
Designing and testing an ALU
for multiprecision arithmetic

Dorian Lesbre

September 10th, 2021

Outline

1. Introduction

2. Hardware design tools

3. The ALU

4. Compiling to Verilog

Introduction

The Cephalopod processor

Designed to limit main sources of error in IoT :

• Garbage collection errors

• Integer overflow

ALU Goals

• Avoid overflow by using multiprecision integers

• Be efficient on single chunk integers

1

The ALU

Integer representation

• linked list in RAM

• signed by topmost chunk

• remove leading sign chunks

2

The ALU

ALU components

• Logical unit (&&, ||, ¬, if-then-else)
• Comparator unit (==, ! =, >, >=)

• Arithmetic unit (+, −, ×, /, %,
√

)

• Cleaning unit

3

Hardware design tools

Voss II : hardware description in HFL

4

Voss II : circuit visualization

5

Voss II : circuit simulation

6

Stately : an FSM editor

7

Bifrost : a higher level language

8

The ALU

The multiplier

• primary school multiplication

• uses a single cummulative sum

• Sign extend topmost bits

9

Unsigned division

Definition

For two integers N, D ∈ N2 with D 6= 0, find
Q, R ∈ N2 such that :{

N = QD + R
0 6 R < D

10

Long division

74 6
-6 12
14

-12
2

Algorithm : While N > Q

1. Find a such that
10aD 6 N < 10a+1D

2. Find the largest b ∈ J1, 9K such
that 10abD 6 N

3. Set b as the a-th digit of Q

4. subtract 10abD from N

5. repeat

11

Binary long division

1010 11
-0 0011
1010
-0
1010
-11
100
-11

1

Algorithm :
Set Q = 0 and R = 0.
For every bit i in N descending

1. set R = R � 1+ N[i]

2. if R > D
set R = R − D
set Q[i] = 1

12

Mutliprecision long division

• Descending through N and Q easy if big-endian.
• Naive implementation leads to :

• 3-5 reads and 1-2 writes every iteration
• One extra chunk used for R as R can be greater

then D.

• Can be slightly speed up by combining
operations :
• 3 reads and 2 writes every iteration (-2 chunks)
• Needs to store 2 copies of R

13

Mutliprecision long division

R1 010 001 111 (143)
D 011 101 011 (235)

R1 � 1+ 0 110 (c1 = 1)
R1 � 1+ 0− D 011 (c2 = 0)

R1 � 1+ 0 011 (c1 = 0)
R1 � 1+ 0− D 110 (c2 = 1)

R1 � 1+ 0 100 (c1 = 0)
R1 � 1+ 0− D 000 (c2 = 0)

R ′1 100 011 110 (286)
R ′2 000 110 100 (52)

14

Mutliprecision long division

Algorithm : for every bit i of N descending

1. set c1 = N[i] and c2 = 0
2. for every chunk j of D, R1 and R2

2.1 set T = R1[j]� 1 + c1

2.2 write T [2 : 0] in R1[j]
2.3 set c1 to T [3]
2.4 write (T − D[j])[2 : 0] in R2[j]
2.5 set c2 to (T − D)[3]

3. if c1 or not c2 swap R1 and R2

15

Signed division

• Flip the sign of N or D to be positive

• Some extra operations needed on R and Q

16

Testing the ALU

HFL allows symbolic evaluation of circuits :

• Can test on fixed number of chunks with
variables as integer

• Can add constraints to variables

• Tested up to 2-3 chunks of 6 bits.

17

Compiling to Verilog

Compiling to Verilog

Goal

Convert HFL’s circuit representation (pexlif) to
standard verilog

• Mostly straigtforward

• Recognize flip-flop to avoid phase delays

• Some fiddling with slices

• Some inlining to simplify generated code

18

Thank you for your attention !

	Introduction
	Hardware design tools
	The ALU
	Compiling to Verilog

