Exercices : Séries entières

Exercice 1

1) Déterminer en fonction du paramètre $x \in \mathbb{R}$ la nature de chacune des séries de terme général u_n suivantes. On laissera de coté le comportement « au bord » des ensembles.

$$\mathbf{a)} \ u_n = x^n$$

b)
$$u_n = nx^{n-1}$$

c)
$$u_n = \frac{x^{2n}}{n^2 3^n}$$

$$\mathbf{d)} \ u_n = \frac{x^n}{n!}$$

a)
$$u_n = x^n$$
 b) $u_n = nx^{n-1}$ c) $u_n = \frac{x^{2n}}{n^2 3^n}$ d) $u_n = \frac{x^n}{n!}$ e) $u_n = \frac{(-i)^n (n!)^n}{(2n+1)!} x^{4n+1}$

2) Mêmes questions pour $z \in \mathbb{C}$. On ne s'intéressera qu'à la convergence absolue.

Exercice 2

Déterminer le rayon de convergence R des séries entières suivantes :

1)
$$\sum (3n+1)z^{3n}$$

1)
$$\sum (3n+1)z^{3n}$$
, 2) $\sum \frac{a(a+1)\dots(a+n-1)}{n!}z^n$, $a>0$ 3) $\sum \frac{\sqrt{n}}{n^2+1}z^n$, 4) $\sum \frac{n^2}{3^n+n}z^n$,

$$3) \sum \frac{\sqrt{n}}{n^2+1} z^n,$$

4)
$$\sum \frac{n^2}{3^n + n} z^n$$

5)
$$\sum \frac{\operatorname{ch}(n)}{n} z^n$$

$$6) \sum_{n} \frac{\operatorname{ch}(n)}{n} z^{2n}.$$

7)
$$\sum n!z^n$$

5)
$$\sum \frac{\operatorname{ch}(n)}{n} z^n$$
, 6) $\sum \frac{\operatorname{ch}(n)}{n} z^{2n}$, 7) $\sum n! z^n$ 8) $\sum \sin\left(\frac{1}{2^n}\right) z^n$

Exercice 3

Déterminer le rayon de convergence R des séries entières suivantes :

- 1) $\sum d_n z^n$, où d_n est la *n*-ième décimale de π .
- 2) $\sum c_n z^n$, où c_n est le nombre de chiffres de n en base 10.
- 3) $\sum \sin(n)z^n$. Indication: Montrer que $\sin n$ ne tends pas vers 0 par l'absurde, en utilisant $\sin(n+1) =$ $\frac{-}{\sin n \cos 1 + \sin 1 \cos n} et \cos^2 + \sin^2 = 1.$

Exercice 4

Déterminer le rayon de convergence R des séries entières suivantes, et exprimer leur somme sur l'intervalle]-R,R[à l'aide de fonctions usuelles.

1)
$$\sum_{n=0}^{+\infty} (2^n + 3^n) x^n$$

1)
$$\sum_{n=0}^{+\infty} (2^n + 3^n) x^n$$
, 2) $\sum_{n=0}^{+\infty} \frac{1}{(2n)!} x^{4n}$, 3) $\sum_{n=0}^{+\infty} n x^{n-1}$ 4) $\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n!}$ 5) $\sum_{n=1}^{+\infty} \frac{x^n}{n^2}$,

$$3) \sum_{n=0}^{+\infty} nx^{n-1}$$

4)
$$\sum_{n=0}^{+\infty} \frac{x^{n+1}}{n!}$$

$$5) \sum_{n=1}^{+\infty} \frac{x^n}{n^2}$$

6)
$$\sum_{n=0}^{+\infty} \frac{\cos(na)}{n! \sin^n a} x^n$$
, et $\sum_{n=0}^{+\infty} \frac{\sin(na)}{n! \sin^n a} x^n$, avec $a \notin \pi \mathbb{Z}$

Déterminer la somme sur l'intervalle]-R,R[, donc pour une variable x réelle, des séries correspondant au **5)**, **6)** puis **1)** de l'exercice 2, et 3) de l'exercice 3.

Exercice 5

Montrer que les fonctions suivantes sont développables en série entière au voisinage de 0, et calculer leur développement.

$$1) \ \frac{\ln(1+x)}{x}$$

1)
$$\frac{\ln(1+x)}{x}$$
, 2) $\int_0^x e^{-t^2} dt$, 3) $\cos^2 x \sin x$, 4) $e^x \cos(x)$,

3)
$$\cos^2 x \sin x$$

4)
$$e^x \cos(x)$$
,

5)
$$\frac{1}{(1-t)^3}$$
.

6)
$$f(x) = \cos \sqrt{x}$$
 pour $x \ge 0$ et $f(x) = \operatorname{ch}(\sqrt{-x})$ pour $x < 0$. 7) $\frac{e^x}{1-x}$

Exercice 6 (D'après PT 2008)

On considère le problème de Cauchy suivant :

$$y' = xy + 1 \qquad y(0) = 0$$

1) Soit $F(x) = \sum_{n=0}^{+\infty} a_n x^n$ une série entière à coefficients réels, de rayon de convergence R > 0. On suppose que la fonction F est solution de l'équation différentielle sur]-R,R[. Déterminer $a_0,\,a_1$ ainsi qu'une relation de récurrence reliant, pour tout entier $n \ge 1$, a_{n+1} à a_{n-1} .

1

- 2) Pour tout entier naturel $p \ge 0$, en déduire la valeur de a_{2p} . Déterminer R.
- 3) Exprimer, pour tout entier naturel $p \ge 0$, a_{2p+1} .

Exercice 7

Déterminer les solutions développables en série entière des équations différentielles suivantes. On exprimera explicitement les solutions obtenues à l'aide des fonctions usuelles.

1)
$$y' - x^2y = 0$$
, $y(0) = 1$

1)
$$y' - x^2y = 0$$
, $y(0) = 1$; 2) $xy'' + 2y' + xy = 0$, $y(0) = 1$, $y'(0) = 0$; 3) $xy' - y = \frac{x^2}{1 - x}$.

3)
$$xy' - y = \frac{x^2}{1 - x}$$

Exercice 8

Soit (a_n) une suite de nombres complexes tels que le rayon R de convergence de la série entière associée soit strictement positif. Quel est le rayon de convergence de la série entière

$$\sum_{n\geqslant 0} \frac{a_n}{n!} z^n$$

Exercice 9 Pour tout $n \in \mathbb{N}$, on pose $a_n = \frac{(-1)^n}{2n-1} \binom{2n}{n}$.

- 1) Montrer que, pour tout $n \in \mathbb{N}$, $(n+1)a_{n+1} = -2(2n-1)a_n$.
- 2) Donner le rayon de convergence R de la série entière $f(x) = \sum_{n=0}^{+\infty} a_n x^n$, puis montrer que f est solution sur]-R,R[d'une équation différentielle linéaire du premier ordre que l'on explicitera.
- 3) En déduire f.

Exercice 10 (supplémentaire)

Déterminer le développement en série entière des fonctions suivantes :

1)
$$\ln\left(\sqrt{\frac{1+x}{1-x}}\right)$$

1)
$$\ln\left(\sqrt{\frac{1+x}{1-x}}\right)$$
 2) Arctan $\left(\frac{x\sqrt{2}}{1-x^2}\right)$ 3) $\frac{2}{x^2-4x+3}$

3)
$$\frac{2}{x^2 - 4x + 3}$$

4)
$$\frac{1}{x^2 + x + 1}$$

Exercice 11

À l'aide d'une équation différentielle, déterminer le développement en série entière des fonctions suivantes

1)
$$f(x) = (1+x)^{\alpha}, \ \alpha \in \mathbb{R}$$
 2) $f(x) = (Arcsin x)^2$

$$2) f(x) = (Arcsin x)^2$$

3)
$$f(x) = (\ln(1+x))^2$$