciles copies at control-flow joins by keeping only the

relations present in all copies.
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One solution to this problem is to only store flow-insen-

sitive relations in the imperative union-find structure. Effec-

tively, this avoids having to do copies and joins, since the

information stored is always valid anywhere in the program.

For instance, the relation between SSA terms 3𝑒 + 1

(3,1)
−−−→→ 𝑒

holds at any program point, and can thus be stored in an im-

perative union-find domain. Note that these flow-insensitive

relations can still be reduced (Section 5) with a flow-sensitive

non-relational domain.

Another solution uses persistent maps to store the pointer

from nodes to their parents and labels. These can be copied

in constant time, but add a logarithmic factor to the find

and union operations. We also need to define a join on this

data structure. In theory, the join can be implemented as

performing a full reduction (computing the transitive relation

between any nodes), then performing intersection between

these relations, then compacting the resulting graph as a

union-find. In practice, we need to intertwine the reduction

in the join operation to make it efficient, which is even harder

when we also want to benefit from the fact that copies derive

from a common ancestor [Blanchet et al. 2003], and we also

need to take into account the reduced product with other

domains in the reduction. We found a suitable solution using

Patricia-tree based maps [Okasaki and Gill 1998], known for

their fast merge operation, that we still need to evaluate.

We also want to consider optimizations such as the layer-

ing of both solutions: using both a fast imperative union find

to store flow-insensitive information, and a slower persistent

one for flow-sensitive relations.

8 Conclusion
We have discovered an interesting family of low-cost rela-

tional abstractions, based on abstract relations that follow

the laws of group theory. We believe that there are many

interesting applications of these abstractions, such as the

TVPE abstract domain, and in particular that they could be

used to optimize constraints used in other relational abstrac-

tions by reducing the number of variables that need to be

tracked. We are working toward an efficient implementation

and evaluation of this family of abstraction.
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