Semaine 17 9 février 2009

1 Polynômes

1.1 La \mathbb{K} -algèbre $\mathbb{K}[X]$.

Construction de $\mathbb{K}[X]$, opérations dans $\mathbb{K}[X]$, structure de \mathbb{K} -algèbre. Définition du degré d'un polynôme, sous espace vectoriel $\mathbb{K}_n[X]$. Définition du polynôme X, notations usuelles.

1.2 Arithmétique dans $\mathbb{K}[X]$.

Divisibilité, division euclidienne, PGCD de deux polynômes, algorithme d'Euclide, polynômes premiers entre eux, théorème de Bézout, PPCM de deux polynômes. L'arithmétique a été abordée de façon formelle comme arithmétique dans un anneau euclidien...

1.3 Racines d'un polynôme.

Fonction polynôme associée à un polynôme $P \in \mathbb{K}[X]$, l'application $\Phi : P \mapsto \overline{P}$ est un morphisme de \mathbb{K} -algèbre. Racine d'un polynôme, si a_1, \ldots, a_k sont k racines distinctes de P alors $(X - a_1) \ldots (X - a_k)$ divise P. Injectivité de Φ lorsque \mathbb{K} est infini.

1.4 Formule de Taylor.

Formule de Taylor pour les polynômes. Racine multiple d'un polynôme, notion de multiplicité d'une racine. Théorème : $a \in \mathbb{K}$ est racine de P de multiplicité α si et seulement si $P(a) = P'(a) = \cdots = P^{(\alpha-1)}(a) = 0$ et $P^{(\alpha)}(a) \neq 0$.

1.5 Factorisation dans $\mathbb{R}[X]$ et dans $\mathbb{C}[X]$.

Polynôme irréductible, tout polynôme se décompose de manière unique comme produit de polynômes irréductibles unitaires. Théorème de d'Alembert-Gauss (démonstration hors-programme), les polynômes irréductibles de $\mathbb{C}[X]$ sont les polynômes de degré 1. Polynômes irréductibles dans $\mathbb{R}[X]$.

1.6 Relations entre racines et coefficients.

Polynôme scindé, fonctions symétriques élémentaires, relations entre racines et coefficients.

2 Petits

Exercice 1

 $2X^3 - X^2 - X - 3$. Racines dans \mathbb{Q} , racines dans \mathbb{C} .

Exercice 2

Résoudre sur \mathbb{C} l'équation $4iz^3 + 2(1+3i)z^2 - (5+4i)z + 3(1-7i) = 0$, en commençant par chercher les racines réelles.

Solution. Si $x_0 \in \mathbb{R}$ alors $\Re(P(x_0)) = \Re(P)(x_0)$. De plus $\Re(P)$ est de degré 2 avec moult racines évidentes.

Exercice 3
$$P = X^5 - X^2 + 1.$$

- 1. Montrer que P n'a pas de racines rationnelles.
- 2. Montrer que P a une unique racine réelle.

Solution.

1. Remplacer X par p/q irréductible, multiplier par q^5 et conclure.

2. Variation de fonctions.

Exercice 4

1.

Solution.

3 Gros

Impairs 4