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Introduction



The Cephalopod processor

Designed to limit main sources of error in IoT :

• Garbage collection errors

• Integer overflow

ALU Goals

• Avoid overflow by using multiprecision integers

• Be efficient on single chunk integers
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The ALU

Integer representation

• linked list in RAM

• signed by topmost chunk

• remove leading sign chunks
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The ALU

ALU components

• Logical unit (&&, ||, ¬, if-then-else)
• Comparator unit (==, ! =, >, >=)

• Arithmetic unit (+, −, ×, /, %,
√

)

• Cleaning unit
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Hardware design tools



Voss II : hardware description in HFL
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Voss II : circuit visualization
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Voss II : circuit simulation
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Stately : an FSM editor
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Bifrost : a higher level language
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The ALU



The multiplier

• primary school multiplication

• uses a single cummulative sum

• Sign extend topmost bits
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Unsigned division

Definition

For two integers N, D ∈ N2 with D 6= 0, find
Q, R ∈ N2 such that :{

N = QD + R
0 6 R < D
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Long division

74 6
-6 12
14

-12
2

Algorithm : While N > Q

1. Find a such that
10aD 6 N < 10a+1D

2. Find the largest b ∈ J1, 9K such
that 10abD 6 N

3. Set b as the a-th digit of Q

4. subtract 10abD from N

5. repeat
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Binary long division
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Algorithm :
Set Q = 0 and R = 0.
For every bit i in N descending

1. set R = R � 1+ N[i ]

2. if R > D
set R = R − D
set Q[i ] = 1

12



Mutliprecision long division

• Descending through N and Q easy if big-endian.
• Naive implementation leads to :

• 3-5 reads and 1-2 writes every iteration
• One extra chunk used for R as R can be greater

then D.

• Can be slightly speed up by combining
operations :
• 3 reads and 2 writes every iteration (-2 chunks)
• Needs to store 2 copies of R
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Mutliprecision long division

R1 010 001 111 (143)
D 011 101 011 (235)

R1 � 1+ 0 110 (c1 = 1)
R1 � 1+ 0− D 011 (c2 = 0)

R1 � 1+ 0 011 (c1 = 0)
R1 � 1+ 0− D 110 (c2 = 1)

R1 � 1+ 0 100 (c1 = 0)
R1 � 1+ 0− D 000 (c2 = 0)

R ′1 100 011 110 (286)
R ′2 000 110 100 (52)
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Mutliprecision long division

Algorithm : for every bit i of N descending

1. set c1 = N[i ] and c2 = 0
2. for every chunk j of D, R1 and R2

2.1 set T = R1[j ]� 1 + c1

2.2 write T [2 : 0] in R1[j ]
2.3 set c1 to T [3]
2.4 write (T − D[j ])[2 : 0] in R2[j ]
2.5 set c2 to (T − D)[3]

3. if c1 or not c2 swap R1 and R2
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Signed division

• Flip the sign of N or D to be positive

• Some extra operations needed on R and Q
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Testing the ALU

HFL allows symbolic evaluation of circuits :

• Can test on fixed number of chunks with
variables as integer

• Can add constraints to variables

• Tested up to 2-3 chunks of 6 bits.
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Compiling to Verilog



Compiling to Verilog

Goal

Convert HFL’s circuit representation (pexlif) to
standard verilog

• Mostly straigtforward

• Recognize flip-flop to avoid phase delays

• Some fiddling with slices

• Some inlining to simplify generated code
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Thank you for your attention !
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