Exercices : Probabilités (révisions) et statistiques

EXERCICE 1

Un institut de sondage a interrogé 800 personnes de la manière suivante :

- 25 % des personnes interrogées habitent en zone rurale, les autres en zone urbaine;
- 60 % des personnes interrogées ont été consultées par téléphone, les autres personnes ayant été interrogées « en face à face » par un enquêteur ;
 - 55 % des personnes habitant en zone urbaine ont été consultées par téléphone.
- 1) Reproduire et compléter le tableau d'effectifs suivant :

	Habitant en zone rurale	Habitant en zone urbaine	Total
Personnes interrogées par téléphone			
Personnes interrogées en « face à face »			
Total	200		800

2) Calculer le pourcentage de personnes habitant en zone rurale parmi celles qui ont été consultées par téléphone.

Dans les questions suivantes, les résultats seront donnés à 0,01 près.

- 3) On choisit au hasard une personne interrogée.
 - a) Calculer la probabilité des événements suivants :

R: « la personne choisie habite en zone rurale »;

T: « la personne choisie a été interrogée par téléphone ».

- b) Décrire par une phrase les événements \overline{T} et $T \cup R$.
- c) Calculer les probabilités $P(\overline{T})$ et $P(T \cup R)$.
- 4) On choisit au hasard une personne interrogée « en face à face » par un enquêteur. Calculer la probabilité pour que cette personne habite en zone urbaine.

EXERCICE 2

Une enquête effectuée par une association de consommateurs, concernant l'hygiène alimentaire, porte sur un échantillon de 800 personnes.

Trois groupes bien différenciés apparaissent:

- Type 1 : les personnes totalement végétariennes. On en compte 34.
- Type 2 : les personnes végétariennes qui consomment cependant du poisson. On en compte 132.
- Type 3 : les personnes non végétariennes. Elles constituent le reste de l'échantillon.

On compte 55% de femmes dans l'échantillon et, parmi celles-ci, 5% sont totalement végétariennes. De plus, 7,5% des hommes de l'échantillon sont du type 2.

1) Reproduire et compléter le tableau suivant :

	Type 1	Type 2	Type 3	Total
Femmes				
Hommes				
Total				800

Dans les questions suivantes, les résultats seront donnés sous forme décimale arrondie à 0,001 près.

- 2) On choisit, au hasard, une des 800 personnes de l'échantillon, chacune ayant la même probabilité d'être choisie.
 - a) Soit l'événement A: « la personne choisie est non végétarienne ». Calculer la probabilité P(A).
 - b) Soit l'événement B: « la personne choisie est un homme ». Calculer la probabilité P(B).
 - c) Définir par une phrase l'événement $C = A \cap B$ et calculer sa probabilité.
- d) Définir par un événement D exprimé avec A et B la phrase « La personne choisie est non végétarienne ou est un homme », puis calculer sa probabilité.

EXERCICE 3

Un lycée dispense un enseignement de trois langues vivantes : Anglais, Allemand et Espagnol.

Il y a 1 420 élèves inscrits dans cet établissement.

Chaque élève étudie exactement deux langues vivantes.

On donne aussi les renseignements suivants :

- Parmi les élèves qui étudient simultanément l'anglais et l'allemand, on compte 65 % de filles.
- On dénombre 1 150 élèves étudiant l'anglais.
- Parmi les filles qui étudient l'espagnol, 80 % étudient aussi l'anglais.
- 1) Le tableau suivant contient quelques informations supplémentaires. Le recopier et le compléter.

	Anglais et Allemand	Anglais et Espagnol	Allemand et Espagnol	Total
Garçons				
Filles				656
Total	640			1 420

Dans les questions suivantes, les résultats des calculs seront arrondis à 0,01 près.

2) On choisit, au hasard, une personne parmi les élèves du lycée.

On note A et B les événements suivants :

A: « la personne choisie étudie l'anglais »,

B: « la personne choisie est une fille ».

Calculer la probabilité de chacun des événements $A, B, A \cap B, A \cup B$.

3) On choisit, au hasard, une personne parmi les élèves qui étudient l'allemand. Calculer la probabilité p que ce soit un garçon.

EXERCICE 4

Depuis quelques années, les médecins se sont engagés à prescrire à leurs patients davantage de médicaments génériques afin de limiter les dépenses de santé qui sont une part importante du budget de la Sécurité Sociale en France.

Depuis, ce marché a pris un certain essor. Dans le tableau suivant, a été indiqué, le nombre de boîtes de médicaments vendues dans les pharmacies en France, en millions (arrondis à 100 000 unités près) et par trimestre pour les années 2000, 2001 et 2002.

Année	2000				2001			2002				
Rang du trimestre x_i	1	2	3	4	5	6	7	8	9	10	11	12
Nombre y_i	22,8	22,4	23	32,8	33,1	30,9	28,2	40	39,4	37	39,8	40,6

- 1. Représenter le nuage de points associé à cette série dans un repère orthogonal en prenant pour unités :
 - 1 cm pour 1 rang de trimestre sur l'axe des abscisses;
 - 1 cm pour 1 million de boîtes sur l'axe des ordonnées, en commençant la graduation à 22.
- 2. On appelle G_1 le point moyen des six premiers points du nuage et G_2 le point moyen des six derniers points.
 - a) Calculer les coordonnées de G_1 et celles de G_2 .
 - b) Placer ces points sur la figure et tracer la droite (G_1G_2) .
- **3.** Montrer qu'une équation de la droite (G_1G_2) peut s'écrire : $y = \frac{5}{3}x + \frac{65}{3}$.
- 4. On admet que la droite (G_1G_2) donne un bon ajustement affine du nuage et permet une bonne estimation du nombre de boîtes de médicaments génériques vendues pour les quatre prochains trimestres.

En utilisant graphiquement la droite (G_1G_2) et en faisant apparaître sur la figure les constructions utiles, donner une estimation du nombre de boîtes de médicaments génériques qui ont dû être vendues en France durant le premier trimestre 2003.

3